人教版七年级上册数学-第二章《整式的加减》全章教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 整式(1)
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积
为;
(3)若x表示正方体棱长,则正方体的体积是;
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款
元。
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
二、讲授新课:
1.单项式:
由数与字母的乘积组成的代数式称为单项式。补充,单独一个数或一个字母也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)2
1 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。 3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式3
1a 2h ,2πr ,a bc ,-m 为例,让学生说出它们的数字因数是什么,,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。 答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;
③是,它的系数是π,次数是2; ④是,它的系数是-2
3,次数是3。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等; ③单项式次数只与字母指数有关。
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达
到本节课的教学目的。
四、课堂作业:课本p59:1,2。
板书设计:单项式
1、单项式的定义例1
2、单项式的系数、次数例2
教学反思:
2.1 整式(2)
教学目标和要求:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。
2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。
3.初步体会类比和逆向思维的数学思想。
教学重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是;
(2)某班有男生x人,女生21人,则这个班共有学生人;
(3)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只。
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(1)2(a+b) ; (2)21+x ; (3)a+b ; (4)2a+4b 。
二、讲授新课:
1.多项式:
板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项
式相加而成的。像这样,几个单项式的和叫做多项式(polynomi a l)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(const a nt term)。例如,多项式5
x有三项,它们是2
-x
3x,-2x,5。其中
32+
2
5是常数项。
一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式5
x是一个二次三项式。
2
-x
32+
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号。
2.例题:
例1:判断:
①多项式a3-a2b+a b2-b3的项为a3、a2b、a b2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1。
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为
-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。) 例2:指出下列多项式的项和次数:
(1)3x-1+3x2; (2)4x3+2x-2y2。
解:略。
例3:指出下列多项式是几次几项式。
(1)x3-x+1; (2)x3-2x2y2+3y2。
解:略。
例4:已知代数式3x n-(m-1)x+1是关于x的三次二项式,求m、n的条件。解:略。