射频电路专题实验实验一匹配电路仿真和设计

合集下载

射频实验报告

射频实验报告

西安交通大学射频专题实验报告(一)匹配网络的设计与仿真实验目的1.掌握阻抗匹配、共轭匹配的原理2.掌握集总元件L型阻抗抗匹配网络的匹配机理3.掌握并(串)联单支节调配器、λ/4阻抗变换器匹配机理4.了解ADS软件的主要功能特点5.掌握Smith原图的构成及在阻抗匹配中的应用6.了解微带线的基本结构基本阻抗匹配理论信号源的输出功率取决于U s、R s和R L。

在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比k 。

当R L=R s时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。

匹配包括:共轭匹配,阻抗匹配,并(串)联单支节调配器。

练习1.设计L 型阻抗匹配网络,使Zs=(46-j ×124) Ohm 信号源与ZL=(20+j ×100) Ohm 的负载匹配,频率为2400MHz.仿真电路图2. 设计微带单枝短截线线匹配电路,使MAX2660的输出阻抗ZS=(126-j*459)Ohm与ZL=50Ohm的负载匹配,频率为900MHz.微带线板材参数:相对介电常数:2.65相对磁导率:1.0导电率:1.0e20损耗角正切:1e-4基板厚度:1.5mm导带金属厚度:0.01mm仿真电路图仿真结果思考题1.常用的微波/射频EDA仿真软件有哪些?2.ADS, Ansoft Designer,Ansoft HFSS,Microwave Office, CST MICROWAVE STUDIO2.用ADS软件进行匹配电路设计和仿真的主要步骤有哪些?放置元件,连接电路图,参数设定,计算仿真。

3.给出两种典型微波匹配网络,并简述其工作原理。

L型阻抗匹配网络,π型阻抗匹配网络在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching)问题。

射频仿真与实验

射频仿真与实验

射频仿真与实验FTTP部邓红兵射频电路的仿真与实验结果有多大的差距?做过射频电路的人对这个问题是比较有兴趣的。

在光纤三向模块这个项目中我有幸对由0189构成的后放大器进行了仿真,在以后的时间里我又对该放大器进行了实验,将其中的一些体会记录下来。

下图是后放大器的电路图,场效应管是0189,该电路是一个典型的负反馈放大器,负反馈的作用是牺牲增益换取通频带。

原后放电路下面这图是该电路的仿真结果,我们看到增益是12db左右,标称增益是17db 左右,差5db是负反馈的结果。

输出反射在高端只有-12db左右,这在模块输出部分是不可以接受的。

鉴于输出反射不理想,对影响输出反射的几个元件进行了电路仿真,发现取消这几个器件比较好,下图是优化后的电路。

优化后电路下面是仿真的结果,我们看到在整个通频带内输出反射在-18db 左右,比起优化前有了很好的改善。

在优化过程中发现原电路的RLC 并联网络对频率高端的提升贡献比较小,反而使反射损耗在该点变坏。

在仿真过程中发现场效应管SHF0189其标称增益为17db,仿真和实验结果都为12db左右,为什么会少4~5db?为了扩展通频带加入了比较强的负反馈。

在去掉负反馈电阻后仿真其增益果然有17db,然而其输入反射非常差。

由此得出结论它是牺牲了增益换取通频带,我们看下面的仿真结果去掉负反馈电阻后来陈士龙应用到电路上测试实际结果与仿真差距很大。

当时我认为是仿真环境与实际电路环境的不同造成的,既我是对后放单独仿真,信号输入为75欧,而实际电路是整个系统,仅输出部分运用了仿真结果,而后放的输入并不一定是75欧,这是仿真与实际结果差距较大的原因。

在后来我要了一块电路板,将后放与前级部分断开,用75欧同轴电缆直接连接到网络分析仪的信号输出端,输出部分应用仿真的元件值,测试的反射结果与仿真很接近,调试了电路几种状态与仿真也很接近,说明仿真确实对实验具有指导作用,差距是由于实验环境与仿真模型造成的。

射频电路原理实验报告

射频电路原理实验报告

射频电路原理实验报告实验目的本实验旨在通过搭建射频电路原理实验平台,探索射频信号的特性,并了解射频电路中的基本元件和原理。

实验器材与材料- 射频信号发生器- 射频功率放大器- 直流电源- 变压器- 电感- 电容- 电阻- 示波器- 天线实验步骤1. 首先,将射频信号发生器和示波器正确接入电路,并设置合适的工作频率和幅值。

