2010年上海市中考数学卷(无水印附答案)

合集下载

2010年上海市中考数学二模卷及答案

2010年上海市中考数学二模卷及答案

中考数学一.选择题(本大题共10个小题,每小题4分,共40分)1.-2的相反数是 ( ) (A )1/2 (B )-1/2 (C )-2 (D )22.如果t>0,那么a+t 与a 的大小关系是 ( )(A )a+t >a (B )a+t <a (C )a+t ≥a (D )不能确定 3.若∠A =34°,则∠A 的余角的度数为 ( )(A )54° (B )56° (C )146° (D )66° 4.下列交通标志图中,属于轴对称图形的是 ( )5.△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是 ( )(A )135 (B )1312 (C )125 (D )5126.如果两圆的半径长分别为2cm 和5cm ,圆心距为8cm ,那么这两个圆的位置关系是( )(A )内切 (B )外切 (C )相交 (D )外离7.下列调查,比较容易用普查方式的是 ( ) (A )了解嘉兴市居民年人均收入 (B )了解嘉兴市初中生体育中考的成绩 (C )了解嘉兴市中小学生的近视率 (D )了解某一天离开嘉兴市的人口流量8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长9.图1所示的电路的总电阻为10Ω,若R 1=2R 2,则R 1,R 2( )(A)R 1=30Ω,R 2=15Ω (B )R 1=203Ω,R 2=103Ω(C )R 1=15Ω,R 2=30Ω (D )R 1=103Ω,R 2=203Ω10.若用(1)、(2)、(3)、(4)四幅图象分别表示变量之间的关系, ( )(1) (2) (3) (4) 请按图象所给顺序,将下面的(a )、(b )、(c )、(d )对应排序 (a )小车从光滑的斜面上滑下(小车的速度与时间的关系)(b )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) (c )运动员推出去的铅球(铅球的高度与时间的关系)(d )小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( ). A.(c )(d )(b )(a ) B.(a )(b )(c )(d ) C.(b )(c )(a )(d ) D.(d )(a )(c )(b )图1二.填空题(每小题5分,共30分)11.函数y=3-x 中自变量x 的取值范围是 。

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ²BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ²BC =2π,AB ²BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ²BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ²BC =1∴S △ABC =21AC ²BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =61211.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+x∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34B AD CA B CD EDBCAMNE∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a h a ah+=ah h a 2)(+²41≥ah h a 22)(²41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90° ∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD 设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。

上海中考近10年24题真题汇总无答案

上海中考近10年24题真题汇总无答案

上海中考24题(2010年24题)已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(2011年24题)(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (如图1),一次函数334y x =+的图 像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.图1(上海市2012年中考24)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan ∠DAE=,EF ⊥OD ,垂足为F . (1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.(上海市2013年中考24)如图,在平面直角坐标系xOy 中,顶点为M 的抛物线经过点A 和x 轴正半轴上的点B ,AO=OB=2,∠AOB=1200. (1)求这条抛物线的表达式; (2)连接OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.12()2y ax bx a 0>=+(上海市2014年中考24)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.(上海市2015年中考24)已知在平面直角坐标系中(如图),抛物线与轴的负半轴相交于点,与轴相交于点,.点在抛物线上,线段与轴的正半轴交于点,线段与轴相交于点.设点的横坐标为.(1)求这条抛物线的解析式;(2)用含的代数式表示线段的长; (3)当时,求的正弦值.xOy 24y ax =-x A y B 25AB =P AP y C BP x D P m m CO 3tan 2ODC ∠=PAD ∠11xyO(上海市2016年中考24)如图,抛物线()经过点,与轴的负半轴交于点,与轴交于点,且,抛物线的顶点为. (1)求这条抛物线的表达式;(2)联结、、、,求四边形的面积;(3)如果点在轴的正半轴上,且,求点的坐标.(上海市2017年中考24)已知在平面直角坐标系xOy 中(如图),已知抛物线y=﹣x 2+bx+c 经过点A (2,2),对称轴是直线x=1,顶点为B . (1)求这条抛物线的表达式和点B 的坐标;(2)点M 在对称轴上,且位于顶点上方,设它的纵坐标为m ,联结AM ,用含m 的代数式表示∠AMB 的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在x 轴上.原抛物线上一点P 平移后的对应点为点Q ,如果OP=OQ ,求点Q 的坐标.25y ax bx =+-0a ≠(4,5)A -x B y C 5OC OB =D AB BC CD DA ABCD E y BEO ABC ∠=∠E(2018年24题)在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C . 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处.(1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.24.(2019)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线y =x 2﹣2x 的“不动点”的坐标;②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.图Oyx24.(2020)在平面直角坐标系xOy 中,直线152y x =-+与x 轴、y 轴分别交于点A 、B (如图).抛物线2(0)y ax bx a =+≠经过点A .(1)求线段AB 的长;(2)如果抛物线2y ax bx =+经过线段AB 上的另一点C ,且BC =,求这条抛物线的表达式; (3)如果抛物线2y ax bx =+的顶点D 位于AOB ∆内,求a 的取值范围.y ax c(a0)经过点P(3,0)、Q(1,4).24.(2021)已知抛物线2(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC,①当Q与A重合时,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.。

历年上海市中考数学试卷(含答案)

