材料力学第5版(孙训方编)第七章解读
孙训方材料力学第五版1课后习题答案
第七章应力状态和强度理论7-17-27-37-47-57-67-77-87-97-107-117-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。
由于实用的原因,图中的角限于范围内。
作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力为许用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。
为了使杆能承受最大的荷载F,试问角的值应取多大?解:按正应力强度条件求得的荷载以表示:按切应力强度条件求得的荷载以表示,则即:当时,,,时,,,时,,时,,由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。
若按胶合缝的达到的同时,亦达到的条件计算则即:,则故此时杆件承受的荷载,并不是杆能承受的最大荷载。
返回7-2(7-7)试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。
解:=由应力圆得返回7-3(7-8)各单元体面上的应力如图所示。
试利用应力圆的几何关系求:(1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,,(b),,,,(c), , ,(d),,,,,返回7-4(7-9) 各单元体如图所示。
试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
解:(a),,,(b),,,(c),,,(d),,,返回7-5(7-10)已知平面应力状态下某点处的两个截面上的应力如图所示。
试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。
解:由已知按比例作图中A,B两点,作AB的垂直平分线交轴于点C,以C 为圆心,CA或CB为半径作圆,得(或由得半径)(1)主应力(2)主方向角(3)两截面间夹角:返回7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。
材料力学第五版(I)孙训方版课后习题答案
材料力学第五版(I )孙训方版课后习题答案[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa mkNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学第五版课后习题答案详解
孙训⽅材料⼒学第五版课后习题答案详解Microsoft Corporation孙训⽅材料⼒学课后答案[键⼊⽂档副标题]lenovo[选取⽇期]第⼆章轴向拉伸和压缩2-1? 2-2? 2-3? 2-4? 2-5? 2-6? 2-7? 2-8? 2-9 下页2-1? 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 ?试求图⽰等直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,试求各横截⾯上的应⼒。
解:返回2-3?试求图⽰阶梯状直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。
若横截⾯⾯积,,,并求各横截⾯上的应⼒。
解:返回2-4? 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm×8mm的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE和EG横截⾯上的应⼒。
解:=1)? 求内⼒取I-I分离体?得? (拉)取节点E为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积A=11.5 cm2(拉)(拉)2-5(2-6)? 图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6(2-8) ?⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:? (压)(压)返回2-7(2-9) ?⼀根直径、长的圆截⾯杆,承受轴向拉⼒,其伸长为。
试求杆横截⾯上的应⼒与材料的弹性模量E。
解:2-8(2-11) ?受轴向拉⼒F作⽤的箱形薄壁杆如图所⽰。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214dEd Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
孙训方材料力学第五版课后习题答案
孙训方材料力学第五版课后习题答案【篇一:孙训方材料力学第五版课后习题答案详解】class=txt>孙训方材料力学课后答案[键入文档副标题]lenovo [选取日期]第二章轴向拉伸和压缩2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 下页 2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(c)解:;;(b)解:;;;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积上的应力。
解:,试求各横截面返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回应力。
的竖直均布荷载。
试求拉杆ae和eg横截面上的解:1)求内力取i-i分离体=得(拉)取节点e为分离体,故2)求应力(拉)(拉)(拉)【篇二:孙训方材料力学第五版课后题答案】t>[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:l?01fdx?f,有kl3?f,k?3f/l33 l0fn(x1)??3fx2/l3dx?f(x1/l)3[习题2-3] 石砌桥墩的墩身高l?10m,其横截面面尺寸如图所示。
荷载f?1000kn,材料的密度??2.35kg/m3,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:n??(f?g)??f?al?g 2-3图 ??1000?(3?2?3.14?12)?10?2.35?9.8??3104.942(kn) 墩身底面积:a?(3?2?3.14?1)?9.14(m)因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
22 ??n?3104.942kn???339.71kpa??0.34mpa2a9.14m[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx截离体(微元体)。
材料力学 孙训方第五版PPT课件
为负(压应力)
例题3 如图所示正方形截面的梯形柱,柱顶受轴向压力P作用,上
段柱重为G1,下段柱重为G2。已知:P=15kN,G1=2.5kN,G2=10kN。
求:上、下段柱的底截面1-1,2-2上的应力。
解: N 1 1 P G 1 1 7 .5 k N
P 200
11N A 1 11 10 1.7 2 .5 01 .2 034.375105Pa
思考?