2. 接下来,通过变压器将输入信号的电压转换成合适的射频信号,并将其输入到射频功率放大器中。

3. 将射频功率放大器的输出信号连接到天线,以实现信号的无线传输。

4. 在示波器上观察到放大器输入和输出的波形,并记录相关数据。

5. 调整射频信号发生器和射频功率放大器的参数,观察波形的变化,进一步了解射频信号的特性和电路的响应。

实验结果分析通过观察示波器上的波形,可以看出射频功率放大器能够有效地将输入信号放大,并通过天线将信号发送出去。

随着射频信号发生器输出频率的增加,波形的周期性变化也能够清晰地观察到,表明电路对不同频率的信号具有不同的响应特性。

同时,我们还可以通过记录的数据计算出电路的增益,并与理论数值进行对比。

通过比较实际测量结果和理论预期,可以评估电路的性能和实验的准确性。

实验总结与心得通过本实验,我对射频电路的基本原理和电路中的元件有了更深入的了解。

通过搭建实验平台,我能够直观地观察到射频信号的特性,并掌握了调节参数以实现不同频率响应的技巧。

在实验过程中,我也遇到了一些问题,比如调节信号发生器的频率不够精确,导致波形的观察和数据的测量不够准确。

为了解决这个问题,我学会了合理选择仪器和参数,以获得更精确的实验结果。

总的来说,本实验对我进一步理解和掌握射频电路原理和实验方法有着重要的意义,也为我今后的学习和研究打下了坚实的基础。

参考文献- 《射频电路设计与实验指导书》- 《电子电路基础》。

射频与微波电路仿真实验

射频与微波电路仿真实验

电子科技大学物理电子学院学院实验报告(实验)课程名称射频与微波电路仿真实验学生姓名:学号:电子科技大学教务处制表电子科技大学实验报告实验地点:科A-206 指导教师:朱兆君实验时间:3~10周一、实验室名称:微波、毫米波实验室二、实验项目名称:射频与微波电路仿真实验三、实验学时:32学时四、实验原理:应用微波电路仿真软件ADS(Advanced Design System),完成给定的微波电路设计任务。

五、实验目的:掌握微波电路CAD的基本概念;了解现代微波电路CAD的基本组成;掌握ADS软件并进行微波电路的建模,仿真,优化和调试等任务。

六、实验内容:微波电路的基本概念;微波网络基本理论;ADS软件的使用方法。

上机操作:1.完成给定的微波器件设计;2.完成实验报告。

七、实验器材(设备、元器件):台式计算机70台;ADS 2009仿真软件;U盘(学生自备)。

八、实验步骤:1.功分器的设计a.布线原理:b.优化仿真:c.仿真结果:d.版图:2.平行耦合线带通滤波器设计a.布线原理:b.优化仿真:c.仿真结果:d. 版图:九、实验数据及结果分析:【在以下的仿真曲线中要求用Marker打出f0,若有带宽要求的还需要用Marker打出f1和f2的标识。

】1.功分器的设计本实验是利用εr=4.3,厚度h=0.8mm的介质基板,设计公分比是1:1的功分器,在中心频率实现功率分配功能。

之后对电路进行了优化仿真,并生成了版图。

对结果进行分析解释:通过不断优化后设计出来的功分器,其分配损耗、隔离度和输入输出端驻波比在较宽的频带内有较好的特效。

2.平行耦合线带通滤波器的设计本实验也是利用εr=4.3,厚度h=0.8mm的介质基板来设计,电路模型和参数均参考冯新宇编写的《ADS2009射频电路与仿真》教材。