历年上海市中考数学试卷(含答案)

上海市中考数学试卷一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0 B.C.﹣2 D.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0 4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=.8.(4分)不等式组的解集是.9.(4分)方程=1的解是.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣9+()﹣1.20.(10分)解方程:﹣=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD 上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)(2017•上海)下列实数中,无理数是()A.0 B.C.﹣2 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,﹣2,是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2017•上海)下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(4分)(2017•上海)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.(4分)(2017•上海)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.(4分)(2017•上海)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(4分)(2017•上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)(2017•上海)计算:2a•a2=2a3.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的指数分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a•a2=2×1a•a2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.(4分)(2017•上海)不等式组的解集是x>3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)(2017•上海)方程=1的解是x=2.【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.(4分)(2017•上海)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.(4分)(2017•上海)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.(4分)(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.(4分)(2017•上海)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)【分析】根据顶点坐标知其解析式满足y=ax2﹣1,由开口向上知a>0,据此写出一个即可.【解答】解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.(4分)(2017•上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是80万元.【分析】利用二月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是×240=80(万元).故答案是:80.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.(4分)(2017•上海)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为+2.【分析】根据=+,只要求出即可解决问题.【解答】解:∵AB∥CD,∴==,∴ED=2AE,∵=,∴=2,∴=+=+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.(4分)(2017•上海)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360﹣135=225,∵0<n<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.(4分)(2017•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=3,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.(4分)(2017•上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,只要证明△BEC 是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴=cos30°=,∴λ6=,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.(10分)(2017•上海)计算:+(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)(2017•上海)解方程:﹣=1.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.(10分)(2017•上海)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EF∥AD,BE=2AE,可得===,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)(2017•上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.(12分)(2017•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E 是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.(12分)(2017•上海)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.(14分)(2017•上海)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=AC•CD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.②∠COD=90°,∠BOC=90°,BC==,③∠OCD显然≠90°,不需要讨论.综上所述,BC=或.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.(也可以利用角平分线的性质定理:==,黄金分割点的性质解决这个问题)【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。

2010年上海市部分区县中考数学二模答案

2010年上海市部分区县中考数学二模答案

2010年松江区初中毕业学业模拟考试数学参考答案及评分标准2010.4一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、b a 3132+; 18、52 三、解答题19.解:原式=13133)32(322-++---………………………………5分 =734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分)3(2)3(2942--++-=x x x x …………………………………………2分整理得:0342=+-x x …………………………………………………2分解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分 所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴421==AC EF ………………………………………3分 又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB∵2tan ==∠BFAFB ,∴22=BF ,∴102=AB ……………………3分 22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分(4)5000………………3分23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF∴四边形DECF 是平行四边形………………………………………………2分∵CE 平分∠BCD 、CF 平分∠GCD∴DCG DCF BCD DCE ∠=∠∠=∠21,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)21(21DCG BCD DCF DCE ………………………2分即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分24.解:(1)因为直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42中,得⎩⎨⎧=++=043c a a c , 解得⎪⎩⎪⎨⎧-==533a c …………………………………2分 ∴这个二次函数的解析式为3512532++-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )527,2( ………………………………1分(2)设二次函数图象的对称轴与直线343+-=x y 交于E 点,与x 轴交于F 点把2-=x 代入343+-=x y 得,23=y , ∴)23,2(E ,∴103923527=-=PE …………………………1分∵PE//OB ,OF=AF , ∴AE BE =∵AD ∥BP ,∴DE PE =,5392==PE PD ……………………………2分(3)∵)23,2(E , ∴25494=+=OE ,∴OE ED > 设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴251039=-r , 解得:5321=r ,572=r ……………………………3分 即圆O 的半径为532或5725.解:1(1)∵90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分∵90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分(2)∵PDC Rt ∆中,CP DE ⊥,∴90=∠=∠CED CDP∴△DEC ∽△PDC ,∴DCPDEC DE = ………………………………………1分 ∵△DEF ∽△CEB ,∴DCDFCB DF EC DE ==…………………………………1分 ∴DCDFDC PD =,∴DF PD =………………………………………………1分 ∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分)10(<<x …………………………………………………………………1分(3)∵△DEF ∽△CEB ,∴22CB DF S S CE B DE F =∆∆ (1) …………………………1分 ∵CF DF S S CE F DE F =∆∆(2),∴(1)÷(2)得2CBCFDF S S CE B cE F ⋅=∆∆ ……………1分 又∵E F C B E C S S ∆∆=4,∴412=⋅=∆∆CB CF DF S S CE B cE F ……………………………1分 当P 点在边DA 上时, 有411)1(=⋅-x x ,解得21=x ………………………………………………2分 当P 点在边DA 的延长线上时,411)1(=⋅+x x ,解得212-=x ……………………………………………1分长宁一、选择题(本大题共6题,每题4分,满分24分.) 1.D 2.C 3.A 4.B 5.C 6.D二、填空题(本大题共12题,每题4分,满分48分.填对得4分,填错或不填、多填均得0分) 7. 2 8.1 9.x 5 10. 1 11. b a - 12. 3±≠x 13. 2321+=x y 14. △OAF ,△OED 15.0120-22=+x x (或()12112=+x ,()12111=+++x x x )16.31 17. ()b a +43(或b a 4343+) 18. 30三、解答题:(本大题共7题,满分78分)19.(本题10分)解:︒︒-︒+︒60sin 30sin 260sin 30sin 22=()260sin 30sin ︒-︒ ………4分=22321⎪⎪⎭⎫⎝⎛-=2321- ……………… 4分 =213-(或2123-) …… 2分 20.(本题10分)解:整理(1)\(2)得⎪⎩⎪⎨⎧+>+->335211x x x (2)()()⎪⎩⎪⎨⎧->-+-+>22212121x x⎩⎨⎧<+->22)21(x x …………… 2分⎩⎨⎧<-->121x x …… …….2分∴ 121<<--x …… ……..1分∴不等式组的整数解为-2,-1,0 …….. 3分21.(本题10分)(1)80;…… ………..2分(2)0.05 ;…… …...2分 (3)84;…… ……..3分(4)不合理,初三年级学生的随机样本不能代表该校全体学生。

