统计学基本原理第五章抽样估计

合集下载

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
第5、6、7章
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7

常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。

统计学 第五章

统计学      第五章

第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。

(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。

全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。

(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。

社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。

样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。

一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。

在样本容量确定之后,样本的可能数目便完全取决于抽样方法。

抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。

抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。

在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。

样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。

统计学常用公式汇总

统计学常用公式汇总

《统计学原理》常用公式汇总组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距111平均指标 1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=;加权σ= 3.标准差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析 1.相关系数2.配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-= (-)×(-)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。

公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:(2)由相对指标或平均指标动态数列计算序时平均数基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;逐期增长量之和累积增长量二. 平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数(1)计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)。

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi

统计学习题第五章_抽样与抽样估计答案

统计学习题第五章_抽样与抽样估计答案

第五章抽样与抽样估计复习题一、填空题1、在实际工作中,人们通常把n≥30 的样本称为大样本,而把n<30 的样本称为小样本。

2、在抽样估计中,常见的样本统计量有样本均值、样本比例、样本标准差或样本方差以及它们的函数。

3、在研究目的一定的条件下,抽样总体是唯一确定的,而样本则有许多个。

4、在抽样调查中,登记性误差和系统性误差都可以尽量避免,而抽样误差则是不可避免的,但可以计算并加以控制。

5、在抽样估计中,抽样估计量是指用于估计总体参数的样本指标(统计量),评价估计量优劣的标准有无偏性、有效性和一致性。

二、选择题单选题:1、在其它条件不变的情况下,要使抽样平均误差为原来的1/3,则样本单位数必须((2))(1)增加到原来的3倍(2)增加到原来的9倍(3)增加到原来的6倍(4)也是原来的1/32、在总体内部情况复杂,且各单位之间差异程度大,单位数又多的情况下,宜采用((3))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样3、某厂产品质量检查,确定按5%的比率抽取,按连续生产时间顺序每20小时抽1小时的全部产进行检验,这种方式是((4))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样4、其它条件一定,抽样推断的把握程度提高,抽样推断的准确性就会((2))(1)提高(2)降低(3)不变(4)不一定降低5、在城市电话网的100次通话中,通话持续平均时间为3分钟,均方差为分钟,则概率为时,通话平均持续时间的抽样极限误差为((2))(1)(2)(3)(4)6、假定11亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国人口的1%计算平均年龄,则平均年龄抽样平均误差((3))(1)两者相等(2)前者比后者大(3)前者比后者小(4)不能确定大小多选题:1、降低抽样误差,可以通过下列那些途径((2)(4)(5))(1)降低总体方差(2)增加样本容量。

(3)减少样本容量(4)改重复抽样为不重复抽样(5)改简单随机抽样为类型抽样2、抽样推断中的抽样误差((1)(5))(1)是不可避免要产生的(2)是可以通过改进调查方法来消除的(3)只有调查后才能计算(4)即不能减少,也不能消除(5)其大小是可以控制的3、抽样极限误差((1)(2)(4))(1)是所有可能的样本指标与总体指标之间的误差范围(2)也叫允许误差 (3)与所做估计的概率保证程度成反比 (4)通常用来表示抽样结果的精确度 4、影响样本容量的因素有((1)(2)(3)(4)(5) ) (1)总体方差(2)所要求的概率保证程度 (3)抽样方法(4)抽样的组织形式(5)允许误差法范围的大小 5、不重复抽样的抽样平均误差( (2)(4) )(1)总是大于重复抽样的抽样平均误差 (2)总是小于重复抽样的抽样平均误差(3)有时大于,有时小于重复抽样的平均误差(4)在Nn很小时,几乎等于重复抽样的抽样平均误差 6、从3000名职工中随机抽取400名调查收入水平,共抽了( (1) (3) (5) ) (1)一个样本 (2)400个样本(3)一个样本总体 (4)400各样本总体 (5)400个样本单位 7、简单随机抽样一般适合于( (1)(3) (5) )(1)具有某种标志的单位均匀分布的总体 (2)具有某种标志的单位存在不同类型的总体 (3)现象的标志变异程度较小的总体 (4)不能形成抽样框的单位 (5)总体单位可以编号的总体三、简答题1、 什么是抽样平均误差影响抽样平均误差的因素有哪些答:抽样平均误差是所有可能的样本指标与被估计的总体参数之间的平均离差,即样本指标的标准差。