之后对电路进行了优化仿真,并生成版图。

设计出来的滤波器在一个较宽的频带范围内与指标良好吻合,但是在离中心频率很远处,仍有一比较大的起伏,略微超过了-15dB抑制。

射频技术实验实验报告

射频技术实验实验报告

一、实验目的1. 理解射频技术的基本原理和组成;2. 掌握射频信号的调制、解调方法;3. 学习射频信号的传输和接收技术;4. 培养实际操作能力,提高动手能力。

二、实验原理射频技术是一种利用电磁波进行信息传输的技术,其频率范围一般在300MHz到30GHz之间。

射频技术在通信、雷达、遥感、医疗等领域有着广泛的应用。

本实验主要研究射频信号的调制、解调、传输和接收技术。

1. 调制:调制是将信息信号与载波信号进行组合的过程,分为模拟调制和数字调制。

本实验采用模拟调制中的调幅(AM)调制。

2. 解调:解调是调制的逆过程,将调制后的信号恢复成原始信息信号。

本实验采用调幅信号的解调方法。

3. 传输:射频信号的传输主要通过天线实现,本实验使用同轴电缆进行传输。

4. 接收:接收过程包括天线接收、信号放大、解调、滤波等步骤,本实验使用超外差式接收机进行接收。

三、实验内容1. 调制电路搭建:搭建一个调幅调制电路,输入信号为音频信号,载波信号为射频信号。

2. 解调电路搭建:搭建一个调幅解调电路,输入信号为调制后的射频信号。

3. 信号传输:使用同轴电缆将调制后的射频信号传输到接收端。

4. 接收电路搭建:搭建一个超外差式接收机,对传输过来的射频信号进行接收。

5. 实验数据采集与分析:使用示波器、信号发生器等仪器采集实验数据,对实验结果进行分析。

四、实验步骤1. 搭建调制电路:将音频信号发生器输出的音频信号作为调制信号,射频信号发生器输出的射频信号作为载波信号,通过调制电路实现调幅调制。

2. 搭建解调电路:将调制后的射频信号作为解调电路的输入信号,通过解调电路恢复出原始音频信号。

3. 信号传输:将调制后的射频信号通过同轴电缆传输到接收端。

4. 搭建接收电路:搭建一个超外差式接收机,对传输过来的射频信号进行接收。

5. 数据采集与分析:使用示波器观察调制信号、解调信号、传输信号和接收信号的波形,记录相关数据。

五、实验结果与分析1. 调制电路输出信号波形:通过示波器观察调制电路输出信号,可以看到调制后的射频信号波形,符合调幅调制的要求。

《2024年基于ADS的射频功率放大器设计与仿真》范文

《2024年基于ADS的射频功率放大器设计与仿真》范文

《基于ADS的射频功率放大器设计与仿真》篇一一、引言射频功率放大器(RF Power Amplifier,简称RPA)是无线通信系统中的关键部件,广泛应用于手机、电视、卫星通信等无线通信领域。

因此,设计和仿真射频功率放大器是无线通信技术领域的重要研究内容。

本文将介绍基于ADS(Advanced Design System)的射频功率放大器设计与仿真过程,以期为相关研究提供参考。

二、设计目标与要求在设计射频功率放大器时,需要明确设计目标与要求。

首先,根据应用场景和系统需求,确定射频功率放大器的频段、输出功率、增益、效率等关键指标。

其次,考虑到射频功率放大器的工作环境,需要具备良好的稳定性和可靠性。

最后,在满足性能要求的前提下,还需考虑成本、体积等因素。

三、ADS软件介绍ADS是一款功能强大的电子设计自动化软件,广泛应用于射频、微波和毫米波电路的设计与仿真。

在射频功率放大器的设计与仿真过程中,ADS提供了丰富的电路元件模型、仿真算法和优化工具,可有效提高设计效率和仿真精度。

四、射频功率放大器设计与仿真1. 电路拓扑结构设计根据设计要求,选择合适的电路拓扑结构。

常见的射频功率放大器电路拓扑结构包括共源极、共栅极、推挽式等。

在ADS中,可以建立相应的电路模型,对不同拓扑结构进行仿真与比较,以确定最优的电路拓扑结构。

2. 元件参数选择与优化在确定了电路拓扑结构后,需要选择合适的元件参数。

这些参数包括晶体管、电容、电感、电阻等元件的数值。

在ADS中,可以通过仿真实验,对元件参数进行优化,以获得最佳的电路性能。

3. 仿真与分析利用ADS的仿真功能,对设计的射频功率放大器进行仿真与分析。

通过观察仿真结果,分析电路的性能指标,如增益、输出功率、效率、稳定性等。

根据仿真结果,对电路进行进一步的优化和调整。

五、实验结果与讨论在完成射频功率放大器的设计与仿真后,需要进行实验验证。

通过实际测试,对比仿真结果与实验结果,分析误差原因。

射频实验实验报告

射频实验实验报告

射频实验实验报告射频实验实验报告射频(Radio Frequency,简称RF)技术是一种用于无线通信和无线电广播的重要技术,广泛应用于电视、无线电、卫星通信等领域。