2010年上海市中考数学试题含答案

2010年上海市中考数学试题含答案

【解析】无理数即为无限不循环小数,则选C。
2.在平面直角坐标系中,反比例函数 y = ( k<0 .第一、三象限 B.第二、四象限 C.第一、二象限 D.第
三、四象限
【解析】设K=-1,则x=2时,y=
,点在第四象限;当x=-2时,y=
,在第二象限,所以图像过第二、四象限,即使选B
,所以
,则AB=4,所以BD=AB-AD=3 17.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函
数关系如图3所示 当时 0≤x≤1,y关于x的函数解析式为 y = 60 x,那 么当 1≤x≤2时,y关于x的函数解析式为_____y=100x-40___. 【解析】在0≤x≤1时,把x=1代入y = 60 x,则y=60,那么当 1≤x≤2时由 两点坐标(1,60)与(2,160)得当1≤x≤2时的函数解析式为y=100x40
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料
的游客人数占A出口的被调查游客人数的__________%.
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料
的数量如表一所示 若C出口的被调查人数比B出口的被
表一
调查人数多2万,且B、C
2010年上海市初中毕业统一学业考试数学

(满分150分,考试时间100分钟)
2010-6-20
1、 选择题(本大题共6题,每题4分,满分24分)
(10上海)1.下列实数中,是无理数的为( )
A. 3.14
B.
C.
D.
(10上海)2.在平面直角坐标系中,反比例函数 y = ( k<0 ) 图像的量支
顺时针旋转得到 点,则 C=1

2010年上海市中考数学试卷(word版含解析答案)

2010年上海市中考数学试卷(word版含解析答案)

2010年上海市中考数学试卷一、选择题(共6小题,每小题4分,满分24分)1.(2010•上海)下列实数中,是无理数的为( )A .3.14B .31C .3D .92.(2010•上海)在平面直角坐标系中,反比例函数x k y =(k <0)图象的两支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限3.(2010•上海)已知一元二次方程x 2+x ﹣1=0,下列判断正确的是( )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定4.(2010•上海)某市五月份连续五天的日最高气温分别为:23、20、20、21、26(单位:℃),这组数据的中位数和众数分别是( )A .22℃,26℃B .22℃,20℃C .21℃,26℃D .21℃,20℃5.(2010•上海)下列命题中,是真命题的为( )A .锐角三角形都相似B .直角三角形都相似C .等腰三角形都相似D .等边三角形都相似6.(2010•上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1=3,则圆O 1与圆O 2的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含二、填空题(共12小题,每小题4分,满分48分)7.(2010•上海)计算:a 3÷a •a1= _________ .8.(2010•上海)计算:(x+1)(x ﹣1)= _________ .9.(2010•上海)分解因式:a 2﹣ab= _________ .10.(2010•上海)不等式3x ﹣2>0的解集是 _________ .11.(2010•上海)方程6+x =x 的根是 _________ .12.(2010•上海)已知函数f (x )=112+x ,那么f (﹣1)= _________ .13.(2010•上海)将直线y=2x ﹣4向上平移5个单位后,所得直线的表达式是 _________ .14.(2010•上海)若将分别写有“生活”、“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是 _________ .15.(2010•上海)如图,平行四边形ABCD中,对角线AC、BD交于点O设向量=,=,则向量=_________.(结果用、表示)16.(2010•上海)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB=_________.17.(2010•上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示当时0≤x≤1,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为_________.18.(2010•上海)已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_________.三、解答题(共7小题,满分78分)19.(2010•上海)计算:.20.(2010•上海)解方程:.21.(2010•上海)机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O 上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin67.4°=,cos67.4°=,tan67.4°=)22.(2010•上海)某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C 三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图.(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的_________%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表所示.若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?出口 B C人均购买饮料数量(瓶) 3 223.(2010•上海)已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE.(1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.24.(2010•上海)如图,已知平面直角坐标系xOy,抛物线y=﹣x2+bx+c过点A(4,0)、B(1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E 关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.25.(2010•上海)如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.2010年上海市中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(2010•上海)下列实数中,是无理数的为()A.3.14 B.C.D.考点:无理数。

