【数学】2016-2017年山东省青岛五十一中七年级上学期数学期中试卷和解析答案PDF
青岛版七上初一数学期中试题及参考答案
青岛版七年级数学上学期期中试卷一、选择题(本大题20小题,第小题3分,满分60分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在下面的表格里.)1、-32的绝对值是( ) A. 23 B. 23-C.32D. 32-2、汽车的雨刷把玻璃上的雨水刷干净是属于( )的实际应用.A .点动成线B .线动成面C .面动成体D .以上答案都不对3、中国国家图书馆藏书约27 000 000册,居世界第五位,把这个数据用科学记数法表示 正确的是( )A.61027⨯ B.6107.2⨯ C.7107.2⨯ D.8107.2⨯ 4、下列说法错误的是( )A.若AP=BP,则点P 是线段的中点B.若点C 在线段AB 上,则AB=AC+BCC.若AC+BC>AB,则点C 一定在线段AB 外D.两点之间,线段最短 5、有下列各数,0.01,10,-6.67,31-,0,-(-3),2--,()24--,其中属于非负整数的共有( )A .1个B .2个C .3个D .4个6、为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1500名学生的体重是总体B .1500名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本 7、下列个图,不是正方体展开图的是( )A B C D题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 答案a 10b 8、如图,下面的语句中不正确的是( )A .直线OA 和直线AB 是同一条直线 B .射线OA 和射线OB 是同一条射线C .射线OA 和射线AB 是同一条射线D .线段AB 和线段BA 是同一条线段9、下面各对数中互为相反数的是( )A .2332与-B .()3322--与 C .()2233--与 D .()222323⨯-⨯-与10、下面结论中错误的是( ) A .负分数都是负有理数B .分数中除了正分数就是负分数C .有理数中除了正数就是负数D .0是整数但不是正数11、下列说法正确的是( )A .0.720精确到百分位B .3.6万精确到个位C .5.078精确到千分位D .0.72精确到千分位12、已知a 是负数,那么a ,,,,11825--这五个数的和不可能是( ) A .12-B .12C .0D .75513、下列各组数中,相等的是( )A .–1与(–4)+(–3)B .3-与–(–3)C .432与916D .2)4(-与–1614、有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A .0>baB .a<bC .ab>0D .a>b 15、若2a ++()23-b =0,则b a 的值为( )A .-6B . 8C .-8D .6 16、下列有理数大小关系判断正确的是( ) A .101)91(-->-- B . 100-> C . 33+<- D . 01.01->- 17、已知a =2,b =3,且在数轴上表示有理数b 的点在a 的左边,则a -b 的值为 ( ) A .-1B .-5C .-1或-5D .1或518、大于213-且小于312的整数有几个( )A .5B .6C .7D .819、如图,C 为线段AB 的中点,D 在线段CB 上,DA=6,DB=4,则CD 为 ( )A . 1B . 5C .2D .2.520、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20073的末位数字应该是( )A . 3B . 9C . 7D . 1二、填空题(本大题共6小题,只要求填写结果.)21、如果a 的倒数的绝对值是21,那么a =________. 22、有理数a ,b 在数轴上所表示的点如图所示,请在空格处填上“<”或“>”:()a b ⨯-1____0.23、如下图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图.则该班共有________名学生.24、有两根木条,一根长60厘米,一根长100厘米.如果将它们放在同一条直线上,并且使一个端点重合,这两根木条的中点间的距离是________.三、解答题(本大题共6个小题,要写出必要的计算、推理、解答过程)25、计算(每小题4分,满分16分)(1)()()24192840-+---- (2)53143316167÷⨯⎪⎭⎫ ⎝⎛-⨯(3)[]24)3(3611--⨯-- (4)()232232131-+⎪⎭⎫ ⎝⎛-⨯+-26、如图,已知B 、C 两点把线段AD 分成2:4:3三部分,M 是AD 的中点,CD =6求线段MC 的长A B M C D27、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆): 星期 一 二 三 四 五 六 日 增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产____辆。
【真卷】2016-2017学年山东省青岛五十一中七年级(上)数学期中试题与解析
2016-2017学年山东省青岛五十一中七年级(上)期中数学试卷一、选择题1.﹣7的倒数是()A.﹣ B.7 C.D.﹣72.下列说法正确的是()A.32ab2的次数是6次B.x+不是多项式C.πx2+x﹣1的次数是4 D.0不是等式3.如果m是四次多项式,n是四次多项式,那么m+n一定是()A.八次多项式B.次数不高于四的整式C.四次多项式D.次数不低于四的整式4.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.45.用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆.A.①②③④B.①②③C.②③⑤D.③④6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.7.已知4x2n y m+n与﹣3x6y2是同类项,那么mn=()A.2 B.1 C.﹣1 D.﹣38.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是数a,b,c,d,且d﹣2a=10,那么数轴的原点应是()A.点A B.点B C.点C D.点D二、填空题9.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有个.10.单项式的系数是,次数是.11.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.12.据中新社北京2011年12月8日电:2011年中国粮食总产量达到546400000吨,用科学记数法表示为吨.13.某市举行的青年歌手大赛去年共有a人参加,今年比赛的人数比去年增加20%还多3人,用代数式表示今年参赛的人数为.14.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.15.一根长两米的木棒,第一次截去一半,第二次截去剩下部分的一半,如此截下去,第七次后,共截去了米木棒.16.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n行有n个数,且两端的数都为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为.三、作图题17.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.四、解答题18.计算与化简(1)(﹣)﹣(﹣0.2)+1(2)(﹣+﹣)×|﹣24|(3)[1﹣(1﹣0.5×)]×|2﹣(﹣3)2|(4)﹣3(2x2﹣xy)﹣(x2+xy﹣6)(5)先化简,再求值:2x2y﹣[2x2y﹣(2xy﹣3x2y)]+3xy2,其中x=3,y=﹣.19.已知蜗牛从位于井底3米处沿着井壁上上下下爬行,规定向上爬记为正,向下爬记为负(单位:厘米),小明同学观察了蜗牛的5次爬行,记录数据如下:(1)观察结束时,蜗牛离出发点多远?这时蜗牛头朝上还是朝下?为什么?(2)若蜗牛平均每厘米要爬0.5秒,那么小明同学一共观察了多长时间?20.某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费标准为2.4元,某乘客坐出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费;(2)如果该乘客坐了20千米,应付费多少元?21.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”22.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.2016-2017学年山东省青岛五十一中七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣7的倒数是()A.﹣ B.7 C.D.﹣7【分析】根据倒数的定义解答.【解答】解:设﹣7的倒数是x,则﹣7x=1,解得x=﹣.故选:A.2.下列说法正确的是()A.32ab2的次数是6次B.x+不是多项式C.πx2+x﹣1的次数是4 D.0不是等式【分析】根据单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数;含有等号的式子是等式进行分析即可.【解答】解:A、32ab2的次数是3次,故原题说法错误;B、x+不是多项式,故原题说法正确;C、πx2+x﹣1的次数是2,故原题说法错误;D、0不是等式,故原题说法错误;故选:B.3.如果m是四次多项式,n是四次多项式,那么m+n一定是()A.八次多项式B.次数不高于四的整式C.四次多项式D.次数不低于四的整式【分析】利用整式的加减法则判断即可.【解答】解:如果m是四次多项式,n是四次多项式,那么m+n一定是次数不高于四的整式,故选:B.4.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.4【分析】根据有理数的分类、代数式的分类、有理数的乘法、倒数的知识,直接判断即可.【解答】解:①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,错误,还有可能是分式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误;④倒数等于本身的数有1,﹣1,正确.故选:B.5.用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆.A.①②③④B.①②③C.②③⑤D.③④【分析】根据正方体的性质作出各截面图即可得解.【解答】解:如图,①等边三角形,②等腰梯形,③长方形,④五边形,⑤六边形,正方体有六个面,作不出圆,故选:A.6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.7.已知4x2n y m+n与﹣3x6y2是同类项,那么mn=()A.2 B.1 C.﹣1 D.﹣3【分析】依据同类项的相同字母的指数相同列方程组求解即可.【解答】解:∵4x2n y m+n与﹣3x6y2是同类项,∴2n=6,m+n=2,解得:n=3,m=﹣1.∴mn=3×(﹣1)=﹣3.故选:D.8.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是数a,b,c,d,且d﹣2a=10,那么数轴的原点应是()A.点A B.点B C.点C D.点D【分析】此题用排除法进行分析:分别设原点是点A或B或C或D.【解答】解:若原点是A,则a=0,d=7,此时d﹣2a=7,和已知不符,排除;若原点是点B,则a=﹣3,d=4,此时d﹣2a=10,和已知相符,正确.故选B.法2:设A点数字为a,则D点数字为a+7d﹣2a=10就转变成a+7﹣2a=10解得:a=﹣3,再观察坐标可知原点是B点选B二、填空题9.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有4个.【分析】正负数的分类:数字前面带有“+”号或不带任何号的数叫做正数;数字前面带有“﹣”号的数叫做负数;0是正数和负数的分界点,所以0既不是正数也不是负数.据此进行分类即可.【解答】解:在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有﹣(﹣1.5),2,,24,故答案为:4.10.单项式的系数是,次数是3.【分析】根据单项式的概念即可求出答案,【解答】解:该单项式的系数为:;次数为:3故答案为:;311.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是4℃.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.12.据中新社北京2011年12月8日电:2011年中国粮食总产量达到546400000吨,用科学记数法表示为 5.464×108吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:546 400 000=5.464×108,故答案为:5.464×108.13.某市举行的青年歌手大赛去年共有a人参加,今年比赛的人数比去年增加20%还多3人,用代数式表示今年参赛的人数为(1+20%)a+3.【分析】根据“今年共有a人参加,比赛的人数比去年增加20%还多3人”即可列出代数式.【解答】解:依题意得:(1+20%)a+3.故答案是:(1+20%)a+3.14.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是231.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.15.一根长两米的木棒,第一次截去一半,第二次截去剩下部分的一半,如此截下去,第七次后,共截去了米木棒.【分析】第一次剩下米;第二次剩下()2米,…,据此即可得到规律,从而判断.【解答】解:第一次剩下米;第二次剩下()2米,…,则第7次后剩下的小棒的长度()7米,故第七次后,共截去了1﹣()7=米木棒.故答案为:.16.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n行有n个数,且两端的数都为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为.【分析】观察图中三角形的数阵,将其改写成等阶形式,发现分母的规律,第n行第k项的通项是,由此得出第8行第3个数.【解答】解:图中三角形的数阵,将其改写成等阶形式:,,,,,,,,,,…因此,第n行第k项的通项是,故第8行第3个数是==,故答案为:.三、作图题17.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.【分析】主视图有3列,每列小正方形数目分别为2,4,3;左视图有2列,每列小正方形数目分别为4,2;依此画出图形即可求解.【解答】解:如图所示:四、解答题18.计算与化简(1)(﹣)﹣(﹣0.2)+1(2)(﹣+﹣)×|﹣24|(3)[1﹣(1﹣0.5×)]×|2﹣(﹣3)2|(4)﹣3(2x2﹣xy)﹣(x2+xy﹣6)(5)先化简,再求值:2x2y﹣[2x2y﹣(2xy﹣3x2y)]+3xy2,其中x=3,y=﹣.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式去括号合并即可得到结果;(5)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1.2+0.2+1=0;(2)原式=﹣12+16﹣6=﹣2;(3)原式=(1﹣1+)×7=;(4)原式=﹣6x2+3xy﹣x2﹣xy+6=﹣7x2+2xy+6;(5)原式=2x2y﹣2x2y+2xy﹣3x2y+3xy2=2xy﹣3x2y+3xy2,当x=3,y=﹣时,原式=﹣2+9+1=8.19.