本次实验旨在探索射频技术的基本原理和实际应用,并通过实验验证相关理论。

实验一:射频信号发生器的使用在射频实验中,射频信号发生器是一种常用的设备,用于产生射频信号。

我们首先学习了射频信号发生器的基本操作。

通过调节频率、幅度和波形等参数,我们成功地产生了不同频率的射频信号,并观察到了其在示波器上的波形变化。

实验二:射频功率放大器的性能测试射频功率放大器是射频系统中的重要组成部分,用于放大射频信号的功率。

我们在实验中使用了一款射频功率放大器,并测试了其性能。

通过调节输入信号的频率和幅度,我们测量了输出信号的功率,并绘制了功率-频率和功率-幅度的曲线图。

实验结果表明,射频功率放大器具有较好的线性和功率放大效果。

实验三:射频滤波器的设计与实现射频滤波器是射频系统中的重要组成部分,用于滤除不需要的频率分量,以保证系统的性能。

我们在实验中学习了射频滤波器的设计原理,并使用电路仿真软件进行了滤波器的设计与验证。

通过调整滤波器的参数,我们成功地实现了对特定频率范围的滤波效果,并对滤波器的频率响应进行了分析和评估。

实验四:射频天线的性能测试射频天线是射频通信系统中的关键部件,用于发送和接收射频信号。

我们在实验中使用了一款射频天线,并测试了其性能。

通过调节天线的位置和方向,我们测量了信号的接收强度,并评估了天线的增益和方向性。

实验结果表明,射频天线具有较好的接收性能和方向选择性。

实验五:射频调制与解调技术的应用射频调制与解调技术是射频通信系统中的关键技术,用于将数字信号转换为射频信号进行传输。

我们在实验中学习了射频调制与解调技术的基本原理,并通过实验验证了其应用效果。

通过调节调制信号的参数,我们成功地实现了不同调制方式的射频信号传输,并观察到了解调后的信号波形。

射频电路仿真与天线设计

射频电路仿真与天线设计
详细描述
使用电磁仿真软件对某型通信天线进 行建模,通过调整天线结构参数和材 料属性,优化天线的增益、方向图和 驻波比等性能指标,提高通信质量和 传输效率。
案例二:某型雷达天线的仿真与分析
总结词
对某型雷达天线进行电磁仿真和分析,评估天线性能。
详细描述
使用电磁仿真软件对某型雷达天线进行建模和仿真,分析天线的辐射特性、方向图、增益和副瓣电平等性能指标 ,为雷达系统的设计和优化提供依据。
金属材料 塑料材料 陶瓷材料 印刷工艺
常用金属材料包括铜、铝、钢等,具有导电性好、机械强度高 、成本较低等优点。
用于制造天线的塑料材料应具备轻便、不易变形、绝缘性好等 特点。
具有介电常数稳定、耐高温、绝缘性好等优点,常用于制造高 频天线。
将天线图案印刷在介质材料上,经过处理后形成天线。该工艺 具有成本低、一致性好、易于批量生产等优点。
03
射频电路与天线的协同 设计
协同设计概述
协同设计是一种多学科交叉的 设计方法,将射频电路和天线 设计结合起来,实现系统性能
的最优化。
通过协同设计,可以综合考 虑电路和天线之间的相互影 响,提高整体性能,减少设
计迭代次数。
协同设计有助于缩短产品开发 周期,降低开发成本,提高设
计成功率。
协同设计流程
案例三:某型物联网天线的设计与实现
总结词
设计并实现某型物联网天线,满足物联网设备通信需求。
详细描述
根据物联网设备的通信需求,设计一款适用于物联网应用的 低成本、小型化天线,通过电磁仿真软件验证设计的可行性 ,并制作样品进行实际测试,确保天线性能符合要求。
THANKS FOR WATCHING
感谢您的观看
04
CST (Computer Simulation Technology):一款广泛用于电磁场和 微波器件仿真的软件,支持三维建模和仿真。

微波与射频电路仿真报告

微波与射频电路仿真报告

微波射频仿真实验报告一、实验室名称:微波、毫米波实验室二、实验项目名称:微波与射频电路仿真与设计实验三、实验学时:32学时四、实验原理:应用微波电路仿真软件ADS(Advanced Design System),完成给定的微波电路设计任务。

五、实验目的:掌握微波电路CAD的基本概念;了解现代微波电路CAD的基本组成;掌握ADS软件并进行微波电路的建模,仿真,优化和调试等任务。

六、实验内容:微波电路的基本概念;微波网络基本理论;ADS软件的使用方法。

上机操作:1.完成给定的微波器件设计;2.完成实验报告。

七、实验器材(设备、元器件):台式计算机70台;ADS 2009仿真软件;U盘(学生自备)。

八、实验步骤:Wilkinson功分器的设计本实验是利用εr=4.3,厚度h=0.8mm的介质基板,设计公分比是1:1的Wilkinson功分器,在中心频率处实现功率分配功能。