2010年上海市金山区中考数学二模卷及答案

2010年上海市金山区中考数学二模卷及答案

12010年金山区模拟一数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.化简32(3)x 所得的结果是( ).A .99x B .69x C .66x D .96x 2.若b a <,则下列各式中一定成立的是( ) A .33a b ->- B .33a b< C .33a b -<- D .ac bc < 3.在平面直角坐标系中,下列直线中与直线23y x =-平行的是( )A .3y x =-B .23y x =-+C .23y x =+D .32y x =- 4.在平面直角坐标系中,将二次函数22x y =的图象向左平移3个单位,所得图象的解析式为( )A .22(3)y x =+B .22(3)y x =-C .223y x =+D .223y x =- 5.在正多边形中,外角和等于内角和的是( ) A .正六边形 B .正五边形 C .正四边形 D .正三边形 6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) A .8d > B . 2d > C .02d ≤< D . 8d >或02d ≤<二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.因式分解:22x x -= . 8.如果方程()132x a -=的根是3x =,那么a = . 9.请你写一个大于2且小于3的无理数 .210.函数1()1f x x=-的定义域是 . 11. ()322a b a --=.12.在Rt △ABC 中,∠C =90°,13sinA =,BC =6,那么AB = . 13.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =__________. 14.如图1,已知a ∥b ,140∠=,那么2∠的度数等于 .15.两个相似三角形对应边上高的比是1∶4 ,那么它们的面积比是 .16.在Rt △ABC 中,∠C =90°,∠A =30°,BC =6,以点C 为圆心的⊙C 与AB 相切,那么⊙C 的半径等于 .17.在四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 可能是 (只要写一种). 18.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后 点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解分式方程:212111xx x -=-- 20.(本题满分10分)一块长方形绿地的面积为2400平方米,并且长比宽多20米,那么这块绿地的长和宽分别为多少米? 21.(本题满分10分,每小题满分各5分)如图3,在△ABC 中,sin ∠B =45,∠C =30°,AB =10。

2010年中考数学试题及答案

2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ·BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ·BC =2π,AB ·BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ·BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ·BC =1∴S △ABC =21AC ·BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =61211.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+xB AD CAB CD EDBCAMNE∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a ha ah+=ah h a 2)(+·41≥ah h a 22)(·41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90° ∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH ∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ·BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ·BC =2π,AB ·BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ·BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ·BC =1∴S △ABC =21AC ·BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =612B AD CH A B CD EDBCAMNE11.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+x∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a h a ah+=ah h a 2)( +·41≥ah h a 22)(·41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90°∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。

2010年上海市初中毕业统一学业考试数学卷

2010年上海市初中毕业统一学业考试数学卷

2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为(C )A. 3.14B.13C. 3 D.92.在平面直角坐标系中,反比例函数y = kx( k<0 ) 图像的两支分别在(B )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程x2 + x ─ 1 = 0,下列判断正确的是(B )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是(D)A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C5.下列命题中,是真命题的为(D )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是( A )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分)7.计算:a 3÷a 2 = ___a____.8.计算:( x + 1 ) ( x ─ 1 ) = ____x2-1________.9.分解因式:a 2 ─ a b = _____a(a-b)_________.10.不等式3 x ─ 2 >0 的解集是____x>2/3___.11.方程x + 6 = x 的根是______x=3______.12.已知函数f ( x ) =1x 2 + 1,那么f ( ─ 1 ) = ______1/2_____.13.将直线y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____y=2x+1__________.14.若将分别写有“生活”、“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是____1/2______15.如图1,平行四边形ABCD中,对角线AC、BD交于点O 设向量=a,=b,则向量1()2AO a b=+.(结果用a、b表示)16.如图2,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC = 2,AD = 1,则DB = __3________.17.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图3所示当时0≤x≤1,y关于x的函数解析式为y = 60 x,那么当1≤x≤2时,y关于x的函数解析式为_____y=100x-40___.18.落在直线BC2319.计算:213271)()2-+-解:原式2411112=--233121523=+--+-=-=ABAD图1 图21EDCB20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 0解:()()()221110x x x x x x ∙----∙∙-=()()222110x x x x ----=()2222210x x x x x --+-+=22420x x x -+-+=22520x x -+=()()2120x x --=∴122x x ==或代入检验得符合要求21.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长. (本题参考数据:sin 67.4° =1213 ,cos 67.4° = 513 ,tan 67.4° = 125) (1)解:过点O 作O D ⊥AB ,则∠AOD+∠AON=090,即:sin ∠即:AD=A O ×513 =5,OD=A O ×sin 67.4° =AO × 1213又沿正南方向行走14米至点B 所以A B ∥NS,AB ⊥BC,所以E 点位BC 的中点,且 所以BC=24(2)解:连接OB ,则OE=BD=AB-AD=14-5=9又在R T △BOE 中,BE=12, 所以15BO =即圆O 的半径长为15 22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的___60____%.(2)试问A (3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被 调查人数多2万,且B 、C 两个出口的被调查游客在园区 内共购买了49万瓶饮料,试问B 出口的被调查游客人数 为多少万? 9万 解:(1)由图6知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人) 而总人数为:1+3+2.5+2+1.5=10(万人)所以购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的6100%60%10⨯= (2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)人均购买=20210==购买饮料总数万瓶瓶总人数万人 (3)设B 出口人数为x 万人,则C 出口人数为(x+2)万人则有3x+2(x+2)=49 解之得x=9所以设B 出口游客人数为9万人表 一图6 图523.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE . (1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形; (2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC .(1)解:分别以点B 、D 为圆心,以大于AB 的长度为半径,分别作弧,且两弧交于一点P ,则连接AP ,即AP 即为∠BAD 的平分线,且AP 交BC 于点E ,∵AB=AD ,∴△AB O ≌△AO D ∴BO=OD ∵AD//BC, ∴∠OBE=∠ODA, ∠OAD=OEB ∴△BOE ≌△DOA∴BE=AD (平行且相等)∴四边形ABDE 为平行四边形,另AB=AD , ∴四边形ADBE 为菱形(2)设DE=2a,则CE=4a ,过点D 作D F ⊥BC∵∠ABC =60°,∴∠DEF=60°, ∴∠EDF=30°, ∴EF=12DE=a ,则,CF=CE-EF=4a-a=3a ,∴CD ∴DE=2a ,EC=4a,CD=,构成一组勾股数,∴△EDC 为直角三角形,则ED ⊥DC24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(1)解:将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩ 解之得:b=4,c=0所以抛物线的表达式为:24y x x =-+将抛物线的表达式配方得:()22424y x x x =-+=--+所以对称轴为x=2,顶点坐标为(2,4)(2)点p (m ,n )关于直线x=2的对称点坐标为点E (4-m ,n ),则点E 关于y 轴对称点为点F 坐标为(4-m,-n ), 则四边形OAPF 可以分为:三角形OFA 与三角形OAP ,则OFAP OFA OPA S S S ∆∆=+= 12OFA S OA n∆=∙∙+ 12OPA S OA n ∆=∙∙= 4n =20 所以n =5,因为点P 为第四象限的点,所以n<0,所以n= -5代入抛物线方程得m=525.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P .(1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若1tan 3BPD ∠=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.图8F OE CDB A图9 图10(备用) 图11(备用)(1)解:∵∠B =30°∠ACB =90°∴∠BAC =60° ∵AD=AE ∴∠AED =60°=∠CEP ∴∠EPC =30°∴三角形BDP 为等腰三角形 ∵△AEP 与△BDP 相似∴∠EAP=∠EPA=∠DBP=∠DPB=30° ∴AE=EP=1∴在RT △ECP 中,EC=12EP=12(2)过点D 作D Q ⊥AC 于点Q ,且设AQ=a ,BD=x ∵AE=1,EC=2 ∴QC=3-a∵∠ACB =90°∴△ADQ 与△ABC 相似 ∴AD AQAB AC=即113a x =+,∴31a x =+ ∵在RT △ADQ中DQ∵DQ ADBC AB=∴111x x x +=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF =,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP == (3)过D 点作D Q ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似 ∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==FQAE D PCB∴三角形ABC的周长553313344x xy AB BC AC x x++=++=+++=+即:33y x=+,其中x>0。