已知蜗牛从位于井底3米处沿着井壁上上下下爬行,规定向上爬记为正,向下爬记为负(单位:厘米),小明同学观察了蜗牛的5次爬行,记录数据如下:(1)观察结束时,蜗牛离出发点多远?这时蜗牛头朝上还是朝下?为什么?(2)若蜗牛平均每厘米要爬0.5秒,那么小明同学一共观察了多长时间?【分析】(1)将蜗牛爬行的各段路程相加,然后根据有理数的加法运算法则进行计算解答即可;(2)求出爬行的各段路程的绝对值的和即可得解.【解答】解:(1)﹣5﹣22+32﹣20+15=0,所以蜗牛离出发点0厘米远,这时蜗牛头朝上;(2)5+22+32+20+15=94,94×0.5=47(秒),答:小明同学一共观察了47秒时间.20.某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费标准为2.4元,某乘客坐出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费;(2)如果该乘客坐了20千米,应付费多少元?【分析】本题在分段函数时常出这样的题,这里可用代数式表示,分为两种情况,小于等于3与大于3两种代数式,乘客坐了20千米,把x=20代入第二个代数式即可.【解答】解:(1)若x≤3,付费为12.5元;若x>3,付费为:12.5+2.4(x﹣3)=5.3+2.4x;(2)应付费:5.3+2.4×20=53.3元.21.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”【分析】根据题意,用9x2﹣2x+7减去B的2倍,求出A﹣B的正确答案是多少即可.【解答】解:9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4∴A﹣B的正确答案是7x2﹣8x+11.22.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.【分析】(1)根据已知数据即可得出每一层小圆圈个数是连续的奇数,进而得出答案;(2)利用(1)中发现的规律得出答案即可;(3)利用已知数据得出答案即可;(4)利用(3)中发现的规律得出答案即可;(5)利用(3)中发现的规律得出答案即可.【解答】解:(1)第八层有15个小圆圈,第n层有(2n﹣1)个小圆圈;(2)令2n﹣1=65,得,n=33.所以,这是第33层;(3)1+3+5+…+(2n﹣1)=n2;(4)1+3+5+…+99=502=2500;(5)101+103+105+...+199=(1+3+5+...+199)﹣(1+3+5+ (99)=1002﹣502=7500.。
2016-2017学年第一学期七年级数学期中试卷(附答案)
2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。
12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。
2016--2017学年度上期中七年级数学试卷
第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。
青岛版七年级数学上学期期中考试试卷及答案
青岛版七年级数学上学期期中考试试卷一、选择题(每小题3分共36分)1.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是( )2.如图所示,点A 、B 、C 在射线上AM 上,则图中有射线 条 ( )A 、1B 、2C 、3D 、4 3.下列说法正确的是( )A .如果AC=CB ,能说点C 是线段AB 的中点B .将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C .连结两点的直线的长度,叫做两点间的距离D .平面内3条直线至少有一个交点4.下列各对数:+(-3)与-3,-2和|-2|,-(-3)与+(-3),-(+3)与+(-3),-2和-12,2和-12中,互为相反数的有( ) A .2对B .3对C .4对D .5对5.下列计算中,错误的是( )。
A 、2636-=-B 、211()416-=C .3(4)64-=- D .0)1()1(1000100=-+-6.绝对值大于2且不大于5 的整数有()个 A 、3 B 、4 C 、6 D 、5 7.下列说法中正确的是( )A .a -一定是负数B .a 一定是负数C .a -一定不是负数D .2a -一定是负数 8. 蟑螂的生命里很旺盛,它繁衍后代的数量为这一代的数量的7倍,也就是说,如题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B C Ma10b果它的始祖(第一代)有7只,则下一代就会有49只,以此类推,蟑螂第10代的只数是( )A 712B 711C 710D 799.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( ) A .0ab> B . ab >0 C .a <b D .a >b 10.如果你要对“2009年菏泽市月降水量”制作一个统计图,为了收集数据,你应该( )A .询问父母B .查找资料C .测量实验D .等老师说11.为了表示一年中每月生产“中国移动3G”手机的部数增减变化的情况,比较适合制作( )A .折线统计图B .条形统计图C .扇形统计图D .以上都可以 12. 若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或2 二、填空题(每小题3分共18分)13.绝对值大于1而小于4的整数的和是 ;积为 14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“明”相对的面上的汉字是( )15.已知线段AB 的长度为16厘米,C 是线段AB 的中点,E 、F 分别是AC 、CB 的中点,则E 、F 两点间的距离为 .16.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达2800000万度.这里的2800000万度用科学记数法表示为__________________度.17.在数轴上,与表示-3的点的距离为4的点所表示的数为 。
青岛版初中数学七年级(上)期中数学试题(含答案)
一、选择题(每小题3分共36分)1.将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是()2.如图所示,点A 、B 、C 在射线上AM 上,则图中有射线 条 ( )A 、1B 、2C 、3D 、4 3.下列说法正确的是( )A .如果AC =CB ,能说点C 是线段AB 的中点B .将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C .连结两点的直线的长度,叫做两点间的距离D .平面内3条直线至少有一个交点4.下列各对数:+(-3)与-3,-2和|-2|,-(-3)与+(-3),-(+3)与+(-3),-2和-12,2和-12中,互为相反数的有( )A .2对B .3对C .4对D .5对 5.下列计算中,错误的是( )。
A 、2636-=- B 、211()416-=C .3(4)64-=-D .0)1()1(1000100=-+-6.绝对值大于2且不大于5 的整数有()个A 、3B 、4C 、6D 、5题号 1 2 3 4 5 6 7 89 10 11 12 答案ABCMa10b7.下列说法中正确的是( )A .a -一定是负数;B .a 一定是负数;C .a -一定不是负数;D .2a -一定是负数 8. 蟑螂的生命里很旺盛,它繁衍后代的数量为这一代的数量的7倍,也就是说,如果它的始祖(第一代)有7只,则下一代就会有49只,以此类推,蟑螂第10代的只数是( ) A 、712 B 、711 C 、710 D 、79 9.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( ) A .0ab> B . ab >0 C .a <b D .a >b 10.如果你要对“2009年菏泽市月降水量”制作一个统计图,为了收集数据,你应该( ) A .询问父母 B .查找资料C .测量实验D .等老师说11.为了表示一年中每月生产“中国移动3G ”手机的部数增减变化的情况,比较适合制作( )A .折线统计图B .条形统计图C .扇形统计图D .以上都可以 12. 若x 的相反数是3,│y │=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或2二、填空题(每小题3分共18分)13.绝对值大于1而小于4的整数的和是 ;积为 14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“明”相对的面上的汉字是( )15.已知线段AB 的长度为16厘米,C 是线段AB 的中点,E 、F 分别是AC 、CB 的中点,则E 、F 两点间的距离为 .16.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达2800000万度.这里的2800000万度用科学记数法表示为__________________度.17.在数轴上,与表示-3的点的距离为4的点所表示的数为 。
最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx
2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。
2016-2017学年七年级(上)期中数学试卷及答案解析
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
山东省青岛市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的绝对值等于()A. B. C. D. 22.用一个平面去截下列几何体,截得的平面图形不可能是三角形的是()A. B. C. D.3.将如图所示的长方形绕图中的虚线旋转360°得到的几何体是()A.B.C.D.4.一个点从数轴上的原点出发,向左移动3个单位长度,再向右移动2个单位长度到达点P,则点P表示的数是()A. 1B.C. 2D.5.下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括正数、零和负数;④两数相加,和一定大于任意一个加数,其中正确的有()A. 4个B. 3个C. 2个D. 1个6.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m千克,再从中截出5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()A. 米B. 米C. 米D. 米7.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A. B.C. D.8.已知,a,b两数在数轴上的位置如图,下列各式成立的是()A. B. C. D.9.已知|m+3|与(n-2)2互为相反数,那么m n等于()A. 6B.C. 9D.10.观察下列算式:32=9,33=27,34=81,35=243,…,那么32016的末位数字为()A. 1B. 3C. 7D. 9二、填空题(本大题共10小题,共30.0分)11.-22ab3c2的系数是______,次数是______.12.下列各数:-2,1,-2.5,0,2,-3,-,其中最大的负整数是______ .13.写出相反数大于2且小于6的所有整数:______ .14.地球半径约为6 400 000m,这个数字用科学记数法表示为______ m.15.“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为______ .16.一个正n棱柱共有15条棱,一条侧棱的长为5cm,一条底面边长为3cm,则这个棱柱的侧面积为______ cm2.17.如图,下面表格给出的是国外四个城市与北京的时差(带“+”表示同一时刻比北6______18.19.一种“24点”游戏的规则如下:用4个数进行有理数的混合运算(每个数必须用一次而且只能用一次,可以加括号),使运算结果为24或-24,现有四个有理数1,-2,4,-8,请按照上述规则写出一种算式,使其结果等于24:______ .20.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要______ 个这样的小立方块,最多需要______ 个这样的小立方块.三、计算题(本大题共2小题,共12.0分)21.计算:(1)6-(-3)+(-7)-2(2)12÷(-)×(3)-(-)+(-)-(-)(4)0-23÷(-4)2-(5)(--+)×(-24)(6)4-6÷2×(-)(7)-14+(0.5-1)×[-2-(-2)3].22.某工厂一种产品的标准质量是m千克,质检员在检测一批同一包装的该产品时,对抽取的5件产品分别称重,记录如下:-1.+2,+3,+1,-2(单位:千克,超出为“+”),解答下列问题:(1)请根据你所学知识分别说明记录中“-1”和“+2”分别表示什么意思?(2)请用含m的代数式表示抽取的5件产品的总质量,并确定当m=100时,这5件产品的总质量.四、解答题(本大题共4小题,共32.0分)23.我们知道,将一个立方体沿某些棱剪开,可以得到它的平面展开图,请画出下面立方体的一种平面展开图,并分别把-3,-2,-1,1,2,3分别填入展开后的六个正方形内,且使原立方体相对面上的两数和为0.24.已知A=3x2y-2xy2+xy,B是多项式,小明在计算2A-B时,误将其按2A+B计算,得C=4x2y-xy2+3xy.(1)试确定B的表达式;(2)求2A-B的表达式.25.如图,小红和小兰房间窗户的装饰物分别由一些半圆和四分之一圆组成(半径分别相同).(1)请用代数式分别表示小红和小兰房间窗户能射进阳光部分的面积(窗框面积忽略不计);(2)请通过计算说明,谁的窗户能射进阳光部分的面积大?大多少?26.将连接的偶数2,4,6,8,…排成如下的数表,用一个十字形框中五个数.(1)你能发现十字框中这五个数之间有哪些关系?请你尝试写出其中两个;(2)设中间数为x,请用代数式表示十字形框中五个数的和;(3)移动十字形框,框出的五个数之和能否等于2000和2020?若能,试求出这五个数中的最大数和最小数;若不能,说明理由.答案和解析1.【答案】C【解析】解:-的绝对值等于.故选:C.根据负数的绝对值等于它的相反数即可求解.此题考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.【答案】C【解析】解:∵圆柱体的主视图只有矩形或圆,∴如果截面是三角形,那么这个几何体不可能是圆柱.故选:C.根据圆柱体的主视图只有矩形或圆,即可得出答案.此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.3.【答案】A【解析】解:将如图所示的长方形绕图中的虚线旋转360°得到的几何体是圆柱.故选:A.一个平面图形绕中心对称轴旋转一周,根据面动成体的原理即可解.此题主要考查学生立体图形的空间想象能力及分析问题,解决问题的能力.4.【答案】B【解析】解:由题意,得0-3+2=-1,故选:B.根据数轴上的点左移减,右移加,可得答案.本题考查了数轴,利用数轴上的点左移减,右移加是解题关键.5.【答案】D【解析】解:∵所有有理数都能用数轴上的点表示,∴选项①符合题意;∵符号不同,大小相等的两个数互为相反数,∴选项②不符合题意;∵有理数包括正有理数、零和负有理数,∴选项③不符合题意;∵两数相加,和不一定大于任意一个加数,∴选项④不符合题意,∴正确的有1个:①.故选:D.根据在数轴上表示数的方法,数轴的特征,有理数的分类,以及相反数的含义和求法,逐项判定即可.此题主要考查了在数轴上表示数的方法,数轴的特征,有理数的分类,以及相反数的含义和求法,要熟练掌握.6.【答案】B【解析】解:这捆钢筋的总长度为m•米.故选B.此题要根据题意列出代数式.可先求1千克钢筋有几米长,即米,再求m千克钢筋的长度.