电路模型和参数均参考冯新宇编写的《ADS2009射频电路与仿真》。

之后进对电路行了优化仿真,并生成版图。

虽然带宽不作要求,但是通过不断优化后设计出来的功分器,其分配损耗、隔离度和输入输出端驻波比在较宽的频带内均有较好的特性。

a.设计指标设计一功分器,在f0=3GHz处实现最佳工作,带宽不作要求,并作出版图仿真。

注:本实验设计的是Wilkinson功分器,指标若用设计出来后的指标既是:通带2.9~3.1 GHz,公分比1:1,带内各端口反射系数S11、S22、S33小于-20dB,两端口隔离度S23小于-25dB,传输损耗S21小于3.1dB。

b.功分器简介在射频/微波电路中,为了将功率按一定比例分成两路或多路,需要使用功率分配器(简称功分器),在近代射频/微波大功率固态发射源的功率放大器中广泛的使用功分器,而且通常功分器是成对使用的,现将功率分成若干份,然后在分别放大,再合成输出。

Wilkinson功分器的结构如图1所示,对于功率平分的情况,输入和输出口间的分支线特性阻抗=Z0,线长为四分之一线上波长,在分支线末端跨接一个电阻R,其值为2。

射频集成电路设计实验报告

射频集成电路设计实验报告

大连理工大学本科实验报告课程名称:射频集成电路设计实验学院(系):电子信息与电气工程学部专业:集成电路设计与集成系统班级:学号:学生姓名:成绩:2016 年 6 月 5 日目录实验一分立电容电感匹配仿真实验 (3)一、实验目的 (3)二、设计平台 (3)三、实验原理 (3)四、实验步骤 (3)五、原理图设计 (3)1、匹配电路原理图: (3)2、匹配过程及网络响应图: (4)3、匹配网络电路图: (4)4、SMITH原图及仿真结果: (5)实验二微带线单支短截线匹配仿真实验 (6)一、实验目的 (6)二、设计平台 (6)三、实验原理 (6)四、实验步骤 (6)五、原理图设计 (6)1、匹配电路原理图: (6)2、匹配网络电路图: (7)3、SMITH原图及仿真结果: (7)五、实验心得 (8)实验一分立电容电感匹配仿真实验一、实验目的使用ADS2011仿真软件,用分立的电容电感元件串并联构成无源网络,使负载阻抗和源阻抗共轭匹配,实现电路的最大功率传输。

二、实验平台ADS2011仿真软件三、实验原理在射频电路设计中,阻抗匹配十分的重要。

阻抗匹配的通常做法是在源和负载之间插入一个无源网络,使负载阻抗与源阻抗共轭匹配,这种网络称为匹配网络。

本次实验的目的是实现电路的最大功率传输,阻抗匹配的具体思路如下图所示,其中是看向负载的输入阻抗,是看向信号源的源阻抗,和共轭;是负载看向左边的输出阻抗,和共轭,则整个电路实现最大功率的传输。

但若没有设计中间的匹配网络,那么看向左边的阻抗是,看向右边的阻抗是,阻抗不共轭,产生反射信号,即有功率损失。

故电路设计当中需要在输入阻抗和输出阻抗中间插入一个匹配网络来实现阻抗变换,使变换成,使其与共轭,消除反射信号,实现最大功率传输。

由于分立元件在高频是会产生寄生效应,由其组成的匹配网络一般用于1GHz及更低的频段。

故本次实验的S参数网络的扫描频段为1MHz到100MHz。

如果要求匹配网络的工作频段在1GHz以上时,应采用为微带线的分布参数元件来实现。

射频电路实验

射频电路实验

Z oe 01 117.37717 Z oe 12 88.21582 Zoo 23 60.19147
Zoo 01 52.59732
Zoe 23 83.78443
Z oo 12 58.21366
由于终端电容效应,L要减去大约0.33h ,得到的滤波器 微带耦合线的尺寸为:
三、实验原理
使用0.25个导波波长耦合谐振器构成的微带带通滤波器
设计方程 (1)求解导纳变换器的值
(2)求出导纳变换器的值后,可以根据下面的公式计算奇模、 偶模阻抗
(3)根据lincalc工具计算耦合微带线的尺寸
例子:滤波器的设计指标为:通带5000MHz~6000MHz,带内波纹小于0.5dB, 带外频率4500MHz以及6500MHz处衰减大于30dB,基片介电常数为2.8, 厚度为1mm。
等波纹切比雪夫低通原型的值可以通过下面的公式来求取
阶梯阻抗低通滤波器设计近似理论
对于长度为l,特性阻抗为Z0的传输线,其负载阻抗为ZL,则输入阻抗公式 为:
ZL cos( l ) j sin( l ) Z L jZ0tg ( l ) Z0 Z in Z 0 Z0 Z Z 0 jZ Ltg ( l ) cos( l ) j L sin( l ) Z0