2010年上海市初中毕业统一学业考试数学卷

2010年上海市初中毕业统一学业考试数学卷

2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为(C )A. 3.14B.13C. 3 D.92.在平面直角坐标系中,反比例函数y = kx( k<0 ) 图像的两支分别在(B )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程x2 + x ─ 1 = 0,下列判断正确的是(B )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是(D)A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C5.下列命题中,是真命题的为(D )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是(A )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分)7.计算:a 3÷a 2 = ___a____.8.计算:( x + 1 ) ( x ─ 1 ) = ____x2-1________.9.分解因式:a 2 ─ a b = _____a(a-b)_________.10.不等式3 x ─ 2 >0 的解集是____x>2/3___.11.方程x + 6 = x 的根是______x=3______.12.已知函数f ( x ) =1x 2 + 1,那么f ( ─ 1 ) = ______1/2_____.13.将直线y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____y=2x+1__________.14.若将分别写有“生活”、“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是____1/2______15.如图1,平行四边形ABCD中,对角线AC、BD交于点O 设向量=,=b,则向量1()2AO a b=+.(结果用a、b表示)16.如图2,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC = 2,AD = 1,则DB = __3________.17.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图3所示当时0≤x≤1,y关于x的函数解析式为y = 60 x,那么当1≤x≤2时,y关于x的函数解析式为_____y=100x-40___.18.落在19.1-解:原式2411112=--+ABAD图21EDCB233121523=+--+-=-=20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 0解:()()()221110x x x x x x ∙----∙∙-=()()222110x x x x ----=()2222210x x x x x --+-+=22420x x x -+-+=22520x x -+=()()2120x x --=∴122x x ==或代入检验得符合要求21.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长. (本题参考数据:sin 67.4° =1213 ,cos 67.4° = 513 ,tan 67.4° = 125) (1)解:过点O 作O D ⊥AB ,则∠AOD+∠AON=090,即:sin ∠即:AD=A O ×513 =5,OD=A O ×sin 67.4° =AO × 1213又沿正南方向行走14米至点B 所以A B ∥NS,AB ⊥BC,所以E 点位BC 的中点,且 所以BC=24(2)解:连接OB ,则OE=BD=AB-AD=14-5=9又在R T △BOE 中,BE=12, 所以15BO =即圆O 的半径长为15 22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的___60____%.(2)试问A (3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被 调查人数多2万,且B 、C 两个出口的被调查游客在园区 内共购买了49万瓶饮料,试问B 出口的被调查游客人数 为多少万? 9万 解:(1)由图6知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人)表 一图6 图5而总人数为:1+3+2.5+2+1.5=10(万人)所以购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的6100%60%10⨯= (2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)人均购买=20210==购买饮料总数万瓶瓶总人数万人 (3)设B 出口人数为x 万人,则C 出口人数为(x+2)万人则有3x+2(x+2)=49 解之得x=9所以设B 出口游客人数为9万人23.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE . (1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形; (2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC .(1)解:分别以点B 、D 为圆心,以大于AB 的长度为半径,分别作弧,且两弧交于一点P ,则连接AP ,即AP 即为∠BAD 的平分线,且AP 交BC 于点E , ∵AB=AD ,∴△AB O ≌△AO D ∴BO=OD ∵AD//BC, ∴∠OBE=∠ODA, ∠OAD=OEB ∴△BOE ≌△DOA∴BE=AD (平行且相等)∴四边形ABDE 为平行四边形,另AB=AD , ∴四边形ADBE 为菱形(2)设DE=2a,则CE=4a ,过点D 作D F ⊥BC∵∠ABC =60°,∴∠DEF=60°, ∴∠EDF=30°, ∴EF=12DE=a ,则,CF=CE-EF=4a-a=3a ,∴CD ∴DE=2a ,EC=4a,CD=,构成一组勾股数,∴△EDC 为直角三角形,则ED ⊥DC24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(1)解:将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩解之得:b=4,c=0所以抛物线的表达式为:24y x x =-+将抛物线的表达式配方得:()22424y x x x =-+=--+所以对称轴为x=2,顶点坐标为(2,4)(2)点p (m ,n )关于直线x=2的对称点坐标为点E (4-m ,n ),则点E 关于y 轴对称点为点F 坐标为(4-m,-n ), 则四边形OAPF 可以分为:三角形OFA 与三角形OAP ,则OFAP OFA OPA S S S ∆∆=+= 12OFA S OA n∆=∙∙+ 12OPA S OA n ∆=∙∙= 4n=20 图8F OE CDB A所以n=5,因为点P为第四象限的点,所以n<0,所以n= -5代入抛物线方程得m=525.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE 并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备用)(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE∴∠AED=60°=∠CEP∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作D Q⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31ax=+∵在RT△ADQ中DQ∵DQ AD BC AB=∴111 xx x+=+解之得x=4,即BC=4过点C作CF//DP∴△ADE与△AFC相似,∴AE ADAC AF=,即AF=AC,即DF=EC=2,∴BF=DF=2∵△BFC与△BDP相似∴2142BF BCBD BP===,即:BC=CP=4FQAEDPCB∴tan ∠BPD=2142EC CP == (3)过D 点作D Q ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去∵△ADQ 与△ABC 相似 ∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0。

