实验报告 遥感图像的灰度变换处理
图像灰度变换实验报告
图像灰度变换报告一.实验目的1.学会使用Matlab ;2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响;二.实验内容1.熟悉Matlab 中的一些常用处理函数读取图像:img=imread('filename');//支持TIF,JPEG,GIF,BMP,PNG 等文件格式。
显示图像:imshow(img,G);//G 表示显示该图像的灰度级数,如省略则默认为256。
保存图片:imwrite(img,'filename');//不支持GIF 格式,其他与imread 相同。
亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]);//将low_in 至high_in 之间的值映射到low_out 至high_out 之间,low_in 以下及high_in 以上归零。
绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel);//newlevel 表示输出图像指定的灰度级数。
2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。
3 .产生灰度变换函数T1,使得:0.3rr < 0.35 s =0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.651 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。
4.产生灰度变换函数T2,使得:s = 5.用T2imwrite 保存处理后的新图像。
6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。
为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。
遥感图像处理实验报告
遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。
实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。
本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。
实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。
2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。
3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。
4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。
实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。
通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。
这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。
在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。
变换处理遥感实验报告
一、实验背景遥感技术作为一种获取地球表面信息的重要手段,在资源调查、环境监测、灾害预警等领域发挥着重要作用。
遥感图像经过传感器采集后,往往需要进行一系列的预处理,包括辐射校正、几何校正、图像增强等。
其中,变换处理是遥感图像预处理的重要环节之一,它可以提高图像质量,便于后续分析与应用。
二、实验目的本次实验旨在:1. 熟悉遥感图像变换处理的基本原理和方法;2. 掌握遥感图像灰度变换、空间变换等处理方法;3. 利用变换处理提高遥感图像质量,为后续分析提供更好的数据基础。
三、实验内容1. 灰度变换灰度变换是遥感图像处理中最基本、最常用的方法之一。
它通过改变图像中像素的灰度值,调整图像的对比度、亮度等,从而改善图像质量。
实验步骤如下:(1)打开遥感图像处理软件,选择待处理的遥感图像。
(2)选择灰度变换功能,设置变换公式。
常用的变换公式有线性变换、指数变换、对数变换等。
(3)调整变换参数,观察图像变化,直至达到预期效果。
(4)保存变换后的图像。
2. 空间变换空间变换是指将遥感图像中的像素值按照一定的规律进行重新排列,从而改变图像的空间结构。
实验步骤如下:(1)打开遥感图像处理软件,选择待处理的空间变换功能。
(2)选择变换类型,如平移、旋转、缩放等。
(3)设置变换参数,如平移距离、旋转角度、缩放比例等。
(4)执行变换操作,观察图像变化。
(5)保存变换后的图像。
四、实验结果与分析1. 灰度变换通过灰度变换,可以有效地改善遥感图像的对比度、亮度等。
例如,对低对比度图像进行指数变换,可以提高图像的清晰度;对高对比度图像进行线性变换,可以降低图像的噪声。
2. 空间变换空间变换可以改变遥感图像的空间结构,使其更适合后续分析。
例如,将遥感图像进行旋转,可以消除由于传感器倾斜引起的图像畸变;将遥感图像进行缩放,可以改变图像的分辨率,使其更适合不同尺度的分析。
五、实验总结本次实验通过对遥感图像进行灰度变换和空间变换,提高了图像质量,为后续分析提供了更好的数据基础。
遥感图像处理实验报告_图像的频率域滤波处理
遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:图像的频率域滤波处理实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的1:掌握滤波器在程序语言中的定义算法2:理解图像的频率域与空间域之间的区别与联系3:在频率域对图像进行处理,达到平滑(低通滤波)与锐化(高通滤波)的目的二:实验内容1:在Matlab中定义滤波器2:对图像进行频率域处理3:对频率域的处理结果,结合第3次实验(空间域处理)结果进行对比,给出评价三:实验代码及Matlab使用心得(注释中)%清屏,清除工作空间,关闭所有绘图窗口clc;clear all;close all;%读取图像,并建立一个窗口,显示原始图像I = imread('C:\Users\浮生\Desktop\大三\Matlab\data\lena.png', 'png')figure(1)imshow(I)title('原始图像')%图像傅立叶变换%fft(X)函数的作用是,返回矩阵X的【二维离散傅立叶变换】结果%fft()函数采用快速傅立叶变换算法,运算结果的行列数与被变换矩阵的规格相同F = fft2(I);%fftshift()函数的功能则是把FFT的DC分量移动到频谱矩阵的中心%在直观上,就是把低频信息移到矩阵中心,便于直观观看图像的频谱F = fftshift(F);%由于FFT的运算结果的数值跨幅过大%直接显示的话只能看到一个小亮点%为了显示的直观,我们需要自行定义灰度显示幅度%在本例中,我们定义显示幅度为0-50000figure(2);imshow(abs(real(F)), [0 50000]);title('频率域图像')%%%%%%定义滤波器之前的准备工作%%%%%[m n] = size(I);%读取图像的规格p = m/2;%定义两个计数器p和qq = n/2;%用以控制滤波器的遍历过程image = zeros(m,n);%%%%%%截止频率为50的理想低通滤波器%%%%%%%低通滤波器,即让频率高于阈值的信号值为0,而在阈值之下的所有信号保持原样%反映在图像操作中,将去除高频信息,达到平滑的效果lowpass_50 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 50%什么也不做;elselowpass_50(u, v) = 0;endendend%显示频率域图像figure(3);imshow(abs(real(lowpass_50)), [0 50000]);title('频率域图像截止频率为50的理想低通滤波器');%傅立叶逆运算反算图像image = ifftshift(lowpass_50);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(4);imshow(image, []);title('处理结果截止频率为50的理想低通滤波器')%%%%%%截止频率为100的理想低通滤波器%%%%%%lowpass_100 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 100%什么也不做;elselowpass_100(u, v) = 0;endendend%显示频率域图像figure(5);imshow(abs(real(lowpass_100)), [0 50000]);title('频率域图像截止频率为100的理想低通滤波器'); %傅立叶逆运算反算图像image = ifftshift(lowpass_100);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(6);imshow(image, []);title('处理结果截止频率为100的理想低通滤波器')%%%%%%截止频率为50的理想高通滤波器%%%%%% highpass_50 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 50highpass_50(u, v) = 0;else%什么也不做;endendend%显示频率域图像figure(7);imshow(abs(real(highpass_50)), [0 50000]);title('频率域图像截止频率为50的理想高通滤波器');%傅立叶逆运算反算图像image = ifftshift(highpass_50);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(8);imshow(image, []);title('处理结果截止频率为50的理想高通滤波器')%%%%%%截止频率为100的理想高通滤波器%%%%%% highpass_100 = F;for u = 1:mfor v = 1:nif sqrt((u-p)^2 + (v-q)^2) < 100highpass_100(u, v) = 0;else%什么也不做;endendend%显示频率域图像figure(9);imshow(abs(real(highpass_100)), [0 50000]);title('频率域图像截止频率为100的理想高通滤波器');%傅立叶逆运算反算图像image = ifftshift(highpass_100);%还原矩阵image = ifft2(image);%傅立叶逆运算image = abs(real(image));%复数取实部%显示处理结果图像figure(10);imshow(image, []);title('处理结果截止频率为100的理想高通滤波器')%%%%%%截止频率为50的巴特沃斯低通滤波器%%%%%% for u = 1:m,for v = 1:nD=sqrt((u-p)^2 + (v-q)^2);Butterworth(u,v)=1/(1+D/50)^(2*2);endend%显示频率域图像figure(11);imshow(abs(real(Butterworth)), []);title('频率域图像截止频率为50的巴特沃斯低通滤波器'); %傅立叶逆运算反算图像image = F.