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查 B.了解样本的基本情况C.了解总体的基本情况 D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于( )A.样本单位数 B.总体方差C.抽样比例 D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大 B.二年级较大C.误差相同 D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差 B.低估误差C.恰好相等 D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A.扩大到原来的2倍 B.扩大到原来的4倍C.缩小到原来的1/4 D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样 B.纯随机抽样C.分层抽样 D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差 B.层内方差C.总方差 D.允许误差二、多项选择题1.抽样推断的特点有( )A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有()A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为( )A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是( )A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有( )A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有( )A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是( )A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断

σ
n )
抽样推断的基本原理
抽样推断的优良标准
设θ 为待估计的总体参数, θ为样本统计量,则 θ的优良标 准为: 1若 E(θ ) =θ ,则称 θ为 θ 的无偏估计量(无偏性)
更有效的估计量(有效性) 2若σθ1 < σθ2,则称θ1为比θ2
3若 越大σθ 越小,则称 θ 为θ 的一致估计量(一 致性)
即中选成分相同但中选顺序不同的视为同一样本
抽样推断的一般问题
抽样组织方式
简单随机抽样 类型抽样 整群抽样 等距抽样 多阶段抽样 多重抽样
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示. 考虑顺序的不重复抽样 考虑顺序的重复抽样 不考虑顺序的不重复抽样 不考虑顺序的重复抽样
抽样推断的一般问题
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
抽样推断的一般问题
抽样推断的特点 按随机原则抽取样本 运用概率论的理论和方法,用样本指标来推断 总体指标。 推断的误差可以事先计算和控制。
抽样推断的一般问题
抽样推断的应用 无法或 很难进行全面调查而又需要了解 其全面情况时 某些可以采用全面调查的社会经济现象, 也可采用抽样推断。 可用于生产过程的质量控制 进行假设检验
抽样推断的基本原理
抽样推断的优良标准——有效性 中位数的抽样分布
9 8 7 6 5 4 3 2 1 0 -1 45 50 55 60 65 70 75
平均数的抽样 分布
E(x) =
E ( me ) =
e
σx <σm
抽样推断的基本原理

统计学(李荣平)2014-5

统计学(李荣平)2014-5

P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计

第一节 抽样分布
要 内
第二节 参数点估计

第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。

从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。

2、样本均值与总体均值之间的差被称作____________。

3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。

4、某校大学生中,外国留学生占10%。

随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。

5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。

如果从中随机抽取30只灯泡进行检测,则样本均值( )。

A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。

A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。

A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。

统计学第5章抽样推断

统计学第5章抽样推断
就 是 由 样 本 指 标 直 接 代 替 全 及 指 标 , 不 考 虑
任 何 抽 样 误 差 因 素 。 即 用 x直 接 代 表 X , 用 p 直 接 代 表 P。
例 在 全 部 产 品 中 , 抽 取 100件 进 行 仔 细 检 查 , 得 到 平 均 重 量 x1002克 , 合 格 率 p98% , 我 们 直 接 推 断 全 部 产 品 的 平 均 重 量 X 1002克 , 合 格 率 P 98% 。
(1)
2
n
(1 )
12 2 (1
100
) 1.19 (千克 )
x
n
N
100 10000
(2) 若以概率 95.45%(t 2)保证,该农场 10000 亩小麦的平均
亩产量的可能范围为:
X : x 400 2 1.19 x
X (: 397 .62 ,402.38 ) (3) 若以概率 99.73%(t 3)保证,该农场 10000 亩小麦的平均
在重复抽样情况下:
p (1 p )
p
n
在不重复抽样情况下:
p (1 p ) n
(1 )
p
n
N