此题考查列代数式问题,用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.7.【答案】D【解析】解:根据题意可得:(1-15%)(x+20),故选D先提价的价格是原价+20,再降价的价格是降价前的1-15%,得出此时价格即可.本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.8.【答案】D【解析】解:∵由图可知,-2<b<-1<0<a<1,∴ab<0,故A选项错误;a+1>0,b+1<0,(a+1)(b+1)<0,故B选项错误;a+b<0,故C选项错误;a-1<0,b-1<0,(a-1)(b-1)>0,故D选项正确.故选D.根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.本题考查的是数轴,有理数的大小比较,熟知数轴的特点是解答此题的关键.9.【答案】C【解析】解:∵|m+3|与(n-2)2互为相反数,∴|m+3|+(n-2)2=0,∴m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故选C.根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【答案】A【解析】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又∵2016÷4=504,∴32016的末位数字与34的末位数字相同是1.故选A.从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2016除以4,余数是几就和第几个数字相同,由此解决问题即可.此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.11.【答案】-4;6【解析】解:-22ab3c2的系数是-4,次数是6,故答案为:-4;6.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式的系数和次数的定义.12.【答案】-2【解析】解:根据有理数比较大小的方法,可得-3<-2.5<-2<-<0<1<2,∴:-2,1,-2.5,0,2,-3,-,其中最大的负整数是-2.故答案为:-2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【答案】-3,-4,-5【解析】解:∵大于2且小于6的所有整数是3,4,5,∴相反数大于2且小于6的所有整数:-3,-4,-5;故答案为:-3,-4,-5.先写出大于2小于6的整数是3、4、5,再写出3、4、5的相反数即可.此题考查了有理数的大小比较和相反数,解题关键是写出大于2且小于6的所有整数.14.【答案】6.4×106【解析】解:6 400000=6.4×106,故答案为:6.4×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成M时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于3 120 000有7位,所以可以确定n=7-1=6.本题主要考查了科学记数法,把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,掌握当原数绝对值大于10时,n与M的整数部分的位数的关系是解决问题的关键.15.【答案】点动成线,线动成面【解析】解:“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为点动成线,线动成面.故答案为:点动成线,线动成面.流星是点,光线是线,所以说明点动成线;雨刷可看成线,扇面是面,那么线动成面.此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.16.【答案】75【解析】解:根据题意知该几何体为正五棱柱,这个棱柱的侧面积为5×3×5=75,故答案为:75.根据侧面积=底面周长×高可得答案.此题主要考查了认识立体图形,关键是掌握棱柱的特点.17.【答案】上午8点【解析】解:∵现在悉尼时间是下午6时,又∵与伦敦相差-10个小时,∴伦敦时间是上午8点;故答案为:上午8点根据时差求出伦敦的时间即可.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.【答案】-3【解析】解:∵a-2b=3,∴3-2a+4b=3-2(a-2b)=3-2×3=-3,故答案为:-3.先变形得出3-2a+4b=3-2(a-2b),再代入求出即可.本题考查了求代数式的值,能够整体代入是解此题的关键.19.【答案】(-8-4)×(-2)×1【解析】解:解法一,(-8-4)×(-2)×1,=-12×(-2),=24,解法二,[4÷(-2)-1]×(-8),=[-2-1]×(-8),=24,解法三,(-2)4×1-(-8),=16+8,=24.故答案为::(-8-4)×(-2)×1.根据有理数混合运算顺序列式即可.此题主要考查了有理数的混合运算,本题要列式得定值,这比一般的有理数混合运算的题要难,要熟练掌握有理数混合运算顺序法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.【答案】6;8【解析】解:综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为:6,8.易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.【答案】解:(1)6-(-3)+(-7)-2=9-7-2=0(2)12÷(-)×=(-18)×=-27(3)-(-)+(-)-(-)=(+)+(-)=1-=(4)0-23÷(-4)2-=-8÷16-=--=-(5)(--+)×(-24)=(-)×(-24)-×(-24)+×(-24)=6+8-4=10(6)4-6÷2×(-)=4-3×(-)=4+1=5(7)-14+(0.5-1)×[-2-(-2)3]=-1+(-0.5)×[-2-(-8)]=-1+(-0.5)×6=-1-3=-4【解析】(1)(2)从左向右依次计算即可.(3)根据加法交换律和加法结合律计算即可.(4)首先计算乘方和除法,然后从左向右依次计算即可.(5)根据乘法分配律计算即可.(6)首先计算除法和乘法,然后计算减法即可.(7)首先计算小括号、中括号里面的运算,然后计算乘法和加法即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的应用.22.【答案】解:(1)“-1”表示低于标准重量1千克;“+2”表示超出标准重量2千克;(2)m-1+m+2+m+3+m+1-m+2=5m+3,当m=100时,原式=503.【解析】(1)根据相反意义量的定义判断即可;(2)用m表示出5件产品的总质量,将m的值代入计算即可求出值.此题考查了代数式求值,正数与负数,以及列代数式,熟练掌握运算法则是解本题的关键.23.【答案】解:如图所示:【解析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.【答案】解:(1)由题意得:B=C-2A=4x2y-xy2+3xy-2(3x2y-2xy2+xy)=-2x2y+3xy2+xy;(2)由题意得,2A-B=2(3x2y-2xy2+xy)-(-2x2y+3xy2+xy)=8x2y-7xy2+xy.【解析】(1)根据2A+B=C,得出B即可;(2)再计算2A-B的值即可.本题考查了整式的加减,掌握去括号与合并同类项的法则是解题的关键.25.【答案】解:(1)小红窗户透光面积:ab-b2;小兰窗户透光面积:ab-b2;(2)ab-b2-(ab-b2)=-b2<0,所以小兰窗户透光面积更大.【解析】(1)观察图可知两个房间窗户的面积相等,都是ab;要求它们的窗户能射进阳光的面积分别是多少,先利用圆的面积S=πr2分别求出两家窗帘的面积,也就是遮住阳光的面积,进而用总面积减去遮住的面积即可;(2)利用作差法比较大小即可.此题考查列代数式,解决此题关键是用窗户的面积减去窗帘的面积,就是能射进阳光的面积.26.【答案】解:(1)根据题意得:①横向相邻两数相差2;②纵向相邻两数相差10;(2)∵中间数为x,∴它上面的数是x-10,下面的数是x+10,它左面的数是x-2,它右面的数是x+2,∴十字形框中五个数的和是:x-10+x+x+10+x-2+x+2=5x;(3)根据题意得:若5x=2000,则x=400,但400不能出现在十字框的中间,所以这五个数的和不能等于2000;若5x=2020,则x=404,但404能出现在十字框的中间,所以这五个数的和能等于2020,此时这五个数中的最大数是414,最小数是394.【解析】(1)根据十字形框中给出的数据得出横向相邻两数相差2,纵向相邻两数相差10;(2)根据十字形框中给出的数据的规律和中间数为x,得出它上面的数是x-10,下面的数是x+10,它左面的数是x-2,它右面的数是x+2,然后相加即可得出答案;(3)根据(2)得出的五个数的和是5x,得出5x=2000或5x=2020,求出x的值,再根据各数之间的关系进行判断即可得出答案.此题考查了一元一次方程的应用,根据十字形框中给出的数据,得出相邻各数之间的关系是解题的关键.。
山东省青岛 七年级(上)期中数学试卷(含答案)
七年级(上)期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24.0分)1.在:0,-2,1,这四个数中,最小的数是()A. 0B.C. 1D.2.下列四个图形能围成棱柱的有几个()A. 0个B. 1个C. 2个D. 3个3.一天早晨气温为-4℃,中午上升了7℃,半夜又下降了8℃,则半夜的气温是()A. ℃B. ℃C. ℃D. ℃4.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A. 1,,0B. 0,,1C. ,0,1D. ,1,05.在下列各数中:,(-4)2,-(-3),-52,-|-2|,(-1)2004,0,其中是负数的个数是()A. 2个B. 3个C. 4个D. 5个6.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A. B. C. D.7.将一个正方体沿某些棱展开后,能够得到的平面图形是()A. B. C. D.8.如图是一组有规律的图案,图案(1)是由4个组成的,图案(2)是由7个组成的,那么图案(3)是由10个组成的…,按此规律,组成图案(8)的的个数为()A. 23B. 25C. 27D. 29二、填空题(本大题共8小题,共24.0分)9.单项式-的系数是______,次数是______次.10.据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为______.11.若3a m-1bc2和-2a3b n-2c2是同类项,则m-n=______.12.若|2+y|+(x-3)2=0,则-x-y2=______.13.如下图是由一些完全相同的小立方块达成的几何体,从正面、左面、上面看到的形状图,那么搭成这个几何体所用的小立方块个数是______块.14.已知代数式x+3y-1的值为3,则代数式7-6y-2x的值为______.15.对于任意的有理数a,b,定义新运算※:a※b=3ab-1,如(-3)※4=3×(-3)×4-1=-37.计算:5※(-7)=______.16.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是______.三、计算题(本大题共1小题,共16.0分)17.计算:(1)(-12)-5+(-14)-(-39)(2)(3)(4).四、解答题(本大题共6小题,共56.0分)18.下图是有几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出相应几何体的从正面看和从左面看得到的图形.19.化简求值:(1)(2a2+1-2a)-(a2-a+2)(2)(3)化简求值:,其中x=-3,y=-.20.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+2,-8,+5,-7,+10,-6,-7,+12.(1)收工时,检修队在A地的哪边?据A地多远?(2)在汽车行驶过程中,若每行驶1千米耗油0.2升,则检修队从A地出发到回到A地,汽车共耗油多少升?(3)在检修过程中,检修队最远离A地多远?21.一辆客车从甲地开往乙地,车上原有(5a-2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(7a-4b)少3人.(1)用代数式表示中途下车的人数;(2)用代数式表示中途下车、上车之后,车上现在共有多少人?(3)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?22.我们知道,|a|可以理解为|a-0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a-b|,反过来,式子|a-b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是______,数轴上表示数-1的点和表示数-3的点之间的距离是______.(2)数轴上点A用数a表示,若|a|=5,那么a的值为______.(3)数轴上点A用数a表示,①若|a-3|=5,那么a的值是______.②当|a+2|+|a-3|=5时,数a的取值范围是______,这样的整数a有______个③|a-3|+|a+2017|有最小值,最小值是______.23.观察下列算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+…+49=______;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=______;(3)请利用上题猜想结果,计算39+41+445+…+2015+2017的值(要有计算过程)答案和解析1.【答案】B【解析】解:∵在0,-2,1,这四个数中,只有-2是负数,∴最小的数是-2.故选B.根据有理数大小比较的法则解答.本题很简单,只要熟知正数都大于0,负数都小于0,正数大于一切负数即可.2.【答案】C【解析】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.由平面图形的折叠及立体图形的表面展开图的特点解题.此题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.3.【答案】D【解析】解:根据题意得:-4+7-8=-5(℃),故选D根据题意列出算式,计算即可得到结果.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.4.【答案】A【解析】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,-2,0.故选:A.利用正方体及其表面展开图的特点解题.本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.5.【答案】B【解析】解:在下列各数中:,(-4)2,-(-3),-52,-|-2|,(-1)2004,0,其中是负数有:-,-52,-|-2|共3个,故选B.根据负数的定义即可判断.本题考查正负数的定义、绝对值,乘方等知识,解题的关键是熟练掌握有理数的分类,属于中考常考题型.6.【答案】C【解析】解:A、∵b<-1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<-1<0<a<1,∴ab<0,故选项B错误;C、∵b<-1<0<a<1,∴a-b>0,故选项C正确;D、∵b<-1<0<a<1,∴|a|-|b|<0,故选项D错误.故选:C.本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.7.