微积分考试试卷及答案6套

合集下载

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。

答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。

答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。

微积分试题及答案【精选】

微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 1 \) 处的导数是:A. 1B. 2C. 3D. 42. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. 1/3B. 1/2C. 2/3D. 13. 曲线 \( y = x^3 \) 与 \( x \) 轴围成的面积是:A. 1/4B. 1/3C. 1/2D. 2/34. 函数 \( y = \sin(x) \) 的不定积分是:A. \( -\cos(x) \)B. \( \cos(x) \)C. \( \sin(x) \)D. \( \ln(\sin(x)) \)二、填空题(每题5分,共20分)5. 如果 \( f'(x) = 6x \),则 \( f(x) = _______ + C \)。

6. 函数 \( y = \ln(x) \) 的导数是 _______。

7. 定积分 \( \int_{1}^{e} e^x dx \) 的值是 _______。

8. 曲线 \( y = e^x \) 与 \( x \) 轴围成的面积在 \( x = 0 \) 到 \( x = 1 \) 之间的值是 _______。

三、解答题(每题10分,共60分)9. 求函数 \( f(x) = x^3 - 3x \) 的导数。

10. 计算定积分 \( \int_{0}^{2} (2x + 1) dx \)。

11. 求曲线 \( y = x^2 \) 与直线 \( y = 4x \) 相交的点。

12. 求函数 \( y = \ln(x) \) 在 \( x = e \) 处的切线方程。

四、答案一、选择题答案1. B2. B3. B4. B二、填空题答案5. \( 3x^2 + C \)6. \( 1/x \)7. \( e^e - 1 \)8. \( e - 1 \)三、解答题答案9. \( f'(x) = 3x^2 - 3 \)10. \( \int_{0}^{2} (2x + 1) dx = x^2 + x \bigg|_{0}^{2} = 4 + 2 = 6 \)11. 令 \( x^2 = 4x \),解得 \( x = 0 \) 或 \( x = 4 \),所以交点为 \( (0, 0) \) 和 \( (4, 16) \)。

微积分基础考试题及答案

微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。

答案:02. 函数f(x)=ln(x)的反函数为_________。

答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。

答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。

答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。

答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试题及答案大全

微积分试题及答案大全

微积分试题及答案第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分试题及答案完整版

微积分试题及答案完整版

微积分试题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x xx x --的()A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、不是间断点3、试求0x →等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、36、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈B 、221y x =-+C 、2y x =D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x=+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( )3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点( )5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求4、20tan sin limsin x x xx x→-求 5、计算、210lim(cos )x x x +→计算五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)2、描绘函数21y x x=+的图形(12分)六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x +→+∞→==则2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、 2、 3、 解: 4、解:5、解:6、解:五、应用题1、解:设每件商品征收的货物税为a,利润为()L x 2、图象六、证明题1、证明:2、证明:。