某玻璃器皿厂某日生产15000只印花玻璃 杯,现按重复抽样方式从中抽取150只进行 质量检验,结果有147只合格,其余3只为不 合格品,试求这批印花玻璃杯合格率(成数) 的抽样平均误差。
N15000n150
二、区间估计
根据样本指标和抽样误差去推断全及 指标的可能范围,它能说清楚估计的准 确程度和把握程度。
总体平均数和总体成数的估计
X :(x x, x x)
1的概率保证下:x tx
P:(pp, pp)
1的概率保证下: p tp

统计学课件05第5章抽样与参数估计

统计学课件05第5章抽样与参数估计

反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。

(完整版)第五章抽样调查习题答案

(完整版)第五章抽样调查习题答案

《统计学》习题五 参考答案、单项选择题:1、抽样误差是指( )。

CA 在调查过程中由于观察、测量等差错所引起的误差B 人为原因所造成的误差C 随机抽样而产生的代表性误差D 在调查中违反随机原则出现的系统误差2、抽样平均误差就是( )。

DA 样本的标准差B 总体的标准差C 随机误差D 样本指标的标准差3、抽样估计的可靠性和精确度( )。

BA 是一致的B 是矛盾的C 成正比D 无关系4、在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应( )。

A A 增加 8 倍B 增加 9 倍C 增加 1.25 倍D 增加 2.25 倍5、当有多个参数需要估计时,可以计算出多个样品容量 n 为满足共同的要求,必要的样本容量 一般应是( )。

BA 总体的标志变异程度B 允许误差的大小C 重复抽样和不重复抽样D 样本的差异程度E 估计的可靠度三、填空题:3、 实施概率抽样的前提条件是要具备( )。

抽样框4、 对总体参数进行区间估计时,既要考虑极限误差的大小,即估计的( 虑估计的( )问题。

准确性 可靠性四、简答题:1、抽样调查与重点调查的主要不同点。

A 最小的n 值 B 最大的n 值 6、抽样时需要遵循随机原则的原因是( C 中间的n 值 D 第一个计算出来的n 值)。

CA 可以防止一些工作中的失误B 能使样本与总体有相同的分布C 能使样本与总体有相似或相同的分布D 可使单位调查费用降低二、多项选择题:1、抽样推断中哪些误差是可以避免的( A 工作条件造成的误差 B D 人为因素形成偏差 E2、区间估计的要素是( A 点估计值 B D 抽样极限误差 E3、影响必要样本容量的因素主要有( )。

A B D系统性偏差 C 抽样随机误差 抽样实际误差)。

A C D样本的分布 C 估计的可靠度总体的分布形式)。

A B C E1、抽样推断就是根据( )的信息去研究总体的特征。

样本2、样本单位选取方法可分为( )和( )。

统计学原理第5章

统计学原理第5章
重复抽样 AA BA CA DA AB BB CB DB AC BC CC DC AD BD CD DD
Nn = 42
=16 (个样本)
不重复抽样
N(N-1)(N-2)……. 4×3 = 12(个样本)
AB、AC、AD、
BA、BC、BD、
CA、CB、CD、
DA、DB、DC
第二节
抽 样 误 差
一、抽样误差的含义





P=0.8
p =0.4
抽样平均数平均误差的计算方法
采用重复抽样:
x

n
此公式说明,抽样平均误差与总体标准差成正比, 与样本容量成反比。(当总体标准差未知时,可 用样本标准差代替)
通过例题可说明以下几点: ①样本平均数的平均数等于总体平均数。 ②抽样平均数的标准差仅为总体标准差的
x

n 1 n N
x2f 1058400 830060 349920 270400 182250
495
445 540 420
1.1
1 0.9 0.8
544.5
445 486 336
269527.5
198025 262440 141120
合计
5
2531.5
1303113
合计
6
3911
2691030
x甲
xf f
1 n
③可通过调整样本单位数来控制抽样平均误差。
某电子产品使用寿命在3000小时以下为不合格品,从5000个产品 中抽取100件调查,结果如下: 求1:平均寿命的抽样平均误差. 2:求合格品率的抽样平均误差.
使用寿命(小时) 3000以下 3000-4000 4000-5000 5000以上 合计

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断
lim P( x X ) 1
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.