【答案】C【解析】解:由四棱柱四个侧面和上下两个底面的特征可知,A、出现了田字格,故不能;B、D、上底面不可能有两个,故不是正方体的展开图;C、可以拼成一个正方体.故选C.本题考查图形的展开与折叠中,正方体的常见的十余种展开图有关内容.可将这四个图折叠后,看能否组成正方形.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.【答案】B【解析】解:由图可得,第1个图案的个数为4,第2个图案的个数为7,7=4+3,第3个图案的个数为10,10=4+3×2,…,第5个图案的个数为4+3(5-1)=16,第n个图案的个数为4+3(n-1)=3n+1第(8)个图案的个数为3×8+1=25,故选B.观察不难发现,后一个图案比前一个图案多3个,然后写出第8个图案的的个数即可.本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多3个基础图形”是解题的关键.9.【答案】-;3【解析】解:单项式-的系数是-,次数是3次,故答案为:-,3.根据单项式、多项式的概念及单项式的次数、系数的定义解答.本题考查了单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10.【答案】3.27×109【解析】解:将3270000000用科学记数法表示为3.27×109.故答案为:3.27×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】1【解析】解:∵3a m-1bc2和-2a3b n-2c2是同类项,∴m-1=3,n-2=1,∴m=4,n=3,∴m-n=1.故答案为:1.根据同类项:所含字母相同,并且相同字母的指数也相同,可得m、n的值,继而代入代数式求解即可.本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.12.【答案】-7【解析】解:∵|2+y|+(x-3)2=0,∴y=-2,x=3.∴-x-y2=-3-(-2)2=-3-4=-7.故答案为:-7.首先依据非负数的性质求得x、y的值,然后再代入求解即可.本题主要考查的是非负数的性质,依据非负数的性质求得x、y的值是解题的关键.13.【答案】9【解析】解:综合主视图,俯视图,左视图,可得底层有6个小正方体,第二层有2个小正方体,第三层有1个小正方体,所以搭成这个几何体所用的小立方块的个数是6+2+1=9,故答案为9.从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.【答案】-1【解析】解:∵x+3y-1=3,∴x+3y=4,∴7-6y-2x=7-2(x+3y)=7-2×4=-1.故答案为-1.利用x+3y-1=3得到x+3y=4,再把7-6y-2x变形为7-2(x+3y),然后利用整体代入的方法计算.本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.15.【答案】-106【解析】解:根据题中的新定义得:原式=-105-1=-106,故答案为:-106原式利用已知的新定义计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】2【解析】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,∴3=33+9=12,12+27=39,39+81=120120+243=363,363+729=1092,1092+2187=3279,又∵2018÷4=504…2,∴3+32+33+34+…+32018的末位数字是2,故答案为:2通过观察31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,对前面几个数相加,可以发现末位数字分别是3,2,9,0,3,2,9,0,可知每四个为一个循环,从而可以求得到3+32+33+34+…+32018的末位数字是多少.本题考查尾数的特征,解题的关键是通过观察题目中的数据,发现其中的规律.17.【答案】解:(1)原式=-12-5-14+39=8;(2)原式=-(12-26-13)=-(-27)=27;(3)原式=-16+×-6×=-16+-=-16-=-;(4)原式=×(-9×+0.7)×(-)=××=.【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:如图所示,【解析】根据俯视图可得出立方体的组成,进而得出其主视图与左视图.此题主要考查了画三视图,正确分析得出图形的组成是解题关键.19.【答案】解:(1)原式=2a2+1-2a-a2+a-2=a2-a-1;(2)原式=-2a2b+ab2-a3+2a2b-3ab2,=-ab2-a3.(3)原式=-2x2-(5y2-2x2+2y2+6),=-2x2-2.5y2+x2-y2-3,=-x2-y2-3.当x=-3,y=-时,原式=-9+-3=-11.【解析】(1)首先去括号,然后合并同类项;(2)首先去括号,然后合并同类项;(3)首先去括号,然后合并同类项,化简后再把x、y的值代入求解即可.此题主要考查了整式的化简求值,关键是掌握给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.20.【答案】解:(1)2-8+5-7+10-6-7+12=1,则收工时在A地的东边,在A地的南边,距A地1千米;(2)|2|+|-8|+|+5|+|-7|+|+10|+|-6|+|-7|+|12|=57千米,57×0.2=11.4(升),答:从A地出发到收工回A地汽车共耗油11.4升.(3)+2,2-8=-6,-6+5=-1,-1-7=-8,-8+10=2,2-6=-4,-4-7=-11,-11+12=1,以上结果绝对值最大的是:-11,该小组离A地最远时是在A的北边11千米处;【解析】(1)求出各组数据的和.根据结果的正负,以及绝对值即可确定;(2)求出各个数的绝对值的和,然后乘以0.2即可求得.(3)该小组离A地最远时就是对应的数值的绝对值最大;本题考查正负数的意义,解题关键是理解“正”和“负”的相对性.21.【答案】解:(1)∵车上原有(5a-2b)人,下车的人数比车上原有人数一半还多2人,∴中途下车的人数为:(5a-2b)+2;(2)由题意可得:(5a-2b)-[(5a-2b)+2]+(7a-4b)-3=6a-3b-5;答:车上现在共有6a-3b-5人;(3)∵a=10,b=9,∴车上现在的人数=6a-3b-5=60-27-5=28(人),答:车上现在的人数28人.【解析】(1)直接利用下车的人数比车上原有人数一半还多2人,得出中途下车的人数;(2)利用车上原有(5a-2b)人-下车人数+上车人数=车上现有人数,进而得出答案;(3)利用(2)中所求,将已知数代入求出答案.此题主要考查了代数式求值,正确表示出下车人数是解题关键.22.【答案】5;2;5或-5;-2或8;-2≤a≤3;6;2020【解析】解:(1)数轴上表示数8的点和表示数3的点之间的距离是8-3=5,数轴上表示数-1的点和表示数-3的点之间的距离是-1-(-3)=2,故答案为:5、2.(2)若|a|=5,那么a的值为5或-5,故答案为:5或-5.(3)数轴上点A用数a表示,①若|a-3|=5,则a-3=5或a-3=-5,∴a=8或-2,故答案为:-2或8.②∵|a+2|+|a-3|=5的意义是表示数轴上到表示-2和表示3的点的距离之和是5的点的坐标,∴-2≤a≤3,其中整数有-2,-1,0,1,2,3共6个,故答案为:-2≤a≤3,6.③|a-3|+|a+2017|表示数轴到表示3与表示-2017的点距离之和,由两点之间线段最短可知:当-2017≤a≤3时,|a-3|+|a+2017|有最小值,最小值为2017-(-3)=2020,故答案为:2020.(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)①利用绝对值定义知a-3=5或-5,分别求解可得;②由|a+2|+|a-3|=5的意义是表示数轴上到表示-2和表示3的点的距离之和是5的点的坐标,据此可得;③由|a-3|+|a+2017|表示数轴到表示3与表示-2017的点距离之和,根据两点之间线段最短可得.本题主要考查的是绝对值的定义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.23.【答案】625;(n+1)2【解析】解:由1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…依此类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=n2;(1)当n=25时分别为:1+3+5+7+…+49=625;故答案为:625;(2)由(1)可知:1+3+5+7+9+…+(2n-1)+(2n+1)=1+3+5+7+9+…+(2n-1)+[2(n+1)-1]=(n+1)2.故答案为:(n+1)2.(3)39+41+445+…+2015+2017=(1+3+...2017)-(1+3+ (37)=10082-182=1015740.(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可;(2)由(1)的结论可知是n 个连续奇数的和,得出结果;(3)让从1加到2017这些连续奇数的和,减去从1加到37这些连续奇数的和即可.考查了图形的变化类问题,解题的关键是仔细观察图形和算式找到规律,难度不大.。
【人教版】2016-2017学年七年级上期中考试数学试题及答案
2017-2018学年度第一学期期中考试 七年级数学试题(满分:120分)一 选择题:本大题共10小题,每小题3分,共36分。
1.如果“盈利5%”记作+5%,那么-3%表示( )A.亏损3%B.亏损8%C.盈利2%D.少赚3% 2.-3的相反数是( )A.31B.-31C.-3D.33.下列数轴画的正确的是( )4.计算(-20)+16的结果是( )A.-4B.4C.-2016D.2016 5. 小明做了以下4道计算题:①(-1)2008=2008;②0-(-1)=1;③-12+13=-16;④12÷(-12)=-1.请你帮他检查一下,他一共做对了( )A .1题B .2题C .3题 D. 4题6.下列关于单项式532xy -的说法中,正确的是( )A.系数是53-,次数是2B.系数是53,次数是2C.系数是-3,次数是3D.系数是53-,次数是3 7.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10108.若a y x 3-与y x b 是同类项,则a+b 的值为( )A.2B.3C.4D.5 9.已知x=2是关于x 的方程3x+a=0的一个解,则a 的值是( )A.-3B.-4C.-6D.-510.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A.0.08x-10=90B.0.8x-10=90C.90-0.8x=10D.x-0.8x-10=90 11.下列各式由等号左边变到右边变错的有( D )①a -(b -c )=a -b -c ;②(x 2+y )-2(x -y 2)=x 2+y -2x +y 2; ③-(a +b )-(-x +y )=-a +b +x -y ; ④-3(x -y )+(a -b )=-3x -3y +a -b . A .1个 B .2个 C .3个 D .4个12.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( A )A .-1B .1C .-2D .2二 填空题:本大题共8小题,每小题3分,共24分。
青岛版七年级(上)期中数学试题(内含答案)
七年级数学期中试题(时限:120分钟 分值:120分)一、选择题(共12小题,每题3分,共计36分)1、下列平面图形不能够围成正方体的是( )2、如果线段AB=12cm ,MA+MB=16cm ,那么下列说法正确的是( )A 、点M 在线段AB 上 B 、点M 在直线AB 上C 、点M 在直线AB 外D 、点M 在直线AB 上,也可能在直线AB 外3、下列说法正确的是( )A 、零减去一个数一定得负数B 、一个正数减去一个负数结果是正数C 、一个负数减去一个负数结果是负数D 、“-2-3”读作“负2减负3”4、如图,有理数在数轴上的位置如图所示,则下列结论正确的是( )A 、a+b>a>b>a-bB 、a>a+b>b>a-bC 、a-b>a>b>a+bD 、a-b>a>a+b>b5、若-︱-x︱=-4,则x的值是( )A 、4B 、-4C 、±4D 、以上答案都不对6、去年四川省汶川地区发生里氏8.0级地震,全国各地积极捐款捐物,支援灾区。
某省共向灾区捐款共计50140.9万元,这个数用科学记数法可表示为( )A 、5.01409×106万元B 、5.01409×105万元C 、5.01409×104万元 D 、5.01409×103万元7、在算式4-|-3□5|中的□所在位置填入下列运算符号中的一种,计算出来的值最小的是( )A 、+B 、-C 、×D 、÷8、下列结论正确的是( )A 、-(21)3<-32 <(-21)2 B 、-14<(-0.7)2<(-1)3C 、(-0.5)2<(-0.5)3<(-0.5)4D 、-34<-0.13<(-3)2AB C D9、如图,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A 、A →C →D →B B 、A →C →F →BC 、A →C →E →F →BD 、A →C →M →B10、如图,下面的语句中不正确的是( ) O A BA 、直线OA 和直线AB 是同一条直线B 、射线OA 和射线OB 是同一条射线C 、射线OA 和射线AB 是同一条射线D 、线段AB 和线段BA 是同一条线段11、计算51×(-5)÷(-51)×5的结果是( ) A 、-5 B 、1 C 、25 D 、3512、“阳光体育”运动在我市积极展开,小王对本班50名同学进行了跳绳、乒乓球等运动项目最喜爱人数的调查,并绘制了如图所示的统计图,他又想转化为扇形统计图,那么最喜爱篮球的人数所在区域的圆心角的度数为( )A 、120°B 、144°C 、180°D 、72°人数/人跳 羽 篮 乒 其 项目 绳 毛 球 乓 他球 球● ● ●二、填空题(8个小题,每题3分,共计24分)13、为了解某校学生对青岛版数学教材的喜好情况,对初一四个班学生进行调查,你认为 方式收集数据最合适。
最新青岛版七年级数学上册期中考试题(-2017)
青岛版七年级数学上册期中考试题 班级 姓名一、选择题(每小题3分,共计36分)1、-3的相反数是A 、-3B 、31C 、31- D 、3 2、用一个平面去截一个正方体,截面不可能是A 、圆B 、五边形C 、六边形D 、梯形3、下面四个数中比-2小的数是A 、1B 、0C 、-1D 、-34、如图,点B 、C 、D 在射线AM 上,则图中的射线有A 、6条B 、5条C 、4条D 、1条5、要反映泰安市一天内气温的变化情况宜采用A 、条形统计图B 、扇形统计图C 、频数分布图D 、折线统计图6、2010年6月3日,人类首次模拟火星载人航天飞行试验“火星-500”正式启动。
包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”。
将12480用科学记数法表示应为A 、31048.12⨯B 、5101248.0⨯C 、410248.1⨯D 、310248.1⨯7、如图,在数轴上表示到原点的距离为3个单位长度的点有A 、D 点B 、A 点C 、A 点和D 点D 、B 点和C 点8、某年泰安市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高A 、16℃B 、20℃C 、-16℃D 、-20℃9、如图所示,A 、B 、C 、D 四个图形中各有一条射线和一条线段,他们能相交的是10、计算(-1)2011+12012应等于A 、1B 、-2C 、1-D 、0 11、一个正方体的表面展开图如下图所示,则原正方体中的“☆”所在面的对面所标的字是 A 、上 B 、海 C 、世 D 、博12、你喜欢吃面条吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示,这样捏河道()次后,可拉出64根细面条。