微积分试卷及规范标准答案6套

微积分试卷及规范标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

微积分下学期末试卷及答案

微积分下学期末试卷及答案

微积分下期末试题(一)一、填空题(每小题3分,共15分)1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x21______π_____.3、函数22(,)1f x y x xy y y =++-+在 点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分,共15分 6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值)32,31(-8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( A).(A) 123I I I >> (B) 213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ). (A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题(每题2分)1、设??x?定义域为(1,2),则??lgx?的定义域为()a、(0,lg2)b、(0,lg2?c、(10,100)d、(1,2)x2?x2、x=-1就是函数??x?=的()x?x2?1?a、跳跃间断点3、试求lima、?4、若b、可以回去间断点c、无穷间断点d、不是间断点2?x?4等于()x?0x1b、0c、1d、?4yx??1,谋y?等同于()xya、2x?yy?2x2y?xx?2yb、c、d、2x?y2y?x2y?x2x?y2x的渐近线条数为()21?x5、曲线y?a、0b、1c、2d、36、以下函数中,那个不是态射()a、y?x(x?r,y?r)b、y??x?12c、y?xd、y?lnx(x?0)2??22二、填空题(每题2分)1、y=11?x2fx)?mil、设(的反函数为__________2、(n?)1x,则()fx的间断点为__________x??nx2?1x2?bx?a?5,则此函数的最大值为__________3、已知常数a、b,limx?11?x4、已知直线y?6x?k是y?3x的切线,则k?__________5、求曲线xlny?y?2x?1,在点(,11)的法线方程是__________三、判断题(每题2分)2x2就是存有界函数()2、存有界函数就是发散数列的充份不必要条件()1、函数y?1?x23、若lim,就说道?就是比?低阶的无穷小()4可微函数的极值点未必就是它的驻点()?5、曲线上凹陷弧与凸弧的分界点称作拐点()sin1x四、计算题(每题6分)1、求函数y?x1的导数2、已知f(x)?xarctanx?ln(1?x2),求dy23、未知x2?2xy?y3?6,确认y就是x的函数,谋y?4、谋limtanx?sinx2x?0xsinxdxx2(cosx)5、排序?6、排序lim?3x?0(1?x)x五、应用题1、设某企业在生产一种商品x件时的总收益为r(x)?100x?x2,总成本函数为c(x)?200?50x?x2,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)2、描绘函数y?x?211的图形(12分)x1x六、证明题(每题6分)f()?a1、用音速的定义证明:设limf(x)?a,则lim?xx?02、证明方程xex?1在区间(0,1)内有且仅有一个实数一、选择题1、c2、c3、a4、b5、d6、b二、填空题1、x?02、a?6,b??73、184、35、x?y?2?0三、判断题1、√2、×3、√4、×5、×四、计算题1、y??(x?(esin1x)?)?1sinlnxx1111ecos(?2)lnx?sin??xxxx??1sin1111x?x(?2coslnx?sin)xxxx1sinlnxx2、dy?f?(x)dx112x?(arctanx?x?)dx221?x21?x?arctanxdx3、求解:2x?2y?2xy??3y2y??02x?3y?y??22x?3yy4、解:2)2(2?3y?)(2x?3y2)?(2x?2y)(2?6yy?)(2x?3yx2?当x?0时,x?tanx?sinx,1?cosx?212xxtanx(1?cosx)12?原式=lim?lim3?2x?0x?0xsinxx25、解:令t=6x,x?t6dx?6t5原式??(1?t2)t3t2?6?1?t2t2?1?1?6?1?t21?6?(1?)21?t?6t?6arctant?c?66x?6arctan6、求解:6x?c1原式?lime?x?0x2lncosx?ex?0?lim1x2lncosx其中:1lncosx2x?0xlncosx?lim2x?0?x1(?sinx)cosx?limx?0?2x?tanx1?lim??x?0?2x2lim??原式?e五、应用题1、解:设每件商品征收的货物税为a,利润为l(x)12l(x)r(x)c(x)ax100xx2(20050xx2)ax2x2(50a)x200l(x)4x50 a50?a令l?(x)?0,得x?,此时l(x)获得最大值4a(50?a)税收t=ax?41t??(50?2a)41令t??0得a?25t02?当a?25时,t取得最大值2、解:d,00,间断点为x?0y??2x?1x2132令y??0则x?y2?2x3令y0则x??1xy?(??,?1)?1(?1,0)0?1??0,3?213201(3,??)2?y??y渐进线:k0拐点?k无定义?k?极值点?jlimyy无水平渐近线x??x?0limy?0?x?0就是y的圆外渐近线yx?1lim?2y无斜渐近线x??xx3图象六、证明题1、证明:limf(x)ax0,m0当x?m时,存有f(x)?a??111?0,则当0?x?时,存有?mmmx1?f()?a??x1即limf()?ax??x挑?=2、证明:。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