P
P
P/2 P
PP
PP
P/2
该杆件是轴向拉伸变形吗?
.
第二节 受轴向拉伸或压缩时横截面上的内力和应力
一、内力
1、内力的概念:物体内部相邻部分之间相互作用的力
2、内力的计算(截面法)
m
P
P
X 0
m
P
N
N
P
NF0
NF
.
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、内力正负号的规定
N
N
同一截面位置处左、右两侧截面上的内力必须具有相 同的正负号
2N A22 22000 110036 100MPa
m ax2100M P a
.
第四节 拉、压杆件的变形
3P
3P
P
P
L1
L2
L3
(3)
D LD L 1D L2D L3
N1L1 N2L2 N3L3 EA1 EA2 EA3
2 2 ( 0 0 1 0 1 )0 9 1 0 3 2 0 0 2 5 0 1 0 1 6 0 1 3 .5 2 2 0 0 0 1 1 0 0 3 9 2 2 5 0 0 0 1 1 0 0 3 6
令: ' λ:材料泊松比
孙训方材料力学第五版课后的习题答案
孙训⽅材料⼒学第五版课后的习题答案第⼆章轴向拉伸和压缩2-1 试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。
(a )解:;;(b )解:;;(c )解:;。
(d) 解:。
[习题2-3] ⽯砌桥墩的墩⾝⾼m l 10=,其横截⾯⾯尺⼨如图所⽰。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩⾝底部横截⾯上的压应⼒。
解:墩⾝底⾯的轴⼒为:g Al F G F N ρ--=+-=)( 2-3图)(942.31048.935.210)114.323(10002kN -=+?--=墩⾝底⾯积:)(14.9)114.323(22m A =?+?=因为墩为轴向压缩构件,所以其底⾯上的正应⼒均匀分布。
MPa kPa mkN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图⽰⼀混合屋架结构的计算简图。
屋架的上弦⽤钢筋混凝⼟制成。
下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm ×8mm 的等边⾓钢。
已知屋⾯承受集度为的竖直均布荷载。
试求拉杆AE 和EG 横截⾯上的应⼒。
解:=1)求内⼒取I-I 分离体得(拉)取节点E 为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积 A =11.5 cm 2(拉)(拉)2-5图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。
如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。
解:2-6 ⼀⽊桩柱受⼒如图所⽰。
柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)[习题2-7] 图⽰圆锥形杆受轴向拉⼒作⽤,试求杆的伸长。
解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdx l d =? ,??==?l l x A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+?-=, 2211222)(u d x ld d x A ?=??? ??+-=ππ,dx l d d du d x l d d d 2)22(12112 -==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d lx A dx -?-=?-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l--===?πlld x l d d d d E Fl u d d E Fl 011221021221)(21)(2??+--=???-=ππ-+--=21221)(2111221d d l l d d d d E Fl π2-10 受轴向拉⼒F 作⽤的箱形薄壁杆如图所⽰。
材料力学(孙训方版全套课件)
§3 可变形固体的性质及基本假设
一、连续性假设
内容:认为物体在其整个体积内毫无空隙地充满了物质,其 结构是密实的。 无空隙
二、均匀性假设
内容:认为物体内任一点处取出的体积单元,其力学性质(主 要是弹性性质)都是一样的。
有利于建立数学模型
单元体的力学性质能代表整个物体 的力学性能。
三、材料的各向同性假设
F
1 3F
2 2F
4KN
2KN
A 1B
2C
F
4KN
2F
2KN
5KN
例题 2.3
F F
2F
2F
2F
例题 2.4
图示砖柱,高h=3.5m,横截面面积 A=370×370mm2,砖砌体的容重γ=18KN/m 柱顶受有轴向压力F=50KN,试做此砖柱的轴力 图。
50
G Ay
F
F
y
n
n
FNy
F Ay FNy 0
从内力集度最大处开始。)
F1
F2
应力就是单位面积
上的内力?