A 、5B 、6C 、7D 、8二、填空题(直接填写最后结果,每小题3分,共18分)13、点动成 ,线动成 ,面动成 。
山东省青岛市七年级上学期期中数学试卷
山东省青岛市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图,立体图形的左视图是()A .B .C .D .【考点】2. (2分) (2020七下·太仓期中) 观察下列等式: ,,,,,,,试利用上述规律判断算式结果的末位数字是()A . 0B . 1C . 3D . 7【考点】3. (2分) (2020八上·景泰期中) 已知x,y为实数,且则的值为()A . 3B . -3C . 1D . -14. (2分)在下列各数:﹣(﹣3),(﹣2)×(﹣),﹣|﹣3|,﹣|a|+1中,负数的个数为()A . 1个B . 2个C . 3个D . 4个【考点】5. (2分)(2020·吉林模拟) 国家发改委2020年2月7日紧急下达第二批中央预算内投资200000000元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据200000000用科学记数法表示为()A . 2×107B . 2×108C . 20×107D . 0.2×108【考点】6. (2分)下列运算正确的是A . x2+x3=x5B . (x﹣2)2=x2﹣4C . 2x2•x3=2x5D . (x3)4=x7【考点】7. (2分)当a,b互为相反数时,代数式a2+ab﹣4的值为()A . 4B . 0C . ﹣3D . ﹣48. (2分) (2016七上·萧山期中) 如图中数轴的单位长度为1,且点P,T表示的数互为相反数,则下列关于数轴上5个点的说法不正确的是()A . 点S是原点B . 点Q表示的数是5个数中最小的数C . 点R表示的数是负数D . 点T表示的数是5个数中绝对值最大的数【考点】二、填空题 (共8题;共9分)9. (1分) (2018七上·碑林月考) 若m,n互为相反数,a,b互为倒数,且为则________.【考点】10. (1分) (2019七上·吉水月考) 一个小数由10个一、9个0.01和3个0.001组成,这个小数是(________).【考点】11. (1分) (2019七上·马山期中) 比较大小: ________ .【考点】12. (1分) (2016七上·金乡期末) 如图,数轴上点A , B所表示的两个数的和的绝对值是________.【考点】13. (2分)﹣2的相反数是________;﹣的系数是________.【考点】14. (1分) (2017七上·平邑期末) 在数轴上与表示-2的数相距4个单位长度的点对应的数是________。
七年级数学上学期期中试卷(含解析) 青岛版
山东省青岛市市北区2016-2017学年七年级(上)期中数学试卷一.选择题:每小题3分,共8小题,共24分.1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A. B. C. D.3.根据国家旅游局数据中心综合测算,2016年国庆期间,全国累计旅游收入达四千八百亿元,四千八百亿元用科学记数法表示是()A.4800×108B.48×1010C.4.8×103D.4.8×10114.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm25.下列各数:0,|﹣2|,﹣(﹣2),﹣32,,其中非负数有()个.A.4 B.3 C.2 D.16.一辆汽车a秒行驶米,则它2分钟行驶()A.米B.米C.米D.米7.下列说法正确的有()①﹣43表示3个﹣4相乘;②一个有理数和它的相反数的积必为负数;③数轴上表示2和﹣2的点到原点的距离相等;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个8.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆棋子的3倍,设第一堆原有m个棋子,则第二堆的棋子原有()个.A.3m B.3m﹣3 C. D.3m﹣12二.填空题:每小题3分,共8小题,共24分.9.如果收入50元记作+50元,那么支出35元记作.10.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.11.某市2011年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高℃.12.请写出一个只含有字母x、y的三次二项式.13.图1和图2中所有的正方形都全等.将图1的正方形放在图2中的(从①②③④中选填)位置,所组成的图形能够围成正方体.14.有理数a、b在数轴上的位置如图所示,则|a+b|+|a﹣b|﹣2b= .15.请将“7,﹣2,3,﹣4”这四个数进行加、减、乘、除、乘方混合运算,使运算结果为24或﹣24(不可使用绝对值和相反数参与运算,可以加括号,每个数必须用一次且只能用一次),写出你的算式:.16.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有个涂有阴影的小正方形(用含有n的代数式表示).三.作图题:本题6分.17.(6分)画出下面几何体从正面看、从左面看、从上面看的形状图.四.解答题:共7小题,满分66分.18.(16分)计算:(1)(﹣)﹣(﹣)+(﹣)+(2)18﹣6÷(﹣)×(﹣4)(3)(﹣+)×(﹣24)(4)(﹣1)3×5÷[﹣32+(﹣2)2].19.(8分)化简:(1)7y﹣3x﹣8y+5z(2)b+2(2a2﹣b)﹣3(3a2﹣2b)20.(6分)化简求值:已知A=﹣4x2﹣2x+8,B=2x﹣1.若C=A﹣B.求当x=﹣2时C的值.21.(6分)一个窗户的上部是一个半径为a的半圆形,一个窗户的上部分是4个扇形组成的半圆形,下部分是边长均为a的4个小正方形组成的.(1)用a的代数式表示这个窗户的面积和窗户外框的总长;(结果保留ᴨ)(2)若a=0.5米,求窗户外框的总长(ᴨ取3.14)22.(8分)一个病人每天需要测量一次血压,下表是该病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160个单位,(“+”表示收缩压比前一天上升,“﹣”表示收缩压比前一天下降)星期一二三四五收缩压的变化/单位+30﹣20+15+5﹣20(1)请算出星期五该病人的收缩压.(2)以上个星期日的收缩压为0点,请把如图的折线统计图补充完整.(3)若收缩压大于或等于180个单位为重度高血压,该病人本周哪几天的血压不属于这个范围?23.(10分)将图1中的正方形剪开得到图2,则图2 中共有4个正方形;将图2中的一个正方形剪开得到图3,则图3中共有7个正方形;…,如此剪下去,则第n个图形中正方形的个数是多少.(1)按图示规律填写下表:图12345…正方形个数147…(2)按照这种方式剪下去,求第n个图中有多少个正方形;(3)按照这种方式剪下去,求第200个图中有多少个正方形;(4)按照这种方式剪下去,求第2017个图中有多少个正方形.24.(12分)问题引入:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.必然|﹣2|就表示﹣2这个点到原点的距离,所以|﹣2|=2;问题探究:点A、B、C、D所表示的数如图1所示,则A、C两点间的距离为;B、D两点间的距离为;A、B两点间的距离为;由此,数轴上任意两点E、F分别表示的数是m、n,则E、F两点间的距离可表示为.问题应用:在一工厂流水线上有依次排列的n个工作台,现要在流水线上设置一个工具台,以方便这n 名工人从工作台到工具台拿取工具.为了让工人从工作台到工具台拿工具所走的路程之和最小,我们应该把工具台放在什么位置呢?为了解决这一问题,我们不妨先从最简单的情形入手:(1)如图2,若流水线上顺次摆放着2个工作台A1和A2,为让2名工人拿工具所走的路程和最小,很明显,工具台P设在A1和A2之间的任何地方都行(包括A1和A2),因为这时2个工作台上的工人过来取共计所走的距离和等于A1和A2之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离.(2)如图3,若流水线上一次摆着3个工作台A1、A2和A3,为让3名工人拿工具所走的路程和最小,应将工具台设在中间工作台A2处.因为这时3个工作台上工人过来取工具所走的距离和等于A1和A3之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离.(3)若流水线上一次摆着4个工作台A1、A2、A3和A4,为让4名工人拿工具所有的路程和最小,应将工具台设在.(4)若流水线上一次摆放着5个工作台A1、A2、A3、A4和A5,为让5名工人拿工具所走的路程和最小,应将工具台设在.问题拓展:数轴上三个点1、2、x,那么x在数轴上位置时才能到1和2两点的距离和最小,由此,|x﹣1|+|x﹣2|的最小值为.根据以上推理方法可求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值是,此时x= .2016-2017学年山东省青岛市市北区七年级(上)期中数学试卷参考答案与试题解析一.选择题:每小题3分,共8小题,共24分.1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.【考点】点、线、面、体.【分析】根据面动成体,可得答案.【解答】解:由题意,得图形与B的图形相符,故选:B.【点评】本题考查了点、线、面、体,培养学生的观察能力和空间想象能力.3.根据国家旅游局数据中心综合测算,2016年国庆期间,全国累计旅游收入达四千八百亿元,四千八百亿元用科学记数法表示是()A.4800×108B.48×1010C.4.8×103D.4.8×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:四千八百亿=4800×108=4.8×1011.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2【考点】几何体的表面积.【分析】根据六棱柱侧面积的面积公式,代入数据即可得出结论.【解答】解:六棱柱的侧面积为:4×5×6=120(cm2).故选C.【点评】本题考查了几何体的表(侧)面积,熟练掌握“几何体的侧面积的求法”是解题的关键.5.下列各数:0,|﹣2|,﹣(﹣2),﹣32,,其中非负数有()个.A.4 B.3 C.2 D.1【考点】有理数.【分析】利用绝对值、相反数、乘方及分数的计算可分别求得其结果,可求得答案.【解答】解:∵|﹣2|=2,﹣(﹣2)=2,﹣32=﹣9, =﹣0.5,且0不是负数,∴是非负数的有0、|﹣2|和﹣(﹣2)共3个,故选B.【点评】本题主要考查非负数的概念,掌握绝对值、相反数和乘方的计算是解题的关键.6.一辆汽车a秒行驶米,则它2分钟行驶()A.米B.米C.米D.米【考点】列代数式.【分析】先统一单位,2分钟=120秒,再根据求出速度.【解答】解:由题意可知:速度为:÷a=米/秒,所以2分钟行驶了:×120=,故选(C)【点评】本题考查列代数式,属于基础题型,注意单位不统一时需要进行统一单位后才能进行计算.7.下列说法正确的有()①﹣43表示3个﹣4相乘;②一个有理数和它的相反数的积必为负数;③数轴上表示2和﹣2的点到原点的距离相等;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个【考点】有理数的乘法;数轴;相反数.【分析】①根据乘方的意义可知:﹣43=﹣4×4×4,不是3个﹣4相乘;②0与它相反数的积为0,③互为相反数的两个数到原点的距离相等;④还有可能是互为相反数.【解答】解:①﹣43表示3个4相乘的相反数,所以①不正确;②一个有理数和它的相反数的积不一定是负数,如0,所以②不正确;③数轴上表示2和﹣2的点到原点的距离相等,所以③正确;④若a2=b2,则a=b或a=﹣b,所以④不正确.所以本题正确的只有③,故选A.【点评】本题考查了有理数的乘方、相反数和绝对值,比较简单,熟练掌握定义是关键,尤其第①题容易出错,要注意理解.8.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆棋子的3倍,设第一堆原有m个棋子,则第二堆的棋子原有()个.A.3m B.3m﹣3 C. D.3m﹣12【考点】列代数式.【分析】第一堆的3个棋子移动后有(m﹣3)个,则它的三倍为3(m﹣3),即第二堆的现有棋子为3(m﹣3),然后减去3即可得到第二堆的棋子数.【解答】解:第一堆原有m个棋子,第二堆的棋子原有3(m﹣3)﹣3=(3m﹣12)个.故选D.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.二.填空题:每小题3分,共8小题,共24分.9.如果收入50元记作+50元,那么支出35元记作﹣35元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:如果收入50元记作+50元,那么支出35元记作﹣35元,故答案为:﹣35元.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.10.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有7 个面,12 条棱,7 个顶点.【考点】截一个几何体.【分析】新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.【解答】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.【点评】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.11.某市2011年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高10 ℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:2﹣(﹣8)=2+8=10(℃),故答案为:10.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法.12.请写出一个只含有字母x、y的三次二项式x2y+xy .【考点】多项式.【分析】根据多项式的次数和项数的定义写出一个即可.【解答】解:多项式为x2y+xy,故答案为:x2y+xy.【点评】本题考查了对多项式的有关概念的应用,能理解多项式的次数的意义是解此题的关键,答案不唯一.13.图1和图2中所有的正方形都全等.将图1的正方形放在图2中的②③④(从①②③④中选填)位置,所组成的图形能够围成正方体.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,将图1的正方形放在图2中的②③④的位置均能围成正方体,故答案为:②③④.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.14.有理数a、b在数轴上的位置如图所示,则|a+b|+|a﹣b|﹣2b= 0 .【考点】整式的加减;数轴;绝对值.【分析】由数轴可知a<0<b,且|a|<|b|,根据绝对值性质去绝对值符号、合并同类项可得.【解答】解:由数轴可知a<0<b,且|a|<|b|,则原式=a+b﹣a+b﹣2b=0,故答案为:0.【点评】本题主要考查数轴、绝对值性质、整式的加减运算,根据数轴判断出a、b的大小关系是解题的关键.15.请将“7,﹣2,3,﹣4”这四个数进行加、减、乘、除、乘方混合运算,使运算结果为24或﹣24(不可使用绝对值和相反数参与运算,可以加括号,每个数必须用一次且只能用一次),写出你的算式:(7﹣3)×[(﹣2)+(﹣4)] .【考点】有理数的混合运算.【分析】首先用7减去3,构造出4;然后用﹣2加上﹣4,构造出﹣6;最后用4乘﹣6,使运算结果为﹣24即可.【解答】解:(7﹣3)×[(﹣2)+(﹣4)].故答案为:(7﹣3)×[(﹣2)+(﹣4)].