(完整版)第五章抽样调查习题答案

(完整版)第五章抽样调查习题答案

《统计学》习题五参考答案一、单项选择题:1、抽样误差是指()。

CA在调查过程中由于观察、测量等差错所引起的误差 B人为原因所造成的误差C随机抽样而产生的代表性误差 D在调查中违反随机原则出现的系统误差2、抽样平均误差就是()。

DA样本的标准差 B总体的标准差 C随机误差 D样本指标的标准差3、抽样估计的可靠性和精确度()。

BA是一致的 B是矛盾的 C成正比 D无关系4、在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应()。

AA增加8倍 B增加9倍 C增加1.25倍 D增加2.25倍5、当有多个参数需要估计时,可以计算出多个样品容量n,为满足共同的要求,必要的样本容量一般应是()。

BA最小的n值 B最大的n值 C中间的n值 D第一个计算出来的n值6、抽样时需要遵循随机原则的原因是()。

CA可以防止一些工作中的失误 B能使样本与总体有相同的分布C能使样本与总体有相似或相同的分布 D可使单位调查费用降低二、多项选择题:1、抽样推断中哪些误差是可以避免的()。

A B DA工作条件造成的误差 B系统性偏差 C抽样随机误差D人为因素形成偏差 E抽样实际误差2、区间估计的要素是()。

A C DA点估计值 B样本的分布 C估计的可靠度D抽样极限误差 E总体的分布形式3、影响必要样本容量的因素主要有()。

A B C EA总体的标志变异程度 B允许误差的大小 C重复抽样和不重复抽样D样本的差异程度 E估计的可靠度三、填空题:1、抽样推断就是根据()的信息去研究总体的特征。

样本2、样本单位选取方法可分为()和()。

重复抽样不重复抽样3、实施概率抽样的前提条件是要具备()。

抽样框4、对总体参数进行区间估计时,既要考虑极限误差的大小,即估计的()问题,又要考虑估计的()问题。

准确性可靠性四、简答题:1、抽样调查与重点调查的主要不同点。

答:第一,选取调查单位的方法不同。

抽样调查是按随机原则抽取调查单位的,重点调查中的重点单位是调查标志值占总体标志总量比重很大的单位,调查单位是明显的;第二,作用不同。

5 应用统计学(教案)-抽样推断

5 应用统计学(教案)-抽样推断

4、抽样估计的一般步骤
设计抽样方案 抽取样本单位 收集样本资料
整理样本资料
推断总体指标
(1)抽样方案设计的基本准则
随机原则: 确保每个总体单位都有 被抽取的可能。 抽样误差最小: 控制和选择抽样数 目及抽样组织方式 费用最少: 在误差达到一定要求的 条件下,选择费用最少 的方案。
(2)抽样方案设计的主要内容 ① 编制抽样框 抽样框即总体单位的名单。 主要形式: 名单抽样框 区域抽样框 时间表抽样框 编制要求: 应包括全部总体单位 总体单位不应重复 应便于抽样的实施 应尽量利用资料,提高抽 样效果
第五章 抽样推断
基本概念
抽样误差
抽样估计 抽样组织方式
第一节 抽样估计的基本概念
一、抽样估计的意义和一般步骤 1、抽样估计的概念
抽样估计 按随机原则从总体中抽取一部 分单位进行调查,并以调查结 果对总体数量特征作出具有一 定可靠程度的估计与推断,从 而认识总体的一种统计方法。 也是一种收集资料的方法,所以也称为抽 样调查。
另外,分两个以上阶段完成抽取样本的多阶段抽 样,多在总体单位数量多分布广时采用。一般前阶段 采用分层或有关标志排队等距抽样;后阶段采用简单 随机或无关标志排队等距抽样。
④ 确定抽样数目 抽样数目: 即样本容量、样本单位数 大样本:n ≥ 30 小样本:n < 30 抽样数目的确定,与抽样误差、费 用及抽样组织方式有直接的关系。 误差小费用多时抽样数目多,误差 大费用少时抽样数目少;分层抽样除确 定整个样本容量外,还需确定子样本容 量;整群抽样需确定样本群数;多阶段 抽样需确定各阶段抽样数目。
| x - X |≤△ x (在一定概率下) 置信度、概率保证度、 可信度、把握程度,)与△x 是一对矛盾