微积分基础试题及答案

微积分基础试题及答案

微积分基础试题及答案1. 求函数 \(f(x) = 3x^2 - 2x + 1\) 在 \(x = 2\) 处的导数。

2. 判断函数 \(f(x) = \ln(x)\) 是否在 \(x = 1\) 处连续,并求其在该点的导数。

3. 计算定积分 \(\int_{0}^{1} x^2 dx\)。

4. 求由曲线 \(y = x^2\) 与直线 \(x = 2\) 及 \(y = 0\) 所围成的面积。

5. 利用微积分基本定理求不定积分 \(\int x e^x dx\)。

6. 求函数 \(g(x) = \sin(x) + \cos(x)\) 在区间 \([0, 2\pi]\) 上的最大值和最小值。

7. 证明 \(\frac{d}{dx}(e^x) = e^x\)。

8. 求函数 \(f(x) = \frac{1}{x}\) 在 \(x = 1\) 处的切线方程。

9. 计算 \(\lim_{x \to 0} \frac{\sin(x)}{x}\)。

10. 求函数 \(f(x) = x^3 - 6x^2 + 11x - 6\) 的极值点。

答案1. 求导得 \(f'(x) = 6x - 2\),代入 \(x = 2\) 得 \(f'(2) =10\)。

2. 函数 \(f(x) = \ln(x)\) 在 \(x = 1\) 处连续,且 \(f'(x) = \frac{1}{x}\),代入 \(x = 1\) 得 \(f'(1) = 1\)。

3. 计算定积分得 \(\int_{0}^{1} x^2 dx = \frac{1}{3}x^3\Big|_{0}^{1} = \frac{1}{3}\)。

4. 由曲线 \(y = x^2\) 与直线 \(x = 2\) 及 \(y = 0\) 所围成的面积为 \(\int_{0}^{2} x^2 dx = \frac{1}{3}x^3 \Big|_{0}^{2} =\frac{8}{3}\)。

微积分下册期末考试题及答案

微积分下册期末考试题及答案

微积分下册期末考试题及答案一、选择题(每题2分,共20分)1. 若函数 \( f(x) = 3x^2 + 2x - 5 \),则 \( f'(x) \) 等于:A. \( 6x + 2 \)B. \( 3x + 2 \)C. \( 6x^2 + 2 \)D. \( 6x - 5 \)2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是:A. 0B. 1C. 2D. 33. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x dx \) 等于:A. \( \frac{1}{2} \)B. \( \frac{1}{3} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)4. 函数 \( y = \sin(x) \) 的原函数是:A. \( \cos(x) \)B. \( -\cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)5. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{x - \sin(x)}{x^3} \) 等于:A. 0B. 1C. 2D. 36. 函数 \( y = e^x \) 的 \( n \) 阶导数是:A. \( e^x \)B. \( ne^x \)C. \( n!e^x \)D. \( (n+1)e^x \)7. 若 \( \int e^x dx = e^x + C \),则 \( \int_{0}^{1} e^x dx \) 等于:A. \( e - 1 \)B. \( e \)C. \( e^2 - 1 \)D. \( e^2 \)8. 函数 \( y = \ln(x) \) 的定义域是:A. \( x \geq 0 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x \leq 0 \)9. 函数 \( y = x^2 \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = -1 \)D. \( x = 2 \)10. 若 \( \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0 \),则\( f(x) \) 和 \( g(x) \) 的关系是:A. \( f(x) \) 比 \( g(x) \) 增长得更快B. \( f(x) \) 比 \( g(x) \) 增长得更慢C. \( f(x) \) 和 \( g(x) \) 增长速度相同D. \( f(x) \) 和 \( g(x) \) 都是常数答案:1. A 2. C 3. A 4. A 5. C 6. A 7. A 8. B 9. A 10. B二、填空题(每题2分,共10分)11. 若 \( f(x) = \ln(x) \),则 \( f'(x) = \frac{1}{x} \)。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。