*Butterworth;image = ifftshift(image);image = abs(ifft2(image));%显示处理结果图像figure(12);imshow(image, []);title('处理结果截止频率为50的巴特沃斯低通滤波器')%%%%%%截止频率为50的高斯低通滤波器%%%%%%for u=1:m,for v=1:nD=sqrt((u-p)^2 + (v-q)^2);Gaussian(u,v)=exp(-D^2/(2*50^2));endend%显示频率域图像figure(13);imshow(abs(real(Gaussian)), []);title('频率域图像截止频率为50的高斯低通滤波器'); %傅立叶逆运算反算图像image = F.*Gaussian;image = ifftshift(image);image = abs(ifft2(image));%显示处理结果图像figure(14);imshow(image, []);title('处理结果截止频率为50的高斯低通滤波器');四:实验结果(仅列一例)五:实验心得1:相较空域滤波,频率域滤波的算法复杂度更高。
灰度修正技术(图像处理实验报告)参考模板
课程实验报告我们选择的是对比度不足的pout.tif图像,从它的直方图可以算出,它的灰度值大概在[0.3 0.7]这个范围内,所以我们要调整它的灰度范围,改为[0 1],增大灰度范围,从而增强对比度。
2.直方图均衡:选择一幅灰度直方图不均匀的图像,对该图像进行直方图均衡处理,显示处理前、后的图像以及它们的灰度直方图。
由图可以看出,原始图像直方图很不均匀,大多数像素值集中分布在零附近的低灰度区,反映原图像偏暗而不清晰;均衡化后图像的直方图比较均匀,反映均衡化后图像图像比原图像清晰。
由图可以看出,原始图像直方图分布不均匀,大多数像素集中在[0.3 0.7]这个范围内,反映原图像不清晰;均衡化后图像直方图比较均匀,反映均衡化后图像比原图像清晰。
实验中的体会(如实验过程中遇到的问题及其解决的方法等)本次实验并不难,在课上就能做完实验和完成实验报告,觉得这样的实验挺好的,课后有更多的时间可以看书。
实验过程中还是遇到了软件的问题,很不解为什么同样的代码在实验课上不能通过,但是在宿舍就可以,有时候会浪费一些时间解决软件问题。
不过还是挺开心的,每次实验课完成都能够更理解更清楚理论课的知识。
附录: (MATLAB程序)%EX1close all;clear all;I=imread('pout.tif');J=imadjust(I,[0.3 0.7],[0 1]);figure;subplot(2,2,1);imshow(I);title('原始图像');subplot(2,2,3);imhist(I);title('原始图像的直方图');友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
实验五 遥感图像处理
实验五遥感图像处理实验目的:通过上机操作,了解空间增强、辐射增强、频率域增强等几种遥感图象增强处理的过程和方法,加深对遥感图象增强处理的理解。
通过上机操作,初步掌握遥感信息融合的方法,深入理解遥感信息融合在信息解译中的意义。
实验内容:ENVI中进行直方图的交互式拉伸、卷积滤波处理、频率域滤波FFT。
多光谱数据与高分辨率全色数据的融合。
一、遥感图像增强处理部分1、直方图的交互式拉伸ENVI 用2% 的系统默认线性拉伸值来显示所有图像(两边均舍去信息量的2%),经过这样处理后合成的假彩色图像层次分明、地物差异大,各类地物易于判别。
从Enhance子菜单选择Interactive Stretching,出现一个新的对话框,它包含输入和输出的直方图。
若显示一幅RGB 彩色图像,则出现三个直方图窗口,一个直方图对应于一个波段。
打开交互式对话框在主图像窗口,选择Enhance > Interactive stretching.在交互式对比度拉伸对话框中将显示输入和输出直方图,它们表明了当前的输入数据以及分别应用的拉伸。
两条垂线(虚线)表明了当前拉伸用到的最小和最大值。
对于彩色图像来说,直方图的颜色与所选择的波段颜色一致。
交互式直方图窗口的底部会列出拉伸类型和直方图来源。
注意:要把任何拉伸或直方图变化自动地应用于你的图像,选择Options > Auto Apply: On.◆浏览数据细节要浏览当前的DN值和指定DN值的像元数、直方图以及累积直方图,可以在直方图内按住鼠标左键并拖放随之产生的白色十字交叉指针。
◆设置拉伸参数要更改最小和最大拉伸值,在任意一条垂直虚线上点击鼠标左键,然后拖曳到一个新位置。
或在对话框顶部的文本框中输入所需值。
当选择任意一条线时,当前的DN、像元数、该单位DN 的像元百分比以及累积百分比,显示在输入的直方图上。
当指定最小和最大值时,输入所需要的实际值(例如,最小值37,最大值68 )或数据的百分比(例如,最小值“2%”,最大值“98%”)。
遥感数字图像处理实验报告(三)
遥感数字图像处理实验报告(三)姓名:学号:班级:指导老师:1)项目名称:遥感图像空域增强处理2)实验目的:1. 掌握遥感图像直方图增强的各种方法,对各种增强结果进行对比分析,了解和掌握使用各种方法进行图像处理的特点和优势,有助于突出哪方面的信息等。
2. 掌握遥感图像的各种邻域增强方法,进行算子分析和结果对比,掌握各种方法的特点以及使用该增强方法有助于突出的信息。
3)实验原理:空间增强技术是利用像元自身及周围像元的灰度值进行计算,达到增强图像、突出图像中的某些方面信息的目的。
实验选择使用ERDAS IMAGINE 软件进行操作。
该软件共提供了如下空间增强处理功能:对应的如图14)数据来源及数据基本信息:(下载源、波段数、对应的波长、分辨率、投影、地区)图像数据来自国际科学数据服务平台,Landsat5 2010年9月18日的图像,是经裁剪后的图像。
图像共7个波段,波段1-5和波段7的空间分辨率为30米,6波段(热红外波段)的空间分辨率为120米。