F3 Fn
F1
ΔFQy
ΔFQz ΔA
F2
DF dF p lim
DA0 DA dA
lim DFN dFN
DA DA0 dA
lim DFQ dFQ
DA DA0 dA
垂直于截面
DF
的应力称为
“ 正应力”
ΔFN
C
A
例题
2.8
计算图示结构BC和CD杆横截面上的正应力值。
已知CD杆为φ28的圆钢,BC杆为φ22的圆钢。
D
E A 1m
以AB杆为研究对像
材料力学第五版孙训方版课后习题答案高等教育出版社
材料力学 高等教育出版社 孙训方[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)(2-3图)(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ[习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:)()(x EA Fdxl d =∆ ,⎰⎰==∆l lx A dxE F dx x EA F l 00)()( lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=,2211222)(u d x ld d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx ld d du d x l d d d 2)22(12112-==+- du d d ldx 122-=,)()(22)(221212udu d d l du u d d l x A dx -⋅-=⋅-=ππ 因此,)()(2)()(202100u du d d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如图所示。
材料力学第五版孙训方版课后习题答案
[习题2-2]一打入基地内的木桩如以下图,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如以下图。
荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向紧缩构件,因此其底面上的正应力均匀散布。
MPa kPa m kNA N 34.071.33914.9942.31042-≈-=-==σ [习题2-7] 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7图解:取长度为dx 截离体〔微元体〕。
那么微元体的伸长量为:)()(x EA Fdx l d =∆ ,⎰⎰==∆l l x A dxE F dx x EA F l 00)()(lxr r r r =--121,22112112d x l d d r x l r r r +-=+⋅-=, 2211222)(u d x l d d x A ⋅=⎪⎭⎫ ⎝⎛+-=ππ,dx l d d du d x l d d d 2)22(12112-==+- du d d l dx 122-=,)()(22)(221212udud d l du u d d lx A dx -⋅-=⋅-=ππ因此,)()(2)()(202100u dud d E Fl x A dx E F dx x EA F l l l l⎰⎰⎰--===∆π lld x l d d d d E Fl u d d E Fl 011221021221)(21)(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡-=ππ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--=21221)(2111221d d l l d d d d E Fl π ⎥⎦⎤⎢⎣⎡--=122122)(2d d d d E Fl π214d Ed Fl π=[习题2-10] 受轴向拉力F 作用的箱形薄壁杆如以下图。
孙训方材料力学(I)第五版课后习题答案完整版
第二章轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
2-2 一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为f=kx²(k为常数),试作木桩的轴力图。
解:由题意可得:⎰0lFdx=F,有1/3kl ³=F,k=3F/l ³F N (x 1)=⎰1x 3Fx ²/l ³dx=F(x 1 /l) ³2-3 石砌桥墩的墩身高l=10m ,其横截面面尺寸如图所示。
荷载F=1000KN ,材料的密度ρ=2.35×10³kg/m ³,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:g Al F G F N ρ--=+-=)( 2-3图 )(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm ×8mm 的等边角钢。