(答案不唯一)【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有4n+1 个涂有阴影的小正方形(用含有n的代数式表示).【考点】规律型:图形的变化类.【分析】观察不难发现,后一个图案比前一个图案多4个涂有阴影的小正方形,然后写出第n个图案的涂有阴影的小正方形的个数即可.【解答】解:由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5×2﹣1=9,第3个图案涂有阴影的小正方形的个数为5×3﹣2=13,…,第n个图案涂有阴影的小正方形的个数为5n﹣(n﹣1)=4n+1.故答案为:4n+1.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多4个基础图形”是解题的关键.三.作图题:本题6分.17.画出下面几何体从正面看、从左面看、从上面看的形状图.【考点】作图-三视图.【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形的个数依次为1,2,1;从左面看到的图形是2列,从左往右正方形的个数依次为2,1;从上面看到的图形是3列,从左往右正方形的个数依次为2,1,1;由此分别画出即可.【解答】解:如图所示:.【点评】此题主要考查了作三视图,利用几何体的形状得出视图是解题关键.四.解答题:共7小题,满分66分.18.(16分)(2016秋•市北区期中)计算:(1)(﹣)﹣(﹣)+(﹣)+(2)18﹣6÷(﹣)×(﹣4)(3)(﹣+)×(﹣24)(4)(﹣1)3×5÷[﹣32+(﹣2)2].【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)(﹣)﹣(﹣)+(﹣)+=(﹣﹣)+﹣(﹣)=﹣1+1=0(2)18﹣6÷(﹣)×(﹣4)=18+12×(﹣4)=18﹣48=﹣30(3)(﹣+)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣6+12﹣4=2(4)(﹣1)3×5÷[﹣32+(﹣2)2]=(﹣1)×5÷[﹣9+4]=﹣5÷[﹣5]=1【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简:(1)7y﹣3x﹣8y+5z(2)b+2(2a2﹣b)﹣3(3a2﹣2b)【考点】整式的加减.【分析】(1)找出同类项,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)7y﹣3x﹣8y+5z=﹣3x﹣y+5z;(2)b+2(2a2﹣b)﹣3(3a2﹣2b)=b+4a2﹣2b﹣9a2+6b=﹣5a2+5b.【点评】本题考查了整式的加减的应用,能正确合并同类项是解此题的关键.20.化简求值:已知A=﹣4x2﹣2x+8,B=2x﹣1.若C=A﹣B.求当x=﹣2时C的值.【考点】整式的加减—化简求值.【分析】把A与B代入表示出C,将x的值代入计算即可求出值.【解答】解:C=(﹣4x2﹣2x+8)﹣(2x﹣1)=﹣2x2﹣3x+5,将x=﹣2代入得:﹣8+6+5=3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.一个窗户的上部是一个半径为a的半圆形,一个窗户的上部分是4个扇形组成的半圆形,下部分是边长均为a的4个小正方形组成的.(1)用a的代数式表示这个窗户的面积和窗户外框的总长;(结果保留ᴨ)(2)若a=0.5米,求窗户外框的总长(ᴨ取3.14)【考点】代数式求值;列代数式.【分析】(1)由半圆面积与正方形面积之和确定出窗户的面积,并求出窗户外框的总长即可;(2)把a的值代入计算即可求出值.【解答】解:(1)面积:(2a)2+πa2=4a2++πa2;周长:πa+15a;(2)将a=0.5代入得:原式=3.14×0.5+15×0.5=9.07(米).【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.22.一个病人每天需要测量一次血压,下表是该病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160个单位,(“+”表示收缩压比前一天上升,“﹣”表示收缩压比前一天下降)星期一二三四五收缩压的变化/单位+30﹣20+15+5﹣20(1)请算出星期五该病人的收缩压.(2)以上个星期日的收缩压为0点,请把如图的折线统计图补充完整.(3)若收缩压大于或等于180个单位为重度高血压,该病人本周哪几天的血压不属于这个范围?【考点】折线统计图;正数和负数.【分析】(1)上升加,下降减,求出星期五该病人的收缩压;(2)让横轴表示日期,纵轴表示收缩压变化画图即可;(3)根据每日收缩压变化算出每日的收缩压比较即可求解.【解答】解:(1)160+30﹣20+15+5﹣20=170(个单位).故星期五该病人的收缩压为170个单位.(2)星期一:30;星期二:30﹣20=10;星期三:10+15=25;星期四:25+5=30;星期五:30﹣20=10;如图所示:(3)由折线统计图可知,该病人本周星期二,星期五的血压不属于这个范围.【点评】此题考查了统计图表的绘制和应用,根据已知正号表示血压比前一天上升,负号表示血压比前一天下降得出每天收缩压是解题关键.23.(10分)(2016秋•市北区期中)将图1中的正方形剪开得到图2,则图2 中共有4个正方形;将图2中的一个正方形剪开得到图3,则图3中共有7个正方形;…,如此剪下去,则第n个图形中正方形的个数是多少.(1)按图示规律填写下表:图12345…正方形个数14710 13 …(2)按照这种方式剪下去,求第n个图中有多少个正方形;(3)按照这种方式剪下去,求第200个图中有多少个正方形;(4)按照这种方式剪下去,求第2017个图中有多少个正方形.【考点】规律型:图形的变化类.【分析】(1)观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,进而得出答案;(2)根据(1)中规律写出第n个图形中的正方形的个数的表达式;(3)将n=200,代入求得问题即可;(4)将n=2017,代入求得问题即可.【解答】解:(1)按图示规律填写下表:图12345…正方形个数1471013…(2)第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,…,第n个图形有正方形(3n﹣2)个.(3)第200个图中共有正方形的个数为3×200﹣2=598.(4)第2017个图中共有正方形的个数为3×2017﹣2=6049.【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.24.(12分)(2016秋•市北区期中)问题引入:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.必然|﹣2|就表示﹣2这个点到原点的距离,所以|﹣2|=2;问题探究:点A、B、C、D所表示的数如图1所示,则A、C两点间的距离为 2 ;B、D两点间的距离为 3 ;A、B两点间的距离为10 ;由此,数轴上任意两点E、F分别表示的数是m、n,则E、F 两点间的距离可表示为|m﹣n| .问题应用:在一工厂流水线上有依次排列的n个工作台,现要在流水线上设置一个工具台,以方便这n 名工人从工作台到工具台拿取工具.为了让工人从工作台到工具台拿工具所走的路程之和最小,我们应该把工具台放在什么位置呢?为了解决这一问题,我们不妨先从最简单的情形入手:(1)如图2,若流水线上顺次摆放着2个工作台A1和A2,为让2名工人拿工具所走的路程和最小,很明显,工具台P设在A1和A2之间的任何地方都行(包括A1和A2),因为这时2个工作台上的工人过来取共计所走的距离和等于A1和A2之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离.(2)如图3,若流水线上一次摆着3个工作台A1、A2和A3,为让3名工人拿工具所走的路程和最小,应将工具台设在中间工作台A2处.因为这时3个工作台上工人过来取工具所走的距离和等于A1和A3之间的距离,要放在其它位置的话,两人所走的距离和都要大于这个距离.(3)若流水线上一次摆着4个工作台A1、A2、A3和A4,为让4名工人拿工具所有的路程和最小,应将工具台设在A2、A3之间的任何地方都行(包括A3和A2).(4)若流水线上一次摆放着5个工作台A1、A2、A3、A4和A5,为让5名工人拿工具所走的路程和最小,应将工具台设在A3.问题拓展:数轴上三个点1、2、x,那么x在数轴上表示数1,2的点之间(包括1和2)位置时才能到1和2两点的距离和最小,由此,|x﹣1|+|x﹣2|的最小值为 1 .根据以上推理方法可求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值是 6 ,此时x= 3 .【考点】数轴;绝对值.【分析】问题探究:根据数轴上两点间的距离公式进行计算即可得出两点间的距离;问题应用:根据(1)(2)中的结论,得出当工作台有奇数个时,工具台应设在最中间一个工作台处,当工作台有偶数个时,工具台应设在最中间两个工作台之间;问题拓展:根据数轴上两点间的距离公式以及(1)(2)中的结论,求得x在数轴上的位置以及|x﹣1|+|x﹣2|的最小值,最后根据以上推理方法可求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值及x的值.【解答】解:问题探究:由图1可得,A、C两点间的距离为6﹣4=2;B、D两点间的距离为=﹣1﹣(﹣4)=3;A、B两点间的距离为6﹣(﹣4)=10;E、F两点间的距离可表示为|m﹣n|;故答案为:2,3,10,|m﹣n|;问题应用:(3)∵流水线上一次摆着4个工作台A1、A2、A3和A4,为让4名工人拿工具所有的路程和最小,∴应将工具台设在A2、A3之间的任何地方都行(包括A3和A2);故答案为:A2、A3之间的任何地方都行(包括A3和A2);(4)∵流水线上一次摆放着5个工作台A1、A2、A3、A4和A5,为让5名工人拿工具所走的路程和最小,∴应将工具台设在A3处;故答案为:A3;问题拓展:∵三个点分别为1、2、x,∴当x在数轴上1,2之间或在1点,2点上时,x到1和2两点的距离和最小,|x﹣1|+|x ﹣2|的最小值=2﹣1=1;根据|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的几何意义,可得|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|表示x到数轴上1,2,3,4,5五个数的距离之和,∴当x与3重合时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|有最小值,最小值为6,此时x=3.故答案为:表示数1,2的点之间(包括1和2);1;6,3.【点评】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a、b,则这两点间的距离可表示为|a﹣b|.。
山东省青岛市七年级上学期数学期中考试试卷
山东省青岛市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)一个数的相反数是3,则这个数是()A .B .C . -3D . 32. (2分) (2018七上·阳江月考) 不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和的形式是()A . -6-3+7-2B . 6-3-7-2C . 6-3+7-2D . 6+3-7-23. (2分)一个长方形的周长为a m,长为b m,则这个长方形的宽为()A . (a-2b mB . (-2bmC . mD . m4. (2分)若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式m2015的值为()A . -1B . 1C . 2 015D . -20155. (2分) (2016九下·句容竞赛) 下列计算正确的是().A . a3+a2=a5B . (a-b)2=a2-b2C . a6b÷a2=a3bD . (-ab3)2=a2b66. (2分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A . 0B . 1C . -1D . -2二、填空题 (共10题;共12分)7. (1分)(2017·马龙模拟) 计算:﹣22÷(﹣)=________.8. (3分) (2019七上·镇海期末) 若与是同类项,则 ________, ________;合并以后的结果是________.9. (1分) (2019七上·溧水期末) 比较大小:- ________-3(填“>”“<”或“=”)10. (1分) (2019七上·简阳期末) 下列说法错误的是________ (只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示:③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.11. (1分)(2017·祁阳模拟) 已知x﹣2y=3,那么代数式3﹣2x+4y的值是________.12. (1分) (2015九下·嘉峪关期中) 一块手表的售价是120元,利润率是20%,则这块手表的进价是________元.13. (1分)若m2+3n-1的值为5,则代数式2m2+6n+5的值为________ .14. (1分) (2018七上·中山期末) 关于x的方程x-3=kx+1的解是x=-8,则k=________.15. (1分) (2016七上·桐乡期中) 已知:数轴上一个点到﹣2的距离为5,则这个点表示的数是________16. (1分) (2019七下·钦州期末) 如图,在平面直角坐标系中,点A的坐标为(1,0),点A第1次跳动至点A1(﹣1,1),第2次向右跳动3个单位长度至点A2(2,1),第3次跳动至点A3(﹣2,2),第4次向右跳动5个单位长度至点A4(3,2),…,依此规律跳动下去,第100次跳动至点A100的坐标是________.三、解答题 (共12题;共112分)17. (20分) (2019七上·海安月考) 计算:(1) (-85)×(-25)×(-4);(2);(3);(4) .18. (10分) (2019七上·宝应期末) 对于有理数a、b,定义运算:“★”,当a≥b时,a★b=2a-3b,当a <b时,a★b= .(1)计算:(x+2)★(x+1)的值;(2)若(x+1)★(2x-1)=-1,求x的值.19. (10分) (2018七上·北仑期末) 解下列方程:(1)(2)20. (5分) (2018七上·庐江期中) 在计算代数式(2x3+ax﹣5y+b)﹣(2bx3﹣3x+5y﹣1)的值时,甲同学把“x=﹣,y= ”误写为“x= ,y= ”,其计算结果也是正确的.请你通过计算写出一组满足题意的a,b的值.21. (10分)如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.22. (8分)观察下列有规律的数:,,,,,…根据规律可知(1)第7个数是________,第n个数是________(n为正整数);(2)是第________个数;(3)计算 + + + + + +…+ .23. (1分)(2018·高台模拟) 定义新运算“※”,规则:a※b=ab-a-b,如1※2=1×2-1-2=-1。
北师大版初中数学七年级上册期中试题(山东省青岛市