对应的波段、波长、分辨率、主要作用如表:图像采用的投影为WGS 84投影,条带号为122,行编号为36,覆盖豫东、皖北、苏北、鲁西四省交界地区。
裁剪后的图像范围为河南省永城市东西城区及周边。
5)实验过程:空间邻域增强:1)卷积增强(Convolution)卷积处理的关键是卷积算子即系数矩阵的选择,该系数矩阵又称卷积核。
ERDAS IMAGINE 卷积算子分为3×3、5×5、7×7三组,每组有都包括Edge Detect、Edge Enhance、Low Pass、High Pass、Horizontol、Vertical、Summary等七种不同的处理方式,本实验仅选取3×3、5×5、7×7的Edge Detect 边缘检测和5×5的Edge Enhance、Low Pass、HighPass、Horizontol、Vertical、Summary 共计9种处理方式以做对比。
遥感图像增强实验报告
遥感图像增强实验报告引言遥感技术在地球科学和环境科学领域有着广泛的应用,其中图像增强是遥感图像处理的重要环节之一。
图像增强旨在改善遥感图像的视觉效果,使得图像的细节更加清晰、对比度更加鲜明,以便更好地进行地表特征的识别和分析。
在本次实验中,我们将探讨常用的图像增强方法,并且使用实际遥感图像进行增强实验。
实验目的1. 了解遥感图像增强的基本概念和方法。
2. 掌握常见的图像增强方法的实施过程。
3. 分析和比较不同图像增强方法的效果,选择最适合的增强方法。
实验步骤1. 数据准备:选择一张遥感图像作为实验数据,确保图像分辨率适中、含有一定的地表特征。
2. 灰度拉伸:使用灰度拉伸方法增强图像的对比度。
首先计算图像的最小灰度值(Min)和最大灰度值(Max),然后通过线性变换将灰度值映射到0-255的范围内。
3. 直方图均衡化:利用直方图均衡化方法增强图像的细节。
首先计算图像的灰度直方图,然后按照直方图均衡化的公式对每个灰度值进行调整。
4. 自适应直方图均衡化:对比直方图均衡化方法,自适应直方图均衡化能够避免对整个图像进行均衡化,而是通过使用局部领域内的信息来进行均衡化。
5. 对比度增强:使用对比度增强方法增强图像的对比度。
可以通过调整图像的亮度、对比度和饱和度来实现。
6. 结果分析:根据实验结果分析不同图像增强方法的效果,选择最佳的增强方法。
实验结果与分析经过实验,我们得到了经过不同图像增强方法处理后的图像。
通过对比实验前后的图像,我们可以得出以下结论:1. 灰度拉伸方法能够有效增强图像的对比度,使得图像的亮度范围更广,细节更加清晰。
2. 直方图均衡化方法能够增强图像的细节,特别是在暗部和亮部细节的表现上有显著提升。
3. 自适应直方图均衡化方法相比于普通直方图均衡化方法在处理具有大范围对比度差异的遥感图像时效果更好,避免了过度增强和信息损失。
4. 对比度增强方法可以通过调整图像的亮度、对比度和饱和度来增强图像的视觉效果,但对于某些场景可能会导致图像过度增强或过度饱和。
灰度图像处理实验报告
灰度图像处理实验报告实验背景灰度图像处理是图像处理中的一项重要任务,它通过将彩色图像转换为仅包含灰度信息的图像,从而简化图像处理的复杂度。
灰度图像处理在计算机视觉、图像识别和模式识别等领域有着广泛的应用。
实验目的本实验的目的是通过python编程实现灰度图像处理算法,包括灰度化、二值化、图像平滑以及直方图均衡化等,从而深入理解灰度图像处理的原理和算法,并掌握实现相关算法的编程技巧。
实验过程1. 数据准备在本次实验中,我们选用了一张彩色图像作为处理对象,该图像包含丰富的纹理和明暗变化。
首先,我们需要将彩色图像转换为灰度图像,以便后续的处理。
2. 灰度化灰度化将彩色图像转换为灰度图像,即将每个像素点的RGB三个分量的值按照一定的权重进行加权平均,得到对应的灰度值。
常用的加权平均法为:Gray = 0.299 * R + 0.587 * G + 0.114 * B上述公式中的0.299、0.587和0.114是经验值,表示红、绿和蓝三个分量的权重。
3. 二值化二值化将灰度图像转换为二值图像,即将每个像素点的灰度值与一个阈值进行比较,若大于阈值,则该像素点的值为255(表示白色),否则其值为0(表示黑色)。
在实际应用中,阈值的选取通常需要根据具体的图像和任务进行调整。
4. 图像平滑图像平滑是为了减少图像的噪声和细节,使得图像更加平滑,在一些图像处理任务中有着重要的应用。
常用的图像平滑算法包括均值滤波、中值滤波和高斯滤波等。
在本次实验中,我们选择了均值滤波作为图像平滑的算法,并使用一个3x3的滤波模板对图像进行卷积操作。
5. 直方图均衡化直方图均衡化是一种常用的图像增强技术,通过对图像的灰度级进行重新分配,使得原始图像中较暗的像素点和较亮的像素点在直方图上均匀分布,从而增强图像的对比度和视觉效果。
实验结果经过实验,我们得到了经过灰度化、二值化、图像平滑和直方图均衡化等处理后的图像。
与原始彩色图像相比,经过灰度化的图像丢失了颜色信息,但保留了图像的亮度信息;经过二值化的图像将图像的亮度信息进一步简化,只保留了黑色和白色两种颜色;经过图像平滑的处理,图像的细节和噪声得到了一定程度的抑制;经过直方图均衡化的处理,图像的对比度得到了显著的提升,整体的视觉效果更好。
遥感影像处理实验报告(3篇)
第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。
遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。
本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。
二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。
2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。
3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析:对分类结果进行分析,评估分类精度。