2. 求函数 f(x) = e^x 的不定积分。

3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。

4. 设函数 f(x) = ln(x),求 f'(x)。

5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。

6. 设函数f(x) = √(x^2 + 1),求 f'(x)。

7. 求函数 f(x) = 3x^2 - 6 的不定积分。

8. 计算定积分∫(0 to π/2) cos(x) dx 的值。

9. 设函数 f(x) = e^(2x),求 f'(x)。

10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。

11. 计算定积分∫(0 to 1) x^2 dx 的值。

12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。

13. 求函数 f(x) = 2e^x 的不定积分。

14. 计算定积分∫(1 to e) ln(x) dx 的值。

15. 设函数 f(x) = x^2e^x,求 f'(x)。

16. 求函数 f(x) = ln(2x + 1) 的不定积分。

17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。

18. 设函数 f(x) = e^(3x),求 f'(x)。

19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。

20. 计算定积分∫(0 to π) sin^2(x) dx 的值。

第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。

微积分测试题(附答案)

微积分测试题(附答案)

微积分测试题(附答案)【编号】ZSWD2023B0088 一、选择题(每题2分)1、x=-1是函数x =221x xx x 的( ) A、跳跃间断点 B、可去间断点 C、无穷间断点 D、不是间断点2、设x 定义域为(1,2),则lg x 的定义域为( ) A、(0,lg2) B、(0,lg2C、(10,100)D、(1,2)3、试求02lim x x等于( )A、 14B、0C、1D、 4、若1y xx y,求y 等于( ) A、22x y y x B、22y x y x C、22y x x y D、22x yx y5、曲线221xy x的渐近线条数为( ) A、0 B、1 C、2 D、36、下列函数中,那个不是映射( )A、2y x (,)x R y RB、221y x C、2y x D、ln y x(0)x二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx 设 (,则 的间断点为__________3、21lim 51x x bx ax已知常数 a、b,,则此函数的最大值为__________4、263y x k y x k 已知直线 是 的切线,则 __________ 5、ln 2111x y y x 求曲线 ,在点(,)的法线方程是__________三、判断题(每题2分)1、221x y x函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim若,就说是比低阶的无穷小( ) 4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分) 1、1sin xy x求函数 的导数2、21()arctan ln(12f x x x x dy已知),求 3、2326x xy y y x y 已知,确定是的函数,求 4、20tan sin lim sin x x xx x求5、计算6、21lim (cos )x x x计算五、应用题(每题6分)1、设某企业在生产一种商品x 件时的总收益为2)100R x x x (,总成本函数为2()20050C x x x ,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)2、描绘函数21y x x的图形(12分)六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim (x x f x A f A x则 2、证明方程10,1xxe 在区间()内有且仅有一个实数【编号】ZSWD2023B0088参考答案 一、选择题1、C2、C3、A4、B5、D6、B二、填空题1、0x2、6,7a b3、184、35、20x y三、判断题1、√2、×3、√4、×5、×四、计算题 1、解:1sin1sin1sinln 1sinln 22))1111c o s ()ln s in 1111(c o s ln s in xxx xx xy x ee x x x x x xx x x x x((2、解:22()112(arctan 121arctan d y f x d x xx x d x x xxd x3、解:2222)2)222302323(23)(23(22)(26)(23x y x y y y x yy x y y x y x y y y y x y4、解:2223000ta n sin ,1co s 21tan (1co s )12lim lim sin 2x x x x x x x x x x x x x x xQ :::当时,原式=5、解:65232222261)61116116(1166a r c t a n 66a r c t a nx t d x t t t t t t t t t t CC令t =原式(6、解:2201ln c o s 01li mln c o s 20200012l i m 1l i m l n c o s l n c o s l i m 1(s i n )c o s l i m 2t a n 1l i m 22x xx x xx x x x x eex xxx x x xx x e原式其中:原式五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x a aL x x L x a a ax T a T a T a令得此时取得最大值税收T=令得当时,T取得最大值2、解:2300,01202201D x y x x y x y x y x,间断点为令则令则渐进线:32li m li m 001li m x x x y y y x y y x y x x 无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A xf A xQ 当时,有取=,则当0时,有即2、证明:()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1x x x f x xe f x f f e f e f x x e x f x xe Q Q 令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