2016-2017学年山东省青岛市黄岛区七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.2B.﹣2C.D.﹣2.(3分)如图,左边是一个立体图形,它可以看作是由()中的平面图形绕直线l旋转一周得到的.A.B.C.D.3.(3分)下列各式中,与xy2是同类项的是()A.x2y B.2xy C.﹣xy2D.3x2y24.(3分)买单价为a元的作业本n个,付出b元,应找回的钱数是()A.b﹣a B.b﹣n C.na﹣b D.b﹣na5.(3分)用平面去截一个立方体,截面不可能是()A.正方形B.五边形C.六边形D.七边形6.(3分)下列运算正确的是()A.3x+3y=6xy B.19a2b﹣9ba2=10a2bC.16a2﹣7a2=9D.3x+2x=5x27.(3分)2016年10月19日3时31分,天宫二号空间实验室与神舟十一号飞船在距地面393000米的高空对接成功,393000用科学记数法可表示为()A.39.3×104B.3.93×105C.0.393×106D.3.93×106 8.(3分)将一张长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片展开铺平,则所得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如果零上5℃记作+5℃,那么零下3℃记作℃.10.(3分)比较大小:﹣﹣2.7(填>,<或=)11.(3分)2016年8月第31届夏季奥运会在里约热内卢开幕,里约热内卢与北京的时差为﹣11h,那么里约热内卢时间20时应是北京时间时.12.(3分)代数式2m2﹣m+1有项,次数是,第二项的系数是.13.(3分)代数式减去﹣2a结果是a2﹣2a+3.14.(3分)一根竹杆长为6m,每次截去三分之一,连续截5次后,剩余竹杆长为m.15.(3分)若|a|=2,b2=9,则代数式a2b﹣1的值是.16.(3分)一个小立方体的六面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,则字母A对面的字母是,字母D对面的字母是.三、画图题(本大题共4分)17.(4分)如图是由几个小立方块所搭几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出从正面,左面看到的这个几何体的形状图.四、解答题(本大题共7小题,共68分)18.(20分)计算(1)﹣0.5+(﹣)﹣(﹣2.25)+(﹣)(2)(+﹣)×36(3)32÷[(﹣2)3+(﹣4)](4)16÷(﹣2)3﹣(﹣)×(﹣4)19.(12分)(1)化简4y2﹣(x2+y)+(x2﹣4y2)(2)求值(﹣4x2+2x﹣8)﹣3(x﹣2),其中x=﹣.20.(6分)已知某水库的警戒水位为18.8m,值班人员记录了某一周内的水位变化情况,如下表:(单位:m,上周末刚好到达警戒水位,取警戒水位为0,“+”表示水位比前一天升高,“﹣”表示水位比前一天降低)(1)本周内哪一天水位最高?哪一天水位最低?它们与警戒水位相差多少?(2)若超过警戒水位1.5m时就应该开闸放水,以确保大坝安全,本周水库需开闸放水吗?21.(6分)从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数.先把这六个两位数相加,然后再用所得的和除以所选三个数字之和.你发现了什么?你能说明其中的道理吗?22.(6分)人在运动时心跳速率通常和人的年龄有关,若用n表示一个人的年龄,则这个人运动时能承受的每分钟心跳的最高次数为0.8×(220﹣n)次,否则就会危及生命.(1)正常情况下,一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)如果一个40岁的人运动时,10秒钟心跳的次数为25次,请问他有危险吗?说明理由.23.(8分)有一种“24点”游戏,其游戏规则是:从﹣13,﹣12,...,﹣1,1, (12)13这二十六个有理数中,任取4个有理数进行加,减,乘,除混合运算(每个数只能用一次),使其运算结果为24,例如,取1,2,3,4,有4×(1+2+3)=24,现从中取4和有理数3,4,﹣6,10,请你运用上述规则,写出三种不同的运算式,使其运算结果为24.(1);(2);(3);同样的,从中取4个有理数3,﹣5,7,﹣13,运用上述规则,使其运算结果等于24.(4)(只填写一种运算式即可).24.(10分)用棋子摆出下列一组图形,请观察图形,根据你发现的规律解答下列问题:(1)填写下表:(2)第n个图形中共有枚棋子;(3)照这样的方式摆下去,第100个图形中棋子数是多少枚?2016-2017学年山东省青岛市黄岛区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.2B.﹣2C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)如图,左边是一个立体图形,它可以看作是由()中的平面图形绕直线l旋转一周得到的.A.B.C.D.【分析】根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.【解答】解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形.故选:D.【点评】本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.3.(3分)下列各式中,与xy2是同类项的是()A.x2y B.2xy C.﹣xy2D.3x2y2【分析】根据同类项的定义对各选项进行逐一分析即可.【解答】解:A、x2y与xy2中,x、y的指数均不相同,不是同类项,故本选项错误;B、2xy与xy2中,y的指数不相同,不是同类项,故本选项错误;C、﹣xy2与xy2中,x、y的指数均相同,是同类项,故本选项正确;D、3x2y2与xy2中,x的指数不相同,不是同类项,故本选项错误.故选:C.【点评】本题考查的是同类项的定义,即所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(3分)买单价为a元的作业本n个,付出b元,应找回的钱数是()A.b﹣a B.b﹣n C.na﹣b D.b﹣na【分析】本题需先求出单价为a元的作业本n个需要多少元,再用付出的钱数进行相减,即可得出结果.【解答】解:∵单价为a元的作业本n个,则需要an元,∵付出b元,∴应找回的钱数是(b﹣an).故选:D.【点评】本题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系列出代数式是解题的关键.5.(3分)用平面去截一个立方体,截面不可能是()A.正方形B.五边形C.六边形D.七边形【分析】根据截面经过几个面得到的截面就是几边形判断即可.【解答】解:立方体最多有6个面,截面最多也经过6个面,得到的多边形的边数最多是六边形,所以不可能是七边形.故选:D.【点评】考查了截一个几何体,解决本题的关键是理解截面经过几个面得到的截面就是几边形.6.(3分)下列运算正确的是()A.3x+3y=6xy B.19a2b﹣9ba2=10a2bC.16a2﹣7a2=9D.3x+2x=5x2【分析】利用合并同类项法则运算即可.【解答】解:A.3x与3y不是同类项,不能合并,故此选项错误;B.19a2b﹣9ba2=10a2b,故此选项正确;C.16a2﹣7a2=9a2,故此选项错误;D.3x+2x=5x,故此选项错误,故选:B.【点评】本题主要考查了合并同类项法则和同类项的定义,掌握合并同类项法则是解答此题的关键.合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.7.(3分)2016年10月19日3时31分,天宫二号空间实验室与神舟十一号飞船在距地面393000米的高空对接成功,393000用科学记数法可表示为()A.39.3×104B.3.93×105C.0.393×106D.3.93×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:393000用科学记数法可表示为3.93×105,故选:B.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)将一张长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片展开铺平,则所得到的图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,剪去右上角,展开得到结论.故选:A.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如果零上5℃记作+5℃,那么零下3℃记作﹣3℃.【分析】本题需先根据零上5℃记作+5℃,再根据正数和负数的表示方法,即可表示出零下3℃.【解答】解:∵5℃记作+5℃,∴零下3℃记作﹣3℃,故答案为:﹣3.【点评】本题主要考查了正数和负数的表示方法,关键是在解题时要根据题意表示出来.10.(3分)比较大小:﹣>﹣2.7(填>,<或=)【分析】依据两个负数,绝对值大的其值反而小进行比较即可.【解答】解:∵<2.7,∴﹣>﹣2.7.故答案为:>.【点评】本题主要考查的是比较有理数的大小,掌握比较有理数大小的法则是解题的关键.11.(3分)2016年8月第31届夏季奥运会在里约热内卢开幕,里约热内卢与北京的时差为﹣11h,那么里约热内卢时间20时应是北京时间7时.【分析】根据正数和负数,即可解答.【解答】解:20+(﹣11)=9,∵里约热内卢与北京的时差为﹣11h,∴那么里约热内卢时间20时应是北京时间是7时,故答案为:7.【点评】本题考查了正数和负数,解决本题的关键是熟记正数和负数.12.(3分)代数式2m2﹣m+1有3项,次数是2,第二项的系数是﹣1.【分析】根据多项式的概念即可求出答案.【解答】解:该多项式由3项,次数为2,第二项的系数为﹣1,故答案为:3,2,﹣1【点评】本题考查多项式的概念,解题的关键是正确理解多项式的相关概念,本题属于基础题型.13.(3分)代数式a2﹣4a+3减去﹣2a结果是a2﹣2a+3.【分析】根据题意列出算式a2﹣2a+3+(﹣2a),去括号后合并同类项可得.【解答】解:根据题意可得,该代数式为a2﹣2a+3+(﹣2a)=a2﹣2a+3﹣2a=a2﹣4a+3,故答案为:a2﹣4a+3【点评】本题主要考查整式的加减,解题的关键是熟练掌握去括号和合并同类项法则.14.(3分)一根竹杆长为6m,每次截去三分之一,连续截5次后,剩余竹杆长为6×()5m.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:6×()5,故答案为:6×()5【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.15.(3分)若|a|=2,b2=9,则代数式a2b﹣1的值是11或﹣13.【分析】首先根据|a|=2,b2=9,分别求出a2、b的值各是多少,然后应用代入法,求出算式的值是多少即可.【解答】解:∵|a|=2,b2=9,∴a2=22=4,b=±3,(1)b=3时,a2b﹣1=4×3﹣1=12﹣1=11(2)b=﹣3时,a2b﹣1=4×(﹣3)﹣1=﹣12﹣1=﹣13故答案为:11或﹣13.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)一个小立方体的六面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,则字母A对面的字母是C,字母D对面的字母是B.【分析】观察三个正方体,与A相邻的字母有D、E、B、F,从而确定出A对面的字母是C,与B相邻的字母有C、E、A、F,从而确定与B对面的字母是D.【解答】解:由图可知,A相邻的字母有D、E、B、F,所以,A对面的字母是C,与B相邻的字母有C、E、A、F,所以,B对面的字母是D.故答案为:C,B.【点评】本题考查了正方体相对两个面上的文字,根据相邻面的情况确定出相邻的四个字母是确定对面上的字母的关键,也是解题的难点.三、画图题(本大题共4分)17.(4分)如图是由几个小立方块所搭几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出从正面,左面看到的这个几何体的形状图.【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为2,1,3;左视图有2列,每列小正方形数目分别为2,3,据此可画出图形.【解答】解:如图所示:.【点评】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、解答题(本大题共7小题,共68分)18.(20分)计算(1)﹣0.5+(﹣)﹣(﹣2.25)+(﹣)(2)(+﹣)×36(3)32÷[(﹣2)3+(﹣4)](4)16÷(﹣2)3﹣(﹣)×(﹣4)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣0.5+(﹣)+2.25+(﹣)=﹣1+2=1;(2)原式=4+6﹣2=8;(3)原式=9÷(﹣12)=﹣;(4)原式=16÷(﹣8)﹣×4=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(12分)(1)化简4y2﹣(x2+y)+(x2﹣4y2)(2)求值(﹣4x2+2x﹣8)﹣3(x﹣2),其中x=﹣.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=4y2﹣x2﹣y+x2﹣4y2=﹣y(2)当x=﹣时,原式=﹣x2+x﹣2﹣x+6=﹣x2﹣x+4=【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.(6分)已知某水库的警戒水位为18.8m,值班人员记录了某一周内的水位变化情况,如下表:(单位:m,上周末刚好到达警戒水位,取警戒水位为0,“+”表示水位比前一天升高,“﹣”表示水位比前一天降低)(1)本周内哪一天水位最高?哪一天水位最低?它们与警戒水位相差多少?(2)若超过警戒水位1.5m时就应该开闸放水,以确保大坝安全,本周水库需开闸放水吗?【分析】(1)根据题意,“+”表示水位比前一天升高,“﹣”表示水位比前一天降低,分别得出每天水位变化情况;(2)利用(1)中所求,进而分析得出答案.【解答】解:(1)由表格中数据可得:周一水位比警戒水位高0.3m;周二水位比警戒水位高0.3+0.4=0.7(m);周三水位比警戒水位高0.3+0.4﹣0.2=0.5(m);周四水位比警戒水位高0.5+0.3=0.8(m);周五水位比警戒水位高0.8+0.4=1.2(m);周六水位比警戒水位高1.2﹣0.1=1.1(m);周日水位比警戒水位高1.1﹣0.5=0.6(m);故本周内周五水位最高,比警戒水位高出1.2m,周一水位最低,比警戒水位高出0.3m;(2)由(1)得:本周水库最高水位比警戒水位高1.2m,低于1.5m,故本周水库不需要开闸放水.【点评】此题主要考查了正数与负数,正确求出每天水位变化情况是解题关键.21.(6分)从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数.先把这六个两位数相加,然后再用所得的和除以所选三个数字之和.你发现了什么?你能说明其中的道理吗?【分析】设a,b,c三个不同的数字,分别表示出组成的两位数,求出之和,除以三个数的和,即可得到结果.【解答】解:由这三个数字可以组成六个两位数.先把这六个两位数相加,然后再用所得的和除以所选三个数字之和结果为22,理由为:由a,b,c三个不同的数字,分别组成的两位数分别为:10a+b,10a+c,10b+a,10b+c,10c+a,10c+b,之和为10a+b+10a+c+10b+a+10b+c+10c+a+10c+b=22a+22b+22c=22(a+b+c),则=22.【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.22.(6分)人在运动时心跳速率通常和人的年龄有关,若用n表示一个人的年龄,则这个人运动时能承受的每分钟心跳的最高次数为0.8×(220﹣n)次,否则就会危及生命.(1)正常情况下,一个15岁的少年所能承受的每分钟心跳的最高次数是多少?(2)如果一个40岁的人运动时,10秒钟心跳的次数为25次,请问他有危险吗?说明理由.【分析】(1)把n=15代入代数式,计算即可;(2)求出40岁的人运动时能承受的每分钟心跳的最高次数,比较即可得到答案.【解答】解:(1)当n=15时,0.8×(220﹣n)=0.8×(220﹣15)=164,答:正常情况下,一个15岁的少年所能承受的每分钟心跳的最高次数是164次;(2)有危险,理由如下:当n=40时,0.8×(220﹣n)=0.8×(220﹣40)=144,25×6=150,150>144,则一个40岁的人运动时,10秒钟心跳的次数为25次,他有危险.