三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。
- 确保影像数据具有较好的质量和分辨率。
2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。
- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。
- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。
3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。
- 对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。
- 对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析- 对分类结果进行分析,评估分类精度。
- 分析分类结果中存在的问题,并提出改进措施。
四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。
2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。
3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。
遥感图像处理实验报告
遥感图像处理实验报告遥感图像处理实验报告引言遥感技术作为一种获取地球表面信息的重要手段,已经在农业、环境、城市规划等领域得到广泛应用。
本实验旨在通过遥感图像处理,探索图像处理算法的应用效果,并分析其在实际应用中的潜力。
一、图像预处理图像预处理是遥感图像处理的第一步,其目的是消除图像中的噪声、增强图像的对比度和清晰度。
在本实验中,我们使用了直方图均衡化和中值滤波两种常见的图像预处理方法。
直方图均衡化是一种通过调整图像像素的灰度分布来增强图像对比度的方法。
通过对图像的灰度级进行重新分配,使得图像的灰度分布更加均匀,从而使得图像的细节更加清晰。
实验结果显示,直方图均衡化对于遥感图像的对比度增强效果显著。
中值滤波是一种常见的图像去噪方法,其原理是通过计算像素点周围邻域的中值来替代该像素点的值,从而消除图像中的噪声。
在本实验中,我们使用了3x3的中值滤波器对遥感图像进行滤波处理。
实验结果表明,中值滤波能够有效地去除图像中的椒盐噪声和高斯噪声,使得图像更加清晰。
二、图像分类图像分类是遥感图像处理的核心任务之一,其目的是将遥感图像中的像素点按照其特征分类到不同的类别中。
在本实验中,我们使用了支持向量机(SVM)算法进行图像分类。
支持向量机是一种常用的机器学习算法,其通过构建一个最优超平面来实现分类。
在图像分类中,我们将遥感图像中的每个像素点看作一个数据样本,其特征由像素的灰度值和纹理信息组成。
通过对训练样本进行学习,支持向量机能够建立一个分类模型,从而对测试样本进行分类。
实验结果显示,支持向量机在遥感图像分类中表现出较高的准确性和鲁棒性。
通过调整支持向量机的参数,我们可以得到不同的分类结果。
此外,支持向量机还能够处理高维数据和非线性分类问题,使其在遥感图像处理中具有广泛的应用前景。
三、图像变换图像变换是遥感图像处理中的重要环节,其目的是将图像从一个空间域转换到另一个空间域,从而提取图像中的特征信息。
在本实验中,我们使用了小波变换和主成分分析两种常见的图像变换方法。
遥感图像处理实验报告_灰度共生矩阵
遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的通过实验,理解并掌握灰度共生矩阵的概念,理解灰度共生矩阵对于纹理描述的意义,理解从纹理图像至特征值的抽象过程,理解计算机自动识别地貌的基本原理。
二:实验内容灰度共生矩阵纹理描述在不同类型遥感图像中的有效性分析三:实验平台Windows XP Professional SP3ENVI4.5四:实验步骤这次实验,选用Landsat5咸阳地区的图像作为实验对象1:打开ENVI4.5,File->Open Image File,打开实验图像2:Basic Tools->Resize Data(Spatial/Spectral),打开Resize Data Input File对话框3:选择目标图像,在Spectral Subset中选择第三波段(考虑到第波段地貌区分比较明显),在Spaial Subset中设置图像剪裁大小,进行剪裁。
分别剪裁出50*50的城区图像一幅与50*50的农区图像一幅,保存至文件。
4:Filter(滤波器)->Texture(纹理)->Co-occurrence Measures(二阶概率统计),打开Texture Input File对话框5:选择剪裁出的城区/农区图像,点击OK,弹出Co-occurrence Texture Parameters对话框6:在Processing Window中设置滤波器窗口大小,在Co-occurrence Shift中设置对应窗口大小的灰度共生矩阵的距离差分值,Output Result to选择Memory7:在工具栏选择Basic Tools->Statistics->Compute Statistics,弹出Compute Statistics Input File对话框8:选择第6步输出的Memory,点击OK,再点击一次OK,弹出统计结果9:对比两个纹理图像,在不同滤波窗口大小下不同距离差分下的统计结果,将各个统计结果中的统计均值Mean记录在表格上,做出图表,进行讨论。
遥感图像处理实习报告
遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。
为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。