统计学5章

统计学5章
在重复简单随机抽样时,样本平均数的抽样分布
有数学期望值 E ( x ) = a a 代表全及总体平均数) (
设总体变量有 N 个:X1,X2,… , XN,则
样本容量为 n:x1 , x2 , … , xn , 则:
X1 X 2 X N X= N
x1 x2 xn x = n
∵ ∴ =
2 x
x1, x2,…, xn相互独立
1 n2 E x1 X


2
E x2 X


2
E xn X
2


2
E ( xi X )( x j X ) i j
=
1 n2 1 n2
E ( x X )2 E x X 1 2 E X X
对于属性总体来说则有如下对应样本指标: 设样本总体 n 个单位中有 n1 个单位具有某种属性, n0 个单位不具有某种属性,且n1 +n0 = n 。则:
n1 p n n0 n n1 q 1 p n n
样本标准差
s
p1 p
(二)参数和统计量
(三)样本容量与样本个数
样本容量是指一个样本所包含的单位数,用 n 来 表示。一般地讲,样本单位数达到或超过30个的样本 称为大样本,而在30个以下称为小样本。 样本个数又称样本可能数目,是指从全及总体中
二、抽样推断的几个基本概念
抽样推断的几个基本概念(见图5-1)。
图5-1 抽样推断的几个基本概念
(一) 总体和样本
在抽样推断中面临两个不同的总体,即 全及总体和样本总体(见图5-2)。
图5-2 全及总体和样本总体关系示意
(一) 总体和样本

统计学第五章抽样推断

统计学第五章抽样推断

统计学第五章抽样推断二、单项选择题1、对总体的数量特征进行抽样估计的前提是抽样必须遵循(B)。

A.大量性B.随机性C.可靠性D.准确性2、一般认为大样本的样本单位数至少要大于(A)。

A.30B.50C.100D.2003、抽样平均误差是指(D)。

A.抽中样本的样本指标与总体指标的实际误差B.抽中样本的样本指标与总体指标的误差范围C.所有可能样本的抽样误差的算术平均数D.所有可能样本的样本指标的标准差4、在其它条件相同的情况下,重复抽样的抽样误差(A)不重复抽样的抽样误差。

A.大于B.小于C.总是等于D.通常小于或等于5、在其它条件不变的情况下,要使抽样误差减少1/3,样本单位数必须增加(D)。

A.1/3B.1.25倍C.3倍D.9倍6、从产品生产线上每隔10分钟抽取一件产品进行质量检验。

推断全天产品的合格率时,其抽样平均误差常常是按(C)的误差公式近似计算的。

A.简单随机抽样B.整群抽样C.等距抽样D.类型抽样7、通常使样本单位在总体中分布最不均匀的抽样组织方式是(B)。

A.简单随机抽样B.整群抽样C.分层抽样D.等距抽样9、抽样平均误差和极限误差的关系是(D)A抽样平均误差大于极限误差B抽样平均误差等于极限误差C抽样平均误差小于极限误差D抽样平均误差大于、等于、小于极限误差都可能10、抽样平均误差的实质是(D)A、总体标准差B、样本标准差C、抽样误差的标准差D、全部可能样本平均数的标准差三、多项选择题C、可以计算抽样误差D、以概率论和数理统计学为理论基础2、影响抽样平均误差大小的因素有(ABCD)。

A、总体各单位标志值的差异程度B、抽样数目C、样本各单位标志值的差异程度D、抽样组织方式E、抽样推断的把握程度3、影响必要的抽样数目的因素有(BCDE)。

A、总体各单位标志值的差异程度B、样本各单位标志值的差异程度C、抽样方法和抽样组织方式D、抽样推断的把握程度E、允许误差4、计算抽样平均误差时,由于总体方差是未知的,通常有下列代替方法(ACE)。

【统计学概论】抽样推断

【统计学概论】抽样推断

每包重量(克) 149以下 149—150
150—151 151以上
包数 10 20 50 20
(1)以99.73%的概率保证估计这批茶叶平均每包重量的 可能范围
(2)以同样的概率保证估计这批茶叶包装的合格率的可 能范围
• 三必要抽样数目的确定
• (一)影响抽样数目的因素