(A) 若a x g x f x x =→)()(lim或∞,则a x g x f x x =''→)()(lim 0或∞(B) 若a x g x f x x =''→)()(lim0或∞,则a x g x f x x =→)()(lim 0或∞ (C) 若)()(limx g x f x x ''→不存在,则)()(lim 0x g x f x x →不存在(D) 以上都不对6. 曲线223)(a bx ax x x f +++=的拐点个数是( ) 。

(A) 0 (B)1 (C) 2 (D) 3 7. 曲线2)2(14--=x x y ( )。

(A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线,又有垂直渐近线8. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有(A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值9. 若ƒ(x )的导函数是2-x ,则ƒ(x )有一个原函数为 ( ) 。

x(A) x ln ; (B) x ln -; (C) 1--x ;(D) 3--x三.计算题(共36分)1. 求极限xxx x --+→11lim(6分)2. 求极限xx x 1)(ln lim +∞→ (6分)3. 设0001sin 2sin )(>=<⎪⎪⎩⎪⎪⎨⎧+=x x x b x x ax x x f ,求b a ,的值,使)(x f 在(-∞,+∞)上连续。

(6分) 4. 设1+=+xy eyx ,求y '及0='x y (6分)5. 求不定积分dx xe x ⎰-2(6分)6. 求不定积分.42dx x ⎰-(6分)四.利用导数知识列表分析函数211x y -=的几何性质,求渐近线,并作图。

(14分)五.设)(x f 在[0, 1]上连续,在(0, 1)内可导,且1)21(,0)1()0(===f f f ,试证:(1) 至少存在一点)1,21(∈ξ,使ξξ=)(f ;(2) 至少存在一点),0(ξη∈,使1)(='ηf ;(3) 对任意实数λ ,必存在),0(0ξ∈x ,使得1])([)(000=--'x x f x f λ。