通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。
一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。
二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。
这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。
(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。
通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。
(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。
我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。
(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。
我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。
(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。
通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。
(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。
图像灰度变换实验报告
实验2a 图像的灰度变换一、实验目的:学会用Matlab软件对图像进行运算和灰度变换。
二、实验内容:用+、-、*、/、imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply、imsubtract和imadjust等函数生成各类灰度变换图像。
三、实验相关知识1、代数运算两幅图像之间进行点对点的加、减、乘、除运算后得到输出图像。
我们可以分别使用MA TLAB的基本算术符+、-、*、/来执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型(命令函数为double())。
为了更方便对图像进行操作,图像处理工具箱中也包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。
如下所示:imabsdiff:计算两幅图像的绝对差值imadd:两个图像的加法imcomplment:一个图像的补imdivide:两个图像的除法imlincomb:计算两幅图像的线性组合immultiply:两个图像的乘法imsubtract:两个图像的减法使用图像处理工具箱中的图像代数运算函数无需再进行数据类型间的转换,这些函数能够接受uint8和uint16数据,并返回相同格式的图像结果。
代数运算的结果很容易超出数据类型允许的范围。
图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。
2、灰度变换点运算也称为灰度变换,是一种通过对图像中的每个像素值进行运算,从而改善图像显示效果的操作。
对于特定变换函数f的灰度变换,用户可以利用MATLAB强大的矩阵运算能力,对图像数据矩阵调用各种MATLAB计算函数进行处理。
需要注意的是由于MATLAB不支持uint8类型数据的矩阵运算,所以首先要将图像数据转换为双精度类型,计算完成后再将其转换为uint8类型(命令为uint8( ))。
图像处理灰度变换实验
一 . 实验名称: 空间图像增强(一)一. 实验目的1. 熟悉和掌握利用matlab 工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。
2. 熟练掌握各种空间域图像增强的基本原理及方法。
3. 熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。
4. 熟悉直方图均衡化的基本原理、方法和实现。
二. 实验原理(一)数字图像的灰度变换灰度变换是图像增强的一种经典而有效的方法。
灰度变换的原理是将图像的每一个像素的灰度值通过一个函数, 对应到另一个灰度值上去从而实现灰度的变换。
常见的灰度变换有线性灰度变换和非线性灰度变换, 其中非线性灰度变换包括对数变换和幂律(伽马)变换等。
1、线性灰度变换1)当图像成像过程曝光不足或过度, 或由于成像设备的非线性和图像记录设备动态范围太窄等因素, 都会产生对比度不足的弊病, 使图像中的细节分辨不清,图像缺少层次。
这时,可将灰度范围进行线性的扩展或压缩, 这种处理过程被称为图像的线性灰度变换。
对灰度图像进行线性灰度变换能将输入图像的灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。
2)令原图像 f(x,y)的灰度范围为 [a,b],线性变换后得到图像 g(x,y),其灰度范围为 [c,d],则线性灰度变换公式可表示为d , f ( x, y) bg(x, y)dc[ f (x, y) a] c, a f ( x, y) b (1)b aac, f ( x, y)由 (1)式可知,对于介于原图像 f(x,y)的最大和最小灰度值之间的灰度值,可通过线性变换公式, 一一对应到灰度范围 [c,d]之间,其斜率为 (d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值, 令其分别恒等于变换后的最小和最大灰度值。
变换示意图如图 1 所示。
图 1 线性灰度变换示意图当斜率大于一时,变换后的灰度值范围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值范围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。