影响抽样数目的因素有:
(一)总体和样本
总体:调查研究的事物或现象的全体,所包含 的单位数用“N”表示。
样本:从总体中所抽取的部分个体所构成的小 的总体,当中所包含的单位数用“n”
表 示,称为“样本容量”。 样本可分为: 大样本 小样本
(二)全及指标与样本指标 (参数与统计量)
1、全及指标:说明全及总体的综合数量 特征,是唯一的,又称为“参数”。
尺度,用“ ”。
2、公式:
(1)重复抽样条件下:
(2)不重复抽样条件下:
五、抽样极限(允许)误差
1、概念:是在一定的概率保证下,用样本 指标估计全及指标时允许出现的
最 大误差,用“△”表示.
2、计算公式: 根据置信度(即可靠性,F(t)=1-α),
查正态概率分布表,查得对应的概率度t。 (在总体方差未知的情况下)
例3:P94
例4 P95
例5 P96
三、抽样误差
1、概念:是在遵循随机原则的条件下,用 样本指标来代表全及指标所不可避免 的误差。就是统计误差中的随机误差
抽样误差=样本指标 -全及指标 2、影响因素:
①抽取单位数n的多少 ②被研究标志的变异程度 ③抽样方法 ④抽样组织方式
四、抽样平均误差
1、概念:是所有可能组成的样本的抽样误 差的平均数,反映样本指标与全及指标的 平均误差程度,是衡量样本代表性大小的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学基本原理第五章抽样估计
2、参数和统计量
❖ 全及指标:根据总体各单位的标志值或标志属性计 算的,反映总体数量特征的综合指标。
❖ 全及指标是总体变量的函数,其数值是由总体各单 位的标志值或标志属性决定的,一个全及指标的指 标值是确定的、唯一的,称为参数。
❖ 参数种类:①、对于总体中的数量标志,常用的总
统计学基本原理第五章抽样估计
3、抽样误差是一种代表性误差,但不是所有代表性误差 都是抽样误差。 ❖ 系统偏误是由于违反抽样随机原则,有意地抽选较好
或较差的单位进行调查,这种系统性原因造成的样本 代表性不足所引起的误差。 ❖ 系统偏误和登记误差都属于思想、作风、技术问题, 可以防止和避免,而抽样误差则是不可避免,难于消 灭,只能加以控制。
比重。 设总体N个单位中,有N1个单位具有某种性质,N0个不
具有某种性质,N1+N0=N,则
PN 1,Q N 0NN 11P N NN
统计学基本原理第五章抽样估计
如果品质标志表现只有是非两种,则把“是”的标 志表示为1,而“非”的标志表示为0(0、1是标志 值)
XP 0N0 1N1 N样估计
4、影响抽样误差大小的因素:
❖ 总体各单位标志值的差异程度。(差异程度越大,抽 样误差越大)
❖ 样本的单位数(样本单位数越多,抽样误差越小) ❖ 抽样方法(重复抽样的误差比不重复抽样的误差要大
些) ❖ 抽样调查的组织形式(简单随机抽样、类型抽样、等
距抽样、整群抽样)
统计学基本原理第五章抽样估计
有Nn个样本 ❖ 不重复抽样也称不回置抽样,从N个单位中,抽取n个,
共有N(N-1)(N-2)……(N-n+1)个
统计学基本原理第五章抽样估计
§2、抽样误差
一、抽样误差的意义: 1、抽样误差是指由于随机抽样的偶然因素使样本各单位
的结构不足以代表总体各单位的结构,而引起抽样指 标和全及指标之间的绝对离差。 2、抽样误差和登记性误差: 登记性误差是所有统计调查都可能发生的,而抽样误差 不是由于调查失误所引起的,它是随机抽样所持有的 误差。
统计学基本原理第五章抽样估计
抽样推断是运用概率估计的方法
❖ 抽样推断的误差可以事先计算并加以控制。 二、抽样推断的内容: 1、参数估计:依据所获得的样本观察资料,对所研究现
象总体的水平、结构、规模等数量特征进行估计。 参数估计包括的内容:确定估计值、确定估计的优良标准
并加以判别,求估计值和被估计参数之间的误差范围, 计算在一定误差范围内多作推断的可靠程度等。
n
f
x p n1 p n
2 p
p (1
p)
统计学基本原理第五章抽样估计
3、样本容量和样本个数:
❖ 样本容量是指一个样本所包含的单位数。 ①、大样本:样本单位数不少于30个 ②、小样本:样本单位数不及30个 ❖ 样本个数:又称样本可能数目,是指从一个总体中可
能抽取的样本个数。 4、重复抽样和不重复抽样 ❖ 重复抽样也称回置抽样,从N个单位中,抽取n个,共
二、抽样平均误差
1、抽样平均误差是反映抽样误差的一般水平的指标。 2、用抽样平均数的标准差或抽样成数的标准差来作为衡
量其抽样误差一般水平的尺度。
x
(x X)2 M
p
(pP)2 M是样本个数 M
统计学基本原理第五章抽样估计
3、抽样平均数的平均误差
❖ 重复抽样的条件下:
x