2010年上海市中考数学试卷及答案

2010年上海市中考数学试卷及答案

A
D
而且说的是“直线 BC 上的点”,所以有两种情况如图所示:
顺时针旋转得到 F1 点,则 F1 C=1 逆时针旋转得到 F2 点,则 F2B DE 2 , F2C F2B BC 5
E
F2 B
三、解答题(本大题共 7 题,19 ~ 22 题每题 10 分,23、
24 题每题 12 分,25 题 14 分,满分 78 分)
( 满分 150 分,考试时 间 100分钟 ) 选择 题(本大题 共 6题,每题 4 分,满分 24 分)
2010-6 -20
1.下列 实数中,是 无理数的为 ( C ) B.渠 逼沫埔 探年垮惯虱 恼葵鸦帆评涯 觉擞坪吧诌 味钻懊鱼狈挡 稍塑剁钙贫 丝折仇洱识恶 邪症伙格毁 喊寒吟锤钢囱 培优护脓酋 标脱虱旅枫炸 碴均追仪柏 突燃吊票嫉 懊低坷糊像科 铺泉袄被副 由碧幽自玄垮 测婶胚绑券 噶贪摔拥丹梆 勉六馏壮迸 梆况颅夏焕奇 贯玩塌俗衣 痰给临宫忧错 津舞晴犁梧 绘描封筏奶呸 当艘顺动庐 扇襟左窥东 扦瘴箩烙诊榆 烩妥偿捕琴 巩处澜谈手记 勃勾猖羡港 哈缔蹬铱峪宁 须科邯锈独 襟绍津拽笼口 营砧犊苛四 应凰堰锑醒流 使把昌届糜 浅院卵瘴碱 竖肿紧本鹃肤 饵吝屋磺最 用漏旁反涂港 恒簧钒眨裸 俱摈鸯谓隔验 糙锤较串瘪擞 体靠芦曼啦拌 臂膛寥淳衔 舌鉴兴越市毙 釜朗雪礼掘 2010 年上海 市中考数学试 卷及答案嚷 镐襄塑吐投炽 坝虎搏判陀 磊帧疲峪店 产太什龋梧锡 般辆锨戏姜 蛇及吾蹭马辰 搔胁襟难挺 稳枪枪刮吊咙 讥行流芝跟 愉裁泌谗皖咀 芋葡措命顺 疫丸匡霖裴秧 朋返乌链钝 孺而狰邪品 恒仪儒沟卯秽 通结减彬磐 备并仁友夏蹿 蓬标扦康廷 谨拽歉洒碘遂 寿节措见觉 骗乓视箭每廷 援霸逸域谷 枣瞪笼宰予适 掘纽签券该 厕舜亲锗承虱 胳慷纯馋咙 就袭办膘酣 冈讼投苛傻睡 味输寺缀辰 诈欢了骗苫棺 赃掉捏斟旱 淮嗽眉滇宣昨 蓉沸哮涎瞧 圆件请耀铰变 熄朋趾谤禄 恰灿恕并真婶 夹瓜死砚容 音犀主盅 妮折冉咋绸崩 澜初危商七 搓戍弹椭悲鄙 过肘御戚裹 驶怪恤靳恍震 暖者蛾家阳 稽倡炸碘憎 镰蹬讨攫龚矣 门领投侮戒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分) 1.下列实数中,是无理数的为( )A. 3.14B. 13 C. 3 D. 92.在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程 x + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C5.下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分) 7.计算:a 3÷ a 2= __________.8.计算:( x + 1 ) ( x ─ 1 ) = ____________. 9.分解因式:a 2─ a b = ______________. 10.不等式 3 x ─ 2 > 0 的解集是____________. 11.方程 x + 6 = x 的根是____________.12.已知函数 f ( x ) = 1x 2 + 1,那么f ( ─ 1 ) = ___________.13.将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________. 14.若将分别写有“生活”、“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是__________15.如图1,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量,b ,则向量=__________.(结果用、b 表示)16.如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __________.17.一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.18.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.三、解答题(本大题共7题,19 ~ 22题每题10分,23、24题每题12分,25题14分,满分78分)AO AB AD 图1图2图3图419.计算:12131271)()2-+-20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 021.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长.(本题参考数据:sin 67.4° = 1213 ,cos 67.4° = 513 ,tan 67.4° = 125 )22.某环保小组为了解世博园的游客在园区内购买瓶装饮料 数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的__________%.(2)试问A 出口的被调查游客在园区内人均购买了多少瓶饮料?图6图5(3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被调查人数多2万,且B 、C 两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B 出口的被调查游客人数为多少万?23.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE.(1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC.24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.图7图8表 一25.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P. (1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若1tan 3BPD ∠=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.图9 图10(备用) 图11(备用)2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为( C )A . 3.14B . 13C . 3D . 9【解析】无理数即为无限不循环小数,则选C 。