【点评】本题考查的是代数式求值,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.23.(8分)有一种“24点”游戏,其游戏规则是:从﹣13,﹣12,...,﹣1,1, (12)13这二十六个有理数中,任取4个有理数进行加,减,乘,除混合运算(每个数只能用一次),使其运算结果为24,例如,取1,2,3,4,有4×(1+2+3)=24,现从中取4和有理数3,4,﹣6,10,请你运用上述规则,写出三种不同的运算式,使其运算结果为24.(1)4﹣10×(﹣6÷3)=24;(2)3×(10﹣4)﹣(﹣6)=24;(3)10﹣4﹣3×(﹣6)=24;同样的,从中取4个有理数3,﹣5,7,﹣13,运用上述规则,使其运算结果等于24.(4)[(﹣13)×(﹣5)+7]÷3=24(只填写一种运算式即可).【分析】各项利用“24点”游戏规则列出算式即可.【解答】解:(1)根据题意得:4﹣10×(﹣6÷3)=24;(2)根据题意得:3×(10﹣4)﹣(﹣6)=24;(3)根据题意得:10﹣4﹣3×(﹣6)=24;(4)根据题意得:[(﹣13)×(﹣5)+7]÷3=24.故答案为:(1)4﹣10×(﹣6÷3)=24;(2)3×(10﹣4)﹣(﹣6)=24;(3)10﹣4﹣3×(﹣6)=24;(4)[(﹣13)×(﹣5)+7]÷3=24.【点评】此题考查了有理数的混合运算,弄清“24点”游戏规则是解本题的关键.24.(10分)用棋子摆出下列一组图形,请观察图形,根据你发现的规律解答下列问题:(1)填写下表:(2)第n个图形中共有3n+3枚棋子;(3)照这样的方式摆下去,第100个图形中棋子数是多少枚?【分析】解题注意根据图形发现规律,并用字母表示.然后根据条件代入计算.【解答】解:(1)9+3=12;12+3=15;15+3=18;18+3=21故答案为:12;15;18;21;(2)第n个图形棋子的枚数是6+3(n﹣1)=3n+3个;故答案为:3n+3;(3)由(2)得,3×100+3=303.【点评】本题主要考查了图形的变化规律,关键是发现(1)中是6个棋子.后边多一个图形,多3个棋子.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省青岛五十一中七年级(上)期中数学试卷一、选择题1.﹣7的倒数是()A.﹣ B.7 C.D.﹣72.下列说法正确的是()A.32ab2的次数是6次B.x+不是多项式C.πx2+x﹣1的次数是4 D.0不是等式3.如果m是四次多项式,n是四次多项式,那么m+n一定是()A.八次多项式B.次数不高于四的整式C.四次多项式D.次数不低于四的整式4.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.45.用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆.A.①②③④B.①②③C.②③⑤D.③④6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.7.已知4x2n y m+n与﹣3x6y2是同类项,那么mn=()A.2 B.1 C.﹣1 D.﹣38.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是数a,b,c,d,且d﹣2a=10,那么数轴的原点应是()A.点A B.点B C.点C D.点D二、填空题9.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有个.10.单项式的系数是,次数是.11.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.12.据中新社北京2011年12月8日电:2011年中国粮食总产量达到546400000吨,用科学记数法表示为吨.13.某市举行的青年歌手大赛去年共有a人参加,今年比赛的人数比去年增加20%还多3人,用代数式表示今年参赛的人数为.14.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.15.一根长两米的木棒,第一次截去一半,第二次截去剩下部分的一半,如此截下去,第七次后,共截去了米木棒.16.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n行有n个数,且两端的数都为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为.三、作图题17.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.四、解答题18.计算与化简(1)(﹣)﹣(﹣0.2)+1(2)(﹣+﹣)×|﹣24|(3)[1﹣(1﹣0.5×)]×|2﹣(﹣3)2|(4)﹣3(2x2﹣xy)﹣(x2+xy﹣6)(5)先化简,再求值:2x2y﹣[2x2y﹣(2xy﹣3x2y)]+3xy2,其中x=3,y=﹣.19.已知蜗牛从位于井底3米处沿着井壁上上下下爬行,规定向上爬记为正,向下爬记为负(单位:厘米),小明同学观察了蜗牛的5次爬行,记录数据如下:(1)观察结束时,蜗牛离出发点多远?这时蜗牛头朝上还是朝下?为什么?(2)若蜗牛平均每厘米要爬0.5秒,那么小明同学一共观察了多长时间?20.某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费标准为2.4元,某乘客坐出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费;(2)如果该乘客坐了20千米,应付费多少元?21.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”22.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.2016-2017学年山东省青岛五十一中七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣7的倒数是()A.﹣ B.7 C.D.﹣7【分析】根据倒数的定义解答.【解答】解:设﹣7的倒数是x,则﹣7x=1,解得x=﹣.故选:A.2.下列说法正确的是()A.32ab2的次数是6次B.x+不是多项式C.πx2+x﹣1的次数是4 D.0不是等式【分析】根据单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数;含有等号的式子是等式进行分析即可.【解答】解:A、32ab2的次数是3次,故原题说法错误;B、x+不是多项式,故原题说法正确;C、πx2+x﹣1的次数是2,故原题说法错误;D、0不是等式,故原题说法错误;故选:B.3.如果m是四次多项式,n是四次多项式,那么m+n一定是()A.八次多项式B.次数不高于四的整式C.四次多项式D.次数不低于四的整式【分析】利用整式的加减法则判断即可.【解答】解:如果m是四次多项式,n是四次多项式,那么m+n一定是次数不高于四的整式,故选:B.4.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.4【分析】根据有理数的分类、代数式的分类、有理数的乘法、倒数的知识,直接判断即可.【解答】解:①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,错误,还有可能是分式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误;④倒数等于本身的数有1,﹣1,正确.故选:B.5.用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆.A.①②③④B.①②③C.②③⑤D.③④【分析】根据正方体的性质作出各截面图即可得解.【解答】解:如图,①等边三角形,②等腰梯形,③长方形,④五边形,⑤六边形,正方体有六个面,作不出圆,故选:A.6.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.7.已知4x2n y m+n与﹣3x6y2是同类项,那么mn=()A.2 B.1 C.﹣1 D.﹣3【分析】依据同类项的相同字母的指数相同列方程组求解即可.【解答】解:∵4x2n y m+n与﹣3x6y2是同类项,∴2n=6,m+n=2,解得:n=3,m=﹣1.∴mn=3×(﹣1)=﹣3.故选:D.8.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是数a,b,c,d,且d﹣2a=10,那么数轴的原点应是()A.点A B.点B C.点C D.点D【分析】此题用排除法进行分析:分别设原点是点A或B或C或D.【解答】解:若原点是A,则a=0,d=7,此时d﹣2a=7,和已知不符,排除;若原点是点B,则a=﹣3,d=4,此时d﹣2a=10,和已知相符,正确.故选B.法2:设A点数字为a,则D点数字为a+7d﹣2a=10就转变成a+7﹣2a=10解得:a=﹣3,再观察坐标可知原点是B点选B二、填空题9.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有4个.【分析】正负数的分类:数字前面带有“+”号或不带任何号的数叫做正数;数字前面带有“﹣”号的数叫做负数;0是正数和负数的分界点,所以0既不是正数也不是负数.据此进行分类即可.【解答】解:在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,,24中,正数有﹣(﹣1.5),2,,24,故答案为:4.10.单项式的系数是,次数是3.【分析】根据单项式的概念即可求出答案,【解答】解:该单项式的系数为:;次数为:3故答案为:;311.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是4℃.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.12.据中新社北京2011年12月8日电:2011年中国粮食总产量达到546400000吨,用科学记数法表示为 5.464×108吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:546 400 000=5.464×108,故答案为:5.464×108.13.某市举行的青年歌手大赛去年共有a人参加,今年比赛的人数比去年增加20%还多3人,用代数式表示今年参赛的人数为(1+20%)a+3.【分析】根据“今年共有a人参加,比赛的人数比去年增加20%还多3人”即可列出代数式.【解答】解:依题意得:(1+20%)a+3.故答案是:(1+20%)a+3.14.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是231.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.15.一根长两米的木棒,第一次截去一半,第二次截去剩下部分的一半,如此截下去,第七次后,共截去了米木棒.【分析】第一次剩下米;第二次剩下()2米,…,据此即可得到规律,从而判断.【解答】解:第一次剩下米;第二次剩下()2米,…,则第7次后剩下的小棒的长度()7米,故第七次后,共截去了1﹣()7=米木棒.故答案为:.16.如图所示的数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n行有n个数,且两端的数都为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为.【分析】观察图中三角形的数阵,将其改写成等阶形式,发现分母的规律,第n行第k项的通项是,由此得出第8行第3个数.【解答】解:图中三角形的数阵,将其改写成等阶形式:,,,,,,,,,,…因此,第n行第k项的通项是,故第8行第3个数是==,故答案为:.三、作图题17.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.【分析】主视图有3列,每列小正方形数目分别为2,4,3;左视图有2列,每列小正方形数目分别为4,2;依此画出图形即可求解.【解答】解:如图所示:四、解答题18.计算与化简(1)(﹣)﹣(﹣0.2)+1(2)(﹣+﹣)×|﹣24|(3)[1﹣(1﹣0.5×)]×|2﹣(﹣3)2|(4)﹣3(2x2﹣xy)﹣(x2+xy﹣6)(5)先化简,再求值:2x2y﹣[2x2y﹣(2xy﹣3x2y)]+3xy2,其中x=3,y=﹣.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式去括号合并即可得到结果;(5)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1.2+0.2+1=0;(2)原式=﹣12+16﹣6=﹣2;(3)原式=(1﹣1+)×7=;(4)原式=﹣6x2+3xy﹣x2﹣xy+6=﹣7x2+2xy+6;(5)原式=2x2y﹣2x2y+2xy﹣3x2y+3xy2=2xy﹣3x2y+3xy2,当x=3,y=﹣时,原式=﹣2+9+1=8.19.已知蜗牛从位于井底3米处沿着井壁上上下下爬行,规定向上爬记为正,向下爬记为负(单位:厘米),小明同学观察了蜗牛的5次爬行,记录数据如下:(1)观察结束时,蜗牛离出发点多远?这时蜗牛头朝上还是朝下?为什么?(2)若蜗牛平均每厘米要爬0.5秒,那么小明同学一共观察了多长时间?【分析】(1)将蜗牛爬行的各段路程相加,然后根据有理数的加法运算法则进行计算解答即可;(2)求出爬行的各段路程的绝对值的和即可得解.【解答】解:(1)﹣5﹣22+32﹣20+15=0,所以蜗牛离出发点0厘米远,这时蜗牛头朝上;(2)5+22+32+20+15=94,94×0.5=47(秒),答:小明同学一共观察了47秒时间.20.某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费标准为2.4元,某乘客坐出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费;(2)如果该乘客坐了20千米,应付费多少元?【分析】本题在分段函数时常出这样的题,这里可用代数式表示,分为两种情况,小于等于3与大于3两种代数式,乘客坐了20千米,把x=20代入第二个代数式即可.【解答】解:(1)若x≤3,付费为12.5元;若x>3,付费为:12.5+2.4(x﹣3)=5.3+2.4x;(2)应付费:5.3+2.4×20=53.3元.21.小明在做一道题“已知两个多项式A、B,计算A﹣B时,误将A﹣B看A+B,求得的结果是9x2﹣2x+7,若B=x2+3x﹣2,请你帮助小明求出A﹣B的正确答案.”【分析】根据题意,用9x2﹣2x+7减去B的2倍,求出A﹣B的正确答案是多少即可.【解答】解:9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11∴A﹣B的正确答案是7x2﹣8x+11.22.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.【分析】(1)根据已知数据即可得出每一层小圆圈个数是连续的奇数,进而得出答案;(2)利用(1)中发现的规律得出答案即可;(3)利用已知数据得出答案即可;(4)利用(3)中发现的规律得出答案即可;(5)利用(3)中发现的规律得出答案即可.【解答】解:(1)第八层有15个小圆圈,第n层有(2n﹣1)个小圆圈;(2)令2n﹣1=65,得,n=33.所以,这是第33层;(3)1+3+5+…+(2n﹣1)=n2;(4)1+3+5+…+99=502=2500;(5)101+103+105+...+199=(1+3+5+...+199)﹣(1+3+5+ (99)=1002﹣502=7500.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。