4 1 1 1 C 2
及下面的图可以知道,滤波器的阶数为5
通带波纹为0.5dB低通原型的衰减和归一化频率的关系
(2)根据Linecalc工具可以知道20欧,120欧微带线的宽度分别为: 11.27mm,0.4mm. 120欧微带线对应的有效介电常数为2.84,20欧 微带线对应的有效介质常数为3.65(lincal工具求解)(实际的工 程设计中,一般是采用软件工具来求微带线的宽度)

射频电路实验报告

射频电路实验报告

射频电路实验报告引言射频电路是电子工程中的重要组成部分,广泛应用于通信、无线电、雷达等领域。

本实验旨在通过实践,深入了解射频电路的基本原理和设计方法。

实验目的1.理解射频电路的基本原理;2.学会设计并制作射频电路;3.掌握射频电路测试方法。

实验器材1.射频信号发生器2.射频功率放大器3.射频频谱分析仪4.射频电路板5.线缆、连接器等实验步骤步骤一:准备工作1.确保实验器材和设备的正常工作状态;2.根据实验要求,选择适当的射频电路板和元器件。

步骤二:电路设计与布局1.根据实验要求,设计射频电路的整体结构和工作原理;2.根据设计要求,选择电容、电感等元器件,并进行电路布局。

步骤三:电路制作1.使用射频电路板和元器件制作射频电路;2.确保电路布局合理、连接可靠。

步骤四:电路测试1.连接射频信号发生器、射频功率放大器和射频频谱分析仪等设备;2.设置合适的频率、功率和其他参数;3.测试射频电路的性能和特性。

步骤五:数据分析与结果讨论1.根据实验数据,分析射频电路的性能;2.比较实验结果与设计要求,讨论可能的原因和改进措施。

结论通过本实验,我们了解了射频电路的基本原理、设计方法和测试技术。

实验结果表明,设计的射频电路在一定范围内符合预期要求。

在今后的学习和实践中,我们将进一步深入研究射频电路的原理和应用,不断提升自己的技术水平。

参考文献[1] 电子工程师丛书编委会. 射频电路设计与实验[M]. 人民邮电出版社, 2008.[2] 张旭, 张阳, 何震. 射频电路[M]. 电子工业出版社, 2014.。

射频电路专题实验 实验一 匹配电路仿真与设计

射频电路专题实验   实验一 匹配电路仿真与设计

例1:分立器件LC匹配网络设 计
设计目标:设计L型阻抗匹配网络,使 Zs=(25-j*15)Ohm信号源与ZL=(100j*25)Ohm的负载匹配,频率为50MHz
Ls
Cs
Cp
Lp
(a)
(b)
(1) 打开ADS
(2)新建工程文件
(3)设置Name和Length unit,然 后单击“OK”
(15)设置Freq=0.05GHz,Z0=50Ohm。单击“DefineSource/load Network terminations”按钮。
(16)弹出“Newtwork Terminations”对话框,设置源和负载阻抗如下图所示,然 后依次单击“Apply”和“OK”。
(16)源(小圆标记)和负载(方形标记)在Smith圆图上如下图所示。
dB(S(2,1))
m3 freq=1.500GHz dB(S(2,1))=-0.028
-3 -4 -5 -6 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 freq, GHz
0 -5 -10 -15
dB(S(1,2)) dB(S(2,2)) dB(S(2,1)) dB(S(1,1))
实验一 匹配网络的设计与仿真
一、 基本阻抗匹配理论
1 Rs

Po 0.75 RL Po /Pi 0.5 0.25 0 1 k
Us

(a)
(b)
U P0 I RL RL ( Rs RL )
2
2 s
U s2 RL kRs , Pi Rs
k P0 P 2 i (1 k )
当RL=Rs 时可获得最大 输出功率,此时为阻抗 匹配状态。无论负载电 阻大于还是小于信号源 内阻,都不可能使负载 获得最大功率,且两个 电阻值偏差越大,输出 功率越小。