图像的灰度变换增强实验报告
图像的灰度变换增强实验报告一、实验目的1、 理解数字图像处理中点运算的基本作用;2、 掌握对比度调整与灰度直方图均衡化的方法。
二、实验原理1、对比度调整如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换:[]n m y x f mM n N y x g +---=),(),( 就可以实现这一要求。
MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。
imadjust 函数的语法格式为:J = imadjust(I,[low_in high_in], [low_out high_out])J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。
不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。
但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。
因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。
MATLAB 中提供了这样的数据类型转换函数:im2double 函数,其语法格式为:I2 = im2double(I1)运算之后的图像数据再显示时可以再转化成uint8型,格式为:I3 = uint8 (I2)2、直方图均衡化直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。
遥感图像处理实习报告
遥感图像处理实习报告
为了完成本次遥感图像处理实习,我首先学习了遥感图像的基本原理和常见处理方法。
然后,我熟悉了常用的遥感图像处理软件,掌握了遥感图像的预处理、分类和变化检测等基本处理流程。
在实习过程中,我参与了实际的遥感图像处理项目,负责对航拍图像进行预处理和分类。
通过我对图像的分析和处理,最终得到了清晰而准确的分类结果,并成功完成了项目任务。
在实习中,我还学习了遥感图像的变化检测方法,包括基于像元的变化检测和基于目标的变化检测。
通过对多时相遥感图像的处理和分析,我掌握了如何从图像中提取出目标的变化信息,并将其应用于实际的环境监测和资源管理中。
总的来说,这次遥感图像处理实习让我对遥感图像的处理流程和方法有了更深入的了解,也提高了我在图像处理方面的实际操作能力。
通过这次实习,我不仅学到了专业知识,还提高了团队合作能力和解决问题的能力,对我的个人发展有着重要的推动作用。
【报告】遥感图像处理实验报告
【关键字】报告遥感图像处理实验报告篇一:遥感数字图像处理实验报告设计重庆交通大学遥感数字图像处理实验报告实验课程:数字图像处理实验名称:设计所有遥感数字图像处理的实验班级:实验一:遥感图像合成和显示增强一、目的和要求1. 目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的差异。
2. 要求熟练根据图像中的地物特征进行合成显示、拉伸、图像均衡化等显示增强操作。
理解直方图的含义,能熟练利用直方图进行多波段的图像显示拉伸增强处理。
2、实验内容1. 图像的彩色合成显示2. 图像的基本拉伸方法3. 图像均衡化方法4. 图像规定化三、实验步骤四、实验体会实验二:遥感图像的几何精纠正一、目的和要求1.目的使用多项式方法对TM遥感图像进行几何精纠正。
2.要求能熟练根据地图、GPS测点数据或具有投影的图像对遥感图像进行几何精纠正。
能够正确地选择几何纠正中的各种参数。
能够对纠正结果进行评估。
掌握几何精纠正的基本方法和操作要点。
能够自定义地图投影并进行图像的投影转换。
2、实验内容1. 对TM图像进行几何精纠正。
2. 自定义地图投影。
3. 转换图像的投影。
三、实验步骤四、实验体会实验三:图像变换一、目的和要求1.目的掌握图像变换的基本操作方法,对比变换前后图像差异,理解不同变换方法之间的区别。
2.要求能够根据图像的特征设定傅里叶变换的滤波器,消除图像中的条纹。
能够解释主成分变换后的图像,利用主成分变换消除图像中的噪声。
能够利用KT变换结果进行图像合成、解释地物信息。
熟练利用代数运算产生不同的波段组合。
利用彩色变换进行图像的合成和融合。
能够解释变换后的图像,并根据工作目的选择合适的图像变换方法。
2、实验内容1. SPOT图像的傅里叶变换。
2. TM图像的主成分变换。
3. TM图像的代数变换。
4. ETM 图像的彩色变换。
三、实验步骤四、实验体会篇二:遥感图像处理实验报告格式遥感图像处理班级:学号:姓名:指导教师:实验报告目录一、实验目的 (3)2、实验时间 (3)三、实验地点 (3)四、实验内容 (3)1.图像j50e023013和j50e024013的校正 (3)2.校正后图像的裁剪 (3)3.图像裁剪后的拼接 (5)4.图像pinjie校正spot图像 (7)5.校正后的spot图像校正图像etm+ (10)6.校正后图像的融合 (12)7.融合图像的分类 (13)五、实验体会 (14)一、实验目的:(1)了解遥感软件的基本结构,并能熟练地运用该软件处理遥感数据。
2022年图像灰度变换实验报告
图像灰度变换报告一.实验目旳1.学会使用Matlab;2.学会用Matlab软件对图像进行灰度变换,观测采用多种不同灰度变换发法对最后图像效果旳影响;二.实验内容1.熟悉Matlab中旳某些常用解决函数读取图像:img=imread('filename');//支持TIF,JPEG,GIF,BMP,PNG等文献格式。
显示图像:imshow(img,G);//G表达显示该图像旳灰度级数,如省略则默觉得256。
保存图片:imwrite(img,'filename');//不支持GIF格式,其她与imread相似。
亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]);//将low_in至high_in之间旳值映射到low_out至high_out之间,low_in如下及high_in以上归零。
绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel);//newlevel表达输出图像指定旳灰度级数。
2.获取实验用图像:rice.jpg. 使用imread函数将图像读入Matlab。
3 .产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105 + 2.6333(r – 0.35) 0.35 ≤r ≤0.651 + 0.3(r – 1) r > 0.65用T1对原图像rice.jpg进行解决,使用imwrite函数保存解决后旳新图像。
4.产生灰度变换函数T2,使得:5.用T2对原图像rice.jpg进行解决,使用imwrite保存解决后旳新图像。
6.分别用s = r0.6; s = r0.4; s = r0.3对kids.tiff图像进行解决。
为简便起见,使用Matlab中旳imadjust函数,最后用imwrite保存解决后旳新图像。
7.对circuit.jpg图像实行反变换(Negative Transformation)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 实验目的
1.1理解遥感图像的变换处理方法和原理;
1.2掌握遥感图像的变换处理,包括主成份变换和逆变换、缨穗变换、色彩变换与逆变换;
2 实验方法(要求将实验步骤过程中的对话框及成果图拷屏到报告中)
2.1主成分变换处理(K-L变换)
2.1.1 K-L变换原理
(1)K-L变换是离散(Karhunen-Loeve)变换的简称,又被称作主成分变换。
它是对某一多光谱图像X,利用K-L变换矩阵A进行线性组合,而产生一组新的多光谱图像Y,表达式为
Y=AX
式中,X为变换前的多光谱空间的像元矢量;
Y为变换后的主分量空间的像元矢量;
A为变换矩阵。
(2)对图像中每一个像元矢量逐个乘以矩阵A,便得到新图像中每一个像元矢量。
A的作用是给多波段的像元亮度加权系数,实现线性变换。
由于变换前各波段之间有很强的相关性,经过K-L变换组合,输出图像Y的各分量yi之间将具有最小的相关性,这就是变换矩阵A的作用。
(3)从几何意义来看,变换后的主分量空间坐标系与变换前的多光谱空间坐标系相比旋转了一个角度。
而且新坐标系的坐标轴一定指向数据信息量较大的方向。
2.1.2K-L变换步骤
(1)Interpreter图标>Spectral Enhancement> Principal Comp. 确定输入文件lanier.img,输出文件principal.img
文件坐标类型:Map,处理范围为默认
输出数据类型:Float Single
输出数据统计时忽略零值:Ignore Zero in Stats
特征矩阵输出设置(Eigen Matrix)
在运行日志中显示:Show Session Log
写入特征矩阵文件:Write to File(必选项,逆变换时需要)特征矩阵文件名(Output TextFile):lanier.mtx
需要的主成份数量(Number of Components Desired):3
OK,执行主成份变换处理,
(2)下面进行主成份逆变换处理,将三个主分量转换到RGB彩色空间
Interpreter图标>Spectral Enhancement> Inverse Principal Comp.
确定输入文件Principal.img
确定特征矩阵(Eigen Matrix File):lanier.mtx
定义输出文件:inverse_pc.img
文件坐标类型Map,处理范围默认
输出数据选择(Output Options):两种选择
输出数据拉伸到0-255:Stretch to Unsigned 8 bit
输出数据统计时忽略零值:Ignore Zero in Stats OK,执行主成份逆变换
2.2实验成果
bianhuan.img:
Bianhuan1.img:
2.2K-T变换(缨帽变换)
2.2.1 K-T变换原理
K-T变换是Kauth-Thomas变换的简称,也称缨帽变换。
这种变换也是一种线性组合变换,其变换公式为:
Y=BX
式中,X为变换前多光谱空间的像元矢量;
Y为变换后的新坐标空间的像元矢量;
B为变换矩阵。
(1)该变换也是一种坐标空间发生旋转的线性变换,但旋转后的坐
标轴不是指向主成分方向,而是指向与地面景物有密切关系的方向。
(2)K-T变换的应用主要针对TM数据和曾经广泛使用的MSS数据。
它抓住了地面景物,特别是植被和土壤在多光谱空间中的特征,这对于扩大陆地卫星TM影像数据分析在农业方面的应用有重要的意义。
2.2.2K-T变换步骤
Interpreter图标>Spectral Enhancement>Tasseled Cap 确定输入文件lanier.img,输出文件:tasseled.img
文件坐标类型:Map,处理范围默认
输出数据选择
输出数据拉伸到0-255:Stretch to Unsigned 8 bit
输出数据统计时忽略零值:Ignore Zero in Stats
定义相关系数(Set Coefficinets):点击Set Coefficients按钮打开Tasseled Cap Coefficients对话框
首先确定传感器类型(Sensor):Landsat TM5
定义相关系数(Coefficient Definition):可利用系统缺省值OK,关闭Tasseled Cap Coefficients对话框
OK,关闭Tasseled Cap对话框,执行缨穗变换。
2.2.3K-T变换成果图
Tasseled.img:
y1分量:亮度
y2分量:绿度
y3分量:湿度
3 实验心得。