已知屋面承受集度为 的竖直均布荷载。
试求拉杆AE 和EG 横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
材料力学第五版孙训方版课后习题答案
2-6 (1)轴力Fnac=-100kN, Fnbc=-260kN(2) 应力Ϭac=Fnac/A=-2.5MPa Ϭbc=Fnbc/A=-6.5MPa (A 截面积)(3)应变 Ɛac=Ϭac/E=-0.00025 Ɛbc=Ϭbc/E=-0.00065 (4)位移 ΔL=Ɛac*Lac+Ɛbc*Lbc=-1.35mm4-30 由 ƩMb=0和 ƩFy=0 得Fa=12kN ,Fb=36kN 则 4-32 由 ƩMb=0和 ƩFy=0 得Fa=1.62kN ,Fb=3.91kN 则 最大剪力Fsmax=2.28kN 最大弯矩 Mmax=1.01kN.m 最大正应力 Ϭmax=Mmax/Wz=7.01MPa最大切应力 тmax=3Fsmax/2A=0.475MPa 显然 Ϭmax<[Ϭ] ,тmax<[Ϭ].故安全 4-34 由 ƩMb=0和 F (1-x )-Fa=0 得Fa=F (1-x )最大弯矩在荷载作用点处 M=Fa*x=Fx-Fx^2 当移动满足dM/dx=0 ,d^2M/dx^2<0时,M 取极大值, 则x=1/2m Mmax=M|x=1/2=F/4=10kN.m 根据条件 Ϭmax=Mmax/Wz=6Mmax/bh^2 <=[Ϭ]=10000000 得 b>=0.1387m=138.7mm 则 h=3/2b=208mm 则有Fsmax=F=40kN最大剪应力тmax=3Fsmax/2A=2.08MPa 显然 тmax<[т],满足剪应力强度要求 故尺寸可选b=138.7mm ,h=208mm8-14 图中Mx=P*1/2=0.15P,Mz=F*L1 可得Fay=0.5P ,Fby=0.2P, Faz=Fbz=0.5P , F=0.3P[习题2-2]一打入基地内的木桩如图所示,杆轴单位长度的摩擦力f=kx**2,试做木桩的后力图。
解:由题意可得:33233110,,3/()3/(/)ll N fdx F kl F k F l F x Fx l dx F x l =====⎰⎰1有3[习题2-3] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。
【孙训方】材料力学第7章应力状态和强度理论.pdf
W 03D
03D
03D
D
03D
03D
$
V R V
D D
+ &
D
V V 03D
%
V[ D
VD
WD
% V\
$ V \
W
% VD WD
D
V
&
V [
D $
P
]
[
\
) N1
P
W$
$
V$
W
W $
R
&
D
V
V $ W $
V V 03D
03D
D V D 03D W D 03D V 03D V V 03D
V
W 03D
V
& D
R
V
V 03D
F V 03D V V 03D D $
G V 03D V 03D V D $
03D 03D
VD
)V $
FRV D
d >V @
)V
>V @$
FRV D
WD
)W $
VLQ D
d
>W @
>V @ )W
>V @$
VLQ D
D $
)V >V @$ )W f
D $ )V >V @$ )W >V @$
D $ )V >V @$ )W >V @$
) $
孙训方材料力学第五版课后习题答案解析详细讲解
WORD格式可编辑Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
材料力学第5版(孙训方编)第七章详解
由以上两个平衡方程并利用切应力互等定理可得到以
2为参变量的求 斜截面上应力,的公式:
x
y
2
x
y
2
cos 2
x sin 2
x
2
y
sin 2
x
cos 2
12
第七章 应力状态和强度理论
Ⅱ. 应力圆
为便于求得, ,也为了便于直观地了解平面应力
状态的一些特征,可使上述计算公式以图形即所称的应力 圆(莫尔圆)(Mohr’s circle for stresses)来表示。
7
第七章 应力状态和强度理论
(a)
(b) (c)
对于图a所示受横力弯曲的梁,从其中A点处以包含与梁的横 截面重合的面在内的三对相互垂直的面取出的单元体如图b(立 体图)和图c(平面图),本节中的分析结果将表明A点也处于平面 应力状态。
8
第七章 应力状态和强度理论
平面应力状态最一般的表现形式如图a所示,现先 分析与已知应力所在平面xy垂直的任意斜截面(图b)上的 应力。
6
第七章 应力状态和强度理论
§7-2 平面应力状态的应力分析·主应力