AWR射频微波电路设计与仿真教程实验报告

AWR射频微波电路设计与仿真教程实验报告

AWR射频微波电路设计与仿真教程课程实验报告实验名称DBR带通滤波器、功率分配器与耦合器设计i、功率分配器设计一、实验目的设计一个2路等分功率分配器,采用微带电路结构。

输入端特性阻抗Z=50Ω,工作频率f0=3GHz,要求S11、S23<-30dB:基板参数εr=9.8,H=1000um,T=18um。

基本内容:测量特性指标S11、S21、S23(单位dB)与频率(0.5f0~1.5f0)的关系曲线。

调节微带线的尺寸,使功分器的性能达到最佳。

进阶内容:进行版图设计,包括元件封装、布线调节,尤其是 MTRACE2元件的布线扩展内容:利用自动电路提取(ACE)技术,提取电磁模型,进一步缩小版图尺寸。

二、实验仪器硬件:PC;软件:AWR Design Environment 10三、实验步骤⑴初始参数计算根据设计要求,在应用软件进行仿真设计之前,首先需要确定功率分配器的结构,进行电路初值计算。

一个2路等分功率分配器的结构如图4-6所示。

图中,Z0=5092,Za、2o的长度均为o4。

其他参数计算:Zo=Z,Zo=Zos=V2Zo,Za=Zas=Z,R=2Z0将计算结果填入表4-1。

⑵电路图仿真与分析1、创建新工程(命名为Ex4.emp)2、设置单位(GHz、Ohm、um)3、设置工程频率(单位GHz,start为1.5,stop为4.5,step为0.01)4、创建原理图5、版图细调检查MTRACE2元件,对该元件进行布线操作,微调之后得到结果如下:6、版图对比分析得到MTRACE2 X1元件参数值为:DB { 2800,1807.134,2412 }umRB { 270,180,270 }W 406L 10004.739BType 2M 0.6对比图表如下:将布线向左侧版图靠拢,会得到不一样的仿真结果。

⑷电磁提取分析一、A CE分析1、添加提取器(STACKUP元件、EXTRACT模块)2、选择提取原件3、提取4、提取出的电磁结构如下图:进行电磁电路联合仿真,得到如下图所示:5、版图小型化调整结果如下:2D结构:6、提取三维电磁电路模型如下:6、进一步压缩版图尺寸得到的模型和分析结果如下:二、A XIEM分析AXIEM分析过程与ACE相似,只是将Simulator项改成AXIEM,不再赘述。

【射频实验报告】 射频电路实验报告(共18页)

【射频实验报告】 射频电路实验报告(共18页)

【射频实验报告】射频电路实验报告[模版仅供参考,切勿通篇使用]射频电路实验报告学专学生指导学年第学期院:信息与通信工程学院业:电子信息科学与技术姓名:学号:教师:李永红日期: 20xx 年10 月28日实验一滤波器设计一、实验目的掌握基本的低通和带通滤波器的设计方法。

学会使用微波软件对低通和高通滤波器进行设计和仿真,并分析结果。

二、预习内容滤波器的相关原理。

滤波器的设计方法。

三、实验设备microwave office软件四、理论分析滤波器的种类:按通带特性分为低通、高通、带通及带阻四种。

按频率响应分为巴特沃斯、切比雪夫及椭圆函数等。

按使用原件又可分为l-c 性和传输线型。

五、软件仿真设计一个衰减为3db ,截止频率为75mhz 的[切比雪夫型1db 纹波lc 低通滤波器并且要求该滤波器在100mhz 至少有20db 的衰减。

图1-1切比雪夫型1db 纹波lc 低通滤波器电路图图1-2 模拟仿真结果六、结果分析经过仿真,得到了两种滤波器的频率特性的到了结果。

红色的曲线为低通滤波器,蓝色的为带通滤波器,两种滤波器的特性可以鲜明地在图上看出差别。

低通滤波器在低频区域。

是通带,通带非常的平缓,纹波较低,但是截至段不是很陡。

带通滤波器具有较好的陡峭特性,但是相对而言,通带比较窄而且纹波较大。

实验二放大器设计一、实验目的掌握射频放大器的基本原理与设计方法。

学会使用微波软件对射频放大器进行设计和仿真,并分析结果。

二、预习内容放大器的基本原理。

放大器的设计方法。

三、实验设备microwave office软件四、理论分析射频晶体管放大器常用器件为bjt 、fet 、mmic 。

放大器电路的设计主要是输入/输出匹配网络。

输入匹配网络可按低噪声或高增益设计。

输出匹配网络要考虑尽可能高的增益。

五、软件仿真设计一900mhz 放大器。

其中电源为12vdc ,输出入阻抗为50ω。

at4151之s 参表如下列图2-1 900mhz放大器电路图图2-2 模拟仿真结果六、结果分析:本设计是设计一个放大器,其通频段是0到900mhz, 然后根据图上的蓝色和红色曲线可见lc 组成的网络的幅频特性曲线,可见这个网络在900mhz 左右会对信号有一个比较大的衰减,因此必须对输出网络进行阻抗匹配,而且匹配网络的中心频率在900mhz 左右,才可以做好阻抗匹配。