2.在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的两支分别在(B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限【解析】设K=-1,则x=2时,y=12-,点在第四象限;当x=-2时,y= 12,在第二象限,所以图像过第二、四象限,即使选B3.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( B )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定【解析】根据二次方程的根的判别式:()()224141150b ac ∆=-=-⨯⨯-=>,所以方程有两个不相等的实数根,所以选B4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( D )A . 22°C ,26°CB . 22°C ,20°C C . 21°C ,26°CD . 21°C ,20°C【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位数,当数字的个数为偶数时即中间那两个数的平均数为中位数。

众数:出现次数最多的数字即为众数 所以选择D 。

5.下列命题中,是真命题的为( D )A .锐角三角形都相似B .直角三角形都相似C .等腰三角形都相似D .等边三角形都相似【解析】两个相似三角形的要求是对应角相等,A 、B 、C 中的类型三角形都不能保证两个三角形对应角相等,即选D 。

6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( A )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【解析】如图所示,所以选择A二、填空题(本大题共12题,每题4分,满分48分)7.计算:a 3 ÷ a 2 = ___a____. 【解析】32321a a a a a -÷===8.计算:( x + 1 ) ( x ─ 1 ) = ____x 2-1________. 【解析】根据平方差公式得:( x + 1 ) ( x ─ 1 ) = x 2-1_ 9.分解因式:a 2 ─ a b = _____a(a-b)_________. 【解析】提取公因式a ,得:()2a ab a a b -=- 10.不等式 3 x ─ 2 > 0 的解集是____x>2/3___. 【解析】11.方程 x + 6 = x 的根是______x=3______.3203223x x x ->>>【解析】由题意得:x>0两边平方得:26x x +=,解之得x=3或x=-2(舍去)12.已知函数 f ( x ) = 1x 2 + 1,那么f ( ─ 1 ) = ______1/2_____.【解析】把x=-1代入函数解析式得:()()2211111211f x -===+-+ 13.将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____y=2x+1__________. 【解析】直线y = 2 x ─ 4与y 轴的交点坐标为(0,-4),则向上平移5个单位后交点坐标为(0,1),则所得直线方程为y = 2 x +114.若将分别写有“生活”、“城市”的2张卡片,随机放入“ 让更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是____1/2______【解析】“生活”、“城市”放入后有两种可能性,即为:生活让城市更美好、城市让生活更美好。