平面应力状态是指,如果受力物体内一点处在众多不 同方位的单元体中存在一个特定方位的单元体,它的一对 平行平面上没有应力,而另外两对平行平面上都只有正应 力而无切应力这种应力状态。等直圆截面杆扭转时的纯剪 切应力状态就属于平面应力状态(参见§3-4的“Ⅱ.斜截面 上的应力”)。受拉压时和圆截面 杆受扭时杆件内一点处不同方位截面上的应力,并指出: 一点处不同方位截面上应力的集合(总体)称之为一点处 的应力状态。由于一点处任何方位截面上的应力均可根 据从该点处取出的微小正六面体── 单元体的三对相互 垂直面上的应力来确定,故受力物体内一点处的应力状 态(state of stress)可用一个单元体(element)及其上的应力 来表示。
孙训方材料力学第五版课后习题答案详解
Microsoft Corporation孙训方材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章??????轴向拉伸和压缩? ? ? ? ? ? ? ? ??????????2-1? 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;??????(c)解:;。
(d)解:。
??????2-2 ?试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3?试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4? 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
???解:=1)? 求内力取I-I分离体?得? (拉)取节点E为分离体,???故(拉)2)??????? 求应力?? 75×8等边角钢的面积A= cm2?(拉)?(拉)2-5(2-6)? 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
?? 解:??????????2-6(2-8) ?一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:? (压)? (压)2-7(2-9) ?一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:???2-8(2-11) ?受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
材料力学孙训方第五版和第六版区别
材料力学孙训方第五版和第六版区别
材料力学孙训方的第五版和第六版的区别主要体现在以下几个方面:
1. 内容更新:第六版相对于第五版在内容上进行了更新和修订,包括新增了一些新的材料力学理论和知识,修正了第五版中的错误和不准确之处。
2. 知识结构调整:第六版通过对知识结构的重新整理和调整,使得整个教材更加系统且条理清晰,方便学生理解和掌握。
3. 实例与习题:第六版相较于第五版,可能会增加或修改实例和习题,以便更好地贴近实际工程和科学问题,提高学生的实际应用能力。
4. 讲解方式改进:第六版在讲解方式上可能会进行改进,采用更加简洁明了的语言和图示示例,以提升学生的课堂效果和阅读体验。
需要注意的是,以上的区别仅为一般情况下的推测,具体的差异可能需要对比两个版本的实际内容来确定。
因此,建议查阅第六版教材的目录和前言,或者参考相关介绍,以获取更准确的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 应力状态和强度理论
p cos 0 cos2
p
sin
0
2
sin 2
单向应力状态
3
第七章 应力状态和强度理论
sin 2 cos 2
纯剪切应力状态 4
第七章 应力状态和强度理论
研究杆件受力后各点处,特别是危险点处的应力状态可以:
1. 了解材料发生破坏的力学上的原因,例如低碳钢拉伸 时的屈服(yield)现象是由于在切应力最大的45˚ 斜截面上材 料发生滑移所致;又如铸铁圆截面杆的扭转破坏是由于在45˚ 方向拉应力最大从而使材料发生断裂(fracture)所致。
由以上两个平衡方程并利用切应力互等定理可得到以
2为参变量的求 斜截面上应力,的公式:
x
y
2
x
y
2
cos 2
x sin 2
x
2
y
sin 2
x
cos 2
12
第七章 应力状态和强度理论
Ⅱ. 应力圆
为便于求得, ,也为了便于直观地了解平面应力
状态的一些特征,可使上述计算公式以图形即所称的应力 圆(莫尔圆)(Mohr’s circle for stresses)来表示。
6
第七章 应力状态和强度理论
§7-2 平面应力状态的应力分析·主应力