射频实验报告

射频实验报告

,
1/rce+1i.*w(index)*cbc*(1+gm*rbe+j.*w(index)*cbe*rbe)./(1+j.*w(index) *ct*rbe) ]; %H matrix of transistor yt=[ transistor yp=yt+yr;%Y matrix of parallel net ap=[ parallel net -yp(2,2)./yp(2,1) -det(yp)./yp(1,1) , , -1./yp(2,1); -yp(1,1)./yp(2,1)];%A matrix of 1/ht(1,1) ht(2,1)/ht(1,1) , , -ht(1,2)/ht(1,1); det(ht)/ht(1,1)];%Y matrix of
二、 实验原理:
由已知的������0 = 75������, ������������ = 50������, ������������ = 40������可以求出反射系数,然后 根 据 反 射 系 数 输 入 阻 抗 然 后 得 出 输 入 端 的 电 压 ������������������ , 然 后 根 据 V d = ������ +������ ������������������ 1 + Γ 0 ������ −������ 2������������ , ������ + =
������������������ (������ ������������������ +Γ 0 ������ −������������������ )
得出。
三、 实验代码:
z0 = 75; zg = 50; zl = 40; Vg = 5; vp = 0.5*3.0*10^8; f = 10^9; l = vp/f; d = l*10; k = 2*pi/l; rf0 = (zl-z0)/(zl+z0) Zin = (z0*(1+rf0*exp(-2*1j*k*d))/(1-rf0*exp(-2*1j*k*d))) Vin = Zin*Vg/(Zin+zg) vi = Vin/(exp(1j*k*d)+rf0*exp(-1j*k*d)) vr = vi*rf0

ads2011射频电路设计与仿真实例

ads2011射频电路设计与仿真实例

ads2011射频电路设计与仿真实例《GPS/GSM/GPRS/Wi-Fi 4G射频电路设计与仿真实例》近年来,随着移动通信的发展和增强,4G移动网络在无线射频电路设计方面也发生了重大变化,从单频电路到多频电路,GSM、GPRS、GPS、Wi-Fi等多个无线射频电路设计和仿真工具相结合,令该领域取得突破性进展。

本文以ADS2011为工具,针对GPS/GSM/GPRS/Wi-Fi 4G 射频电路设计与仿真进行详细讨论。

首先要完成GPS/GSM/GPRS/Wi-Fi 4G射频电路设计和仿真,需要准备以下几个工具:目前,GPS/GSM/GPRS/Wi-Fi 4G射频电路设计与仿真主要依赖ADS2011半导体设计软件。

一般而言,ads2011可以帮助我们大大简化GPS/GSM/GPRS/Wi-Fi 4G射频电路设计和仿真工作。

它可以不仅缩短设计时间,而且可以提高设计效率。

1、ADS2011半导体设计软件:该软件具有强大的功能,可以帮助用户完成射频电路的设计,模拟,实现系统整合,以及从高频器件运算到实时功率预测的各种功能。

特别是在完成复杂的4G射频电路设计时可以得到充分的应用。

2、多个移动无线射频电路设计工具:为了进一步实现GPS/GSM/GPRS/Wi-Fi 4G射频电路设计,还需要多个移动无线射频电路设计工具,以实现对GPS/GSM/GPRS/Wi-Fi 4G射频电路进行精确的设计和分析。

3、多频段射频电路设计软件:多频段射频电路设计软件可以支持复杂的射频电路形态设计,以满足GPS/GSM/GPRS/Wi-Fi 4G移动网络的多个无线射频电路需求。

其次,在设计GPS/GSM/GPRS/Wi-Fi 4G射频电路之前,首先需要采用ADS2011软件进行射频电路分析,以搞清其噪声特性、相干度特性及瞬态响应特性。

在射频电路仿真过程中,干扰造成的电磁场被记录,以处理一系列环境因素及射频电路噪声源等。

最后,在建立多射频电路的布线模型时,需要充分考虑多射频信号的干扰特性,将各射频电路之间做好合理的布线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档