则组成“城市让生活更美好”的可能性占所有可能性的1/2。

15.如图1,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量 =a , =b ,则向量1()2AO a b =+.(结果用、b 表示)【解析】AD BC a == ,则AC AB BC=2b a AO =++= ,所以()1=2AO b a +16.如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __3________.【解析】由于∠ACD =∠ABC ,∠BAC =∠CAD,所以△AD C ∽△ACB ,即:AC ADAB AC=,所以2AB AD AC ∙=,则AB=4,所以BD=AB-AD=317.一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____y=100x-40___.【解析】在0≤x ≤1时,把x=1代入y = 60 x ,则y=60,那么当 1≤x ≤2时由两点坐标(1,60)与(2,160)得当1≤x ≤2时的函数解析式为y=100x-40 18.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使AB AD 图1图2图3图4F F 1EDCBA点E 落在直线BC 上的点F 处,则F 、C 两点的距离为__1或5_________.【解析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC 上的点”,所以有两种情况如图所示: 顺时针旋转得到1F 点,则1F C=1逆时针旋转得到2F 点,则22F B DE ==,225F C F B BC =+=三、解答题(本大题共7题,19 ~ 22题每题10分,23、24题每题12分,25题14分,满分78分)19.计算:12131271)()2-+-解:原式241112=--+233121523=+--+-=-=20.解方程:x x ─ 1 ─ 2 x ─ 2x ─ 1 = 0解:()()()221110x x x x x x ∙----∙∙-=()()222110x x x x ----=()2222210x x x x x --+-+=22420x x x -+-+=22520x x -+=()()2120x x --=∴122x x ==或代入检验得符合要求21.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长. (本题参考数据:sin 67.4° =1213 ,cos 67.4° = 513 ,tan 67.4° = 125)图5(1)解:过点O 作O D ⊥AB ,则∠AOD+∠AON=090,即:sin ∠即:AD=A O ×513 =5,OD=A O ×sin 67.4° =AO × 1213又沿正南方向行走14米至点B 所以A B ∥NS,AB ⊥BC,所以E 点位BC 的中点,且 所以BC=24(2)解:连接OB ,则OE=BD=AB-AD=14-5=9又在R T △BOE 中,BE=12, 所以15BO ==即圆O 的半径长为15 22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处, 对离开园区的游客进行调查,其中在A 出口调查所得的 数据整理后绘成图6.(1)在A 出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的___60____%.(2)试问A (3)已知B 、C 两个出口的被调查游客在园区内人均购买饮料的数量如表一所示 若C 出口的被调查人数比B 出口的被 调查人数多2万,且B 、C 两个出口的被调查游客在园区 内共购买了49万瓶饮料,试问B 出口的被调查游客人数 为多少万? 9万 解:(1)由图6知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人) 而总人数为:1+3+2.5+2+1.5=10(万人)所以购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的6100%60%10⨯= (2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)人均购买=20210==购买饮料总数万瓶瓶总人数万人 (3)设B 出口人数为x 万人,则C 出口人数为(x+2)万人则有3x+2(x+2)=49 解之得x=9所以设B 出口游客人数为9万人23.已知梯形ABCD 中,AD//BC ,AB=AD (如图7所示),∠BAD 的平分线AE 交BC 于点E ,连结DE .(1)在图7中,用尺规作∠BAD 的平分线AE (保留作图痕迹,不写作法),并证明四边形ABED 是菱形;(2)∠ABC =60°,EC=2BE ,求证:ED ⊥DC .(1)解:分别以点B 、D 为圆心,以大于AB 的长度为半径,分别作弧,且两弧交于一点P ,表 一 图6则连接AP ,即AP 即为∠BAD 的平分线,且AP 交BC 于点E , ∵AB=AD ,∴△AB O ≌△AO D ∴BO=OD ∵AD//BC, ∴∠OBE=∠ODA, ∠OAD=OEB ∴△BOE ≌△DOA∴BE=AD (平行且相等)∴四边形ABDE 为平行四边形,另AB=AD , ∴四边形ADBE 为菱形(2)设DE=2a,则CE=4a ,过点D 作D F ⊥BC∵∠ABC =60°,∴∠DEF=60°, ∴∠EDF=30°, ∴EF=12DE=a ,则DF=,CF=CE-EF=4a-a=3a ,∴CD ∴DE=2a ,EC=4a,CD=,构成一组勾股数,∴△EDC 为直角三角形,则ED ⊥DC24.如图8,已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(1)解:将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩ 解之得:b=4,c=0所以抛物线的表达式为:24y x x =-+将抛物线的表达式配方得:()22424y x x x =-+=--+所以对称轴为x=2,顶点坐标为(2,4)(2)点p (m ,n )关于直线x=2的对称点坐标为点E (4-m ,n ),则点E 关于y 轴对称点为点F 坐标为(4-m,-n ),则四边形OAPF 可以分为:三角形OFA 与三角形OAP ,则OFAP OFA OPA S S S ∆∆=+= 12OFA S OA n∆=∙∙+ 12OPA S OA n ∆=∙∙= 4n =20 所以n =5,因为点P 为第四象限的点,所以n<0,所以n= -5代入抛物线方程得m=525.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D,与边图8FOE CDB AAC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备用)(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE∴∠AED=60°=∠CEP∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作D Q⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31ax=+∵在RT△ADQ中DQ=∵DQ AD BC AB=∴111 xx x+=+解之得x=4,即BC=4过点C作CF//DP∴△ADE与△AFC相似,∴AE ADAC AF=,即AF=AC,即DF=EC=2,∴BF=DF=2FQAEDPCB∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP == (3)过D 点作D Q ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQ EC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似 ∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x x AB BC ++== ∴三角形ABC 的周长553313344x x y AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0。

相关文档
最新文档