平面应力状态是指,如果受力物体内一点处在众多不 同方位的单元体中存在一个特定方位的单元体,它的一对 平行平面上没有应力,而另外两对平行平面上都只有正应 力而无切应力这种应力状态。等直圆截面杆扭转时的纯剪 切应力状态就属于平面应力状态(参见§3-4的“Ⅱ.斜截面 上的应力”)。
2. 在不可能总是通过实验测定材料 极限应力的复杂应力状态下,如图所示, 应力状态分析是建立关于材料破坏规律 的假设(称为强度理论)(theory of strength, failure criterion)的基础。
5
第七章 应力状态和强度理论
本章将研究 Ⅰ. 平面应力状态下不同方位截面上的应 力和关于三向应力状态(空间应力状态) 的概念;Ⅱ. 平面 应力状态和三向应力状态下的应力-应变关系——广义胡克 定律(generalized Hooke’s law),以及这类应力状态下的应变 能密度(strain energy density);Ⅲ. 强度理论。
7
第七章 应力状态和强度理论
(a)
(b) (c)
对于图a所示受横力弯曲的梁,从其中A点处以包含与梁的横 截面重合的面在内的三对相互垂直的面取出的单元体如图b(立 体图)和图c(平面图),本节中的分析结果将表明A点也处于平面 应力状态。
8
第七章 应力状态和强度理论
平面应力状态最一般的表现形式如图a所示,现先 分析与已知应力所在平面xy垂直的任意斜截面(图b)上的 应力。
需将应力圆圆周上表示x截面上的应力的点D1所对应的半
径 C D1按方位角的转向转动2角,得到半径 C E ,那 么圆周上E点的座标便代表了单元体斜截面上的应力。
现证明如下(参照图b):
17
第七章 应力状态和强度理论
9
第七章 应力状态和强度理论
Ⅰ. 斜截面上的应力
图b中所示垂直于xy平面 的任意斜截面ef 以它的外法线
n与x轴的夹角 定义,且角
以自x 轴逆时针转至外法线n为 正;斜截面上图中所示的正应
力 和切应力均为正值,即 以拉应力为正,以使其所
作用的体元有顺时针转动趋势 者为正。
10
体元的平衡方程为
第七章 应力状态和强度理论
先将上述两个计算公式中的第一式内等号右边第一项 移至等号左边,再将两式各自平方然后相加即得:
x
x
2
y
2
2
x
2
y
2
2 x
13
第七章 应力状态和强度理论
而这就是如图a所示的一个圆——应力圆,它表明代
表 斜截面上应力的点必落在应力圆的圆周上。
x
2
y
2
2 x
O
C
x y
2
(a)
14
第七章 应力状态和强度理论
Ft 0, d A x d Acos sin x d Acos sin
y
d
A s in
s in
Hale Waihona Puke ydAsin
cos
0 11
第七章 应力状态和强度理论
需要注意的是,图中所示单元体顶,底面上的切应力y
按规定为负值,但在根据图d中的体元列出上述平衡方程
时已考虑了它的实际指向,故方程中的y仅指其值。也正 因为如此,此处切应力互等定理的形式应是x=y。
§7-1 概述
在第二章和第三章中曾讲述过杆受拉压时和圆截面 杆受扭时杆件内一点处不同方位截面上的应力,并指出: 一点处不同方位截面上应力的集合(总体)称之为一点处 的应力状态。由于一点处任何方位截面上的应力均可根 据从该点处取出的微小正六面体── 单元体的三对相互 垂直面上的应力来确定,故受力物体内一点处的应力状 态(state of stress)可用一个单元体(element)及其上的应力 来表示。
图a中所示的应力圆实际上可如图b所示作出,亦即使单元
体x截面上的应力x,x按某一比例尺定出点D1,依单元体y截面 上的应力y,y(取y = -x)定出点D2,然后连以直线,以它与
轴的交点C为圆心,并且以 CD1 或 CD2为半径作圆得出。
D1 x , x
O
C
D2 y , y
(b)
15
第七章 应力状态和强度理论
由图c知,如果斜截面 ef的面积为dA,则体元左侧
面eb的面积为dA·cos,而 底面bf 的面积为dA·sin。
图d示出了作用于体元ebf 诸 面上的力。
Fn 0, d A x d Acos sin x d Acos cos
y d Asin cos y d Asin sin 0
D1 x , x
O
C
D2 y , y
(b)
值得注意的是,在应力圆圆周上代表单元体两个相互垂直的
x截面和y截面上应力的点D1和D2所夹圆心角为180˚,它是单
元体上相应两个面之间夹角的两倍,这反映了前述,计 算公式中以2 为参变量这个前提。
16
第七章 应力状态和强度理论
利用应力圆求 斜截面(图a)上的应力,时,只
第七章 应力状态和强度理论
§7-1 概述 §7-2 平面应力状态的应力分析·主应力 §7-3 空间应力状态的概念 §7-4 应力与应变间的关系 §7-5 空间应力状态下的应变能密度 §7-6 强度理论及其相当应力 *§7-7 莫尔强度理论及其相当应力 §7-8 各种强度理论的应用
1
第七章 应力状态和强度理论