(12分)微积分试题(B 卷)一. 填空题 (每空3分,共18分) 10.()=+'⎰dx b x f ba. 11.=⎰∞+-02dx e x .12. 关于级数有如下结论:① 若级数()01≠∑∞=n n n u u 收敛,则∑∞=11n nu 发散. ② 若级数()01≠∑∞=n n n u u 发散,则∑∞=11n nu 收敛. ③ 若级数∑∞=1n nu和∑∞=1n nv都发散,则∑∞=+1)(n n nv u必发散.④ 若级数∑∞=1n nu收敛,∑∞=1n nv发散,则∑∞=±1)(n n nv u必发散.⑤ 级数∑∞=1n nku(k 为任意常数)与级数∑∞=1n nu的敛散性相同.写出正确..结论的序号 . 13. 设二元函数()y x xe z y x +++=+1ln )1(,则=)0,1(dz .14. 若D 是由x 轴、y 轴及2x + y –2 = 0围成的区域,则=⎰⎰dy dx D.15. 微分方程0=+'y y x 满足初始条件3)1(=y 的特解是 . 二. 单项选择题 (每小题3分,共24分) 10. 设函数⎰+-=xdt t t x f 0)2)(1()(,则)(x f 在区间[-3,2]上的最大值为( ).(A) 32- (B) 310 (C) 1 (D) 411. 设σσd y x I d y x I DD⎰⎰⎰⎰+=+=)cos(,cos 222221,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则有( ).(A)321I I I >> (B) 123I I I >> (C) 312I I I >> (D) 213I I I >>12. 设 3,2,1,0=>n u n ,若∑∞=1n nu发散,∑∞=--11)1(n n n u 收敛,则下列结论正确的是( ).(A)∑∞=-112n n u收敛,∑∞=12n nu发散 (B)∑∞=12n nu收敛,∑∞=-112n n u发散(C)∑∞=-+1212)(n n n u u收敛 (D) ∑∞=--1212)(n n n u u 收敛13. 函数),(y x f 在点),(y x P 的某一邻域内有连续的偏导数,是),(y x f 在该点可微的( )条件.(A) 充分非必要 (B )必要非充分 (C )充分必要 (D )既非充分又非必要 14. 下列微分方程中,不属于...一阶线性微分方程的为( ). (A) xxx y y x ln ln cos =-' (B) )1(ln 3ln +=+'x x y x y x ,(C) x y y x y 2)2(=-'- (D) 02)1(2=+-'-xy y x15. 设级数∑∞=1n na 绝对收敛,则级数∑∞=+1)11(n n na n ( ). (A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 不能判定敛散性散 16. 设⎰+=π2sin sin )(x xt tdt e x F ,则F (x )( ).(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数17. 设),,(z t z y y x f u ---=,则=∂∂+∂∂+∂∂+∂∂tu z u y u x u ( ). (A) 12f ' (B) 22f ' (C) 32f ' (D) 0四. 计算下列各题(共52分)1.dx x x ⎰--223cos cos ππ(5分)2. 求曲线3,1,0,22===-=x x y x x y 所围成的平面图形的面积. (6分)3. 已知二重积分σd x D⎰⎰2,其中D 由1,112=--=x x y 以及0=y 围成. (Ⅰ) 请画出D 的图形,并在极坐标系下将二重积分化为累次积分;(3分) (Ⅱ) 请在直角坐标系下分别用两种积分次序将二重积分化为二次积分;(4分) (Ⅲ) 选择一种积分次序计算出二重积分的值.(4分)4. 设函数()z y x f u ,,=有连续偏导数,且()y x z ,ϕ=是由方程 z y zze ye xe =-所确定的二元函数,求yux u ∂∂∂∂,及du .(8分) 5. 求幂级数∑∞=-122)1(n nn n x 的收敛域及和函数S(x ).(8分)6. 求二元函数ye y x y xf 22)(),(+=的极值.(8分)7. 求微分方程x e y y 22-='+''的通解,及满足初始条件0)0(,1)0(='=f f 的特解.(6分)五. 假设函数)(x f 在[a , b ]上连续, 在(a , b )内可导,且0)(≤'x f ,记dt t f ax x F x a ⎰-=)(1)(,证明在(a , b )内0)(≤'x F .(6分)微积分试卷 (C)一. 填空题 (每空2分,共20分)1. 数列}{n x 有界是数列}{n x 收敛的 条件。

2.若2sin x y =,则=dy 。

3. 函数0,t a n ==x xxy 是第 类间断点,且为 间断点。

4. 若31lim1=-+→x bax x ,则a = ,b = 。

5. 在积分曲线族⎰xdx2中,过点(0,1)的曲线方程是 。

6. 函数x x f =)(在区间]1,1[-上罗尔定理不成立的原因是 。

7. 已知⎰-=x t dt e x F 0)(,则=')(x F 。

8. 某商品的需求函数为212PQ -=,则当p = 6时的需求价格弹性为=EPEQ。

二. 单项选择题 (每小题2分,共12分) 1. 若3lim=→βαx x ,则=-→αβα0lim x x ( )。

(A) –2 (B) 0 (C)31 (D) 322. 在1=x 处连续但不可导的函数是( )。

(A) 11-=x y (B) 1-=x y (C))1ln(2-=x y(D)2)1(-=x y3. 在区间(-1,1)内,关于函数21)(x x f -=不正确...的叙述为( )。

相关文档
最新文档