n
总体标准差 n、 样本容量
P2
(0P)2N0 (1P)2 N
N1
P2N0 Q2N1 N
P2QQ2PPQ(PQ)PQP(1P)
统计学基本原理第五章抽样估计
统计量:根据样本各单位标志值或标志属性计算 的综合指标。
统计量和参数相类似,以小写字母表示: 设样本变量x:x1、x2、……xn
x
x
n
xf f
2
(x x)2
(x x)2 f
2、假设检验:先对总体的状况作某种假设,然后再根据 抽样推断的原理,根据样本观察资料对所作假设进行检 验,来判断这种假设的真伪,以决定我们行动的取舍
统计学基本原理第五章抽样估计
三、有关抽样的基本概念
1、总体和样本 ❖ 总体定义:总体也称为全及总体,指所要认识的研究对
象全体。它是由所研究范围内具有某种共同性质的全体 单位所组成的集合体。 ❖ 总体的单位数通常都是很大的,甚至无限的,用N表示。 ❖ 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 ❖ 样本的单位数是有限的,数目较小,用n表示。 ❖ 作为推断对象的总体是确定的,而且是唯一的。
体参数有总体平均数
差 )
x
和总体方差
(标2 准
设总体变量x为:x1、x2、……..xn 则:
X
X
N
XF F
2
2
X X
2
XX F
N
F
统计学基本原理第五章抽样估计
②、对于总体中的品质标志,由于各单位标志不能用数 量来表示。 常用的参数:以成数指标P表示总体中具有某种性质的单
位数在总体全部单位数中所占的比重。 以Q表示总体中不具有某种性质的单位数在总体中所占的
统计学基本原理第五章抽样 估计
第五章 抽样估计
学习要点:学习本章要求掌握抽样推断的基本概念和一
般原理,抽样误差的形成、计算抽样误差及如何估计 总体的平均指标和成数指标。
§1、抽样推断的一般问题 §2、抽样误差 §3、抽样估计的方法 §4、抽样组织设计
统计学基本原理第五章抽样估计
§1、抽样推断的一般问题
一、抽样推断的意义: 1、抽样推断是在抽样调查的基础上,利用样本的实际资
料计算样本指标,并据以推算总体相应数量特征的一 种统计分析方法。 2、抽样推断原因: 实际工作中许多现象不可能对总体的所有单位进行调查 只能组织抽样调查。 3、抽样推断的特点: ❖ 抽样调查的目的不在于了解部分单位的情况,只是作 为一种手段,从而认识总体的数量特征。 ❖ 抽样推断是建立在随机取样的基础上。
•不重复抽样条件下:
x
2 ( N n )、N为总体单位数
n N 1
当N很大的时候,N 1 N
x
2 1 n
n N
统计学基本原理第五章抽样估计
•计算抽样平均误差时,用样本标准差s代替总体
标准差 。
s (x x)2
n 1
X-样本变量 x --样本平均数
n 1
--样本变量自由度
例题 分析
相关文档
最新文档