假设检验例题与习题(课堂PPT)

合集下载

第8 假设检验(共80张PPT)

第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。

第7章-假设检验例题与习题课件PPT

第7章-假设检验例题与习题课件PPT

统计学
(第二版)
【例】某机器制பைடு நூலகம்出的肥
皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取 10 块 肥 皂 为 样 本 , 测 得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。
8 - 19
双侧检验
统计学
(第二版)
H0: = 5
H1: 5
?( = 0.05)
统计学
(第二版)
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
学习交流ppt假设检验在统计方法中的地位描述统计推断统计参数估计假设检验学习交流ppt学习目标学习交流ppt双侧检验原假设与备择假设的确定都必需采取相应的行动措施例如某种零件的尺寸要求其平均长度为10cm大于或小于10cm均属于不合格我们想要证明检验大于或小于这两种可能性中的任何一种是否成立学习交流ppt单侧检验原假设与备择假设的确定将研究者想收集证据予以支持的假设作为备择假设h将研究者想收集证据证明其不正确的假设作为原假设h学习交流ppt单侧检验原假设与备择假设的确定一项研究表明采用新技术生产后将会使产品的使用寿命明显延长到1500小时以上
8 - 36
双侧检验!
香脆 蛋卷
统计学
(第二版)
用置信区间进行检验
(例题分析)
H0: = 1000
H1: 1000

第六章 假设检验PPT课件

第六章 假设检验PPT课件

4.一批成品按不重复方法抽选200件, 其中废品10件,又知道抽样单位数是成 品量的1/22。当概率为0.9545时,可否 认为这一批产品的废品率不超过6%? (20分)
解:已p 知n1:n 1 02 100 % ;0 n 10 5 % 1;U 0/22,N n2 12
n 200
pP ( 1 n P )( 1 N n )0 .0 ( 2 1 5 0 .0 0 )( 1 0 5 2 1 ) 2 0 .01 1 .5 5 %
解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
假设 H0:=100; H1: ≠100
构造T统计量,得T的0.1双侧分位数为
t0.05 (8) 1 . 8 6
例3 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1)
3、在Variables栏中,键入C2,在Test Mean栏中 键入750,打开Options选项,在Confidence level 栏中键入95,在Alternative中选择not equal,点击 每个对话框中的OK即可。
显示结果
结(1)因为 750 746.98,754.58所以接受原假设
表达:原假设:H0:EX=75;备择假设: H1:EX≠75
判断结果:接受原假设,或拒绝原假设。
基本思想
参数的假设检验:已知总体的分布类型,对分布函数或 密度函数中的某些参数提出假设,并检验。
基本原则——小概率事件在一次试验中是不可能发生的。
思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。

假设检验问题讲解(ppt 47页)

假设检验问题讲解(ppt 47页)
2.82 3.01 3.11 2.71 2.93 2.68 3.02 3.01 2.93 2.56 2.78 3.01 3.09 2.94 2.82 2.81 3.05 3.01 2.85 2.79
其样本均值为2.8965,样本标准为0.148440135,
你可以拒绝原假设吗?
拒绝域为:
x3
s
t0.05(n1)
H0: 3 H1: > 3
H0: 3 H1: 3
Rejection Regions
0 0
Critical Value(s)
/2
0
P-值的应用
p=Pr(t<-3.118)=0.0028
0.45
0.4
0.35 比它小的概率 0.3 是多少?P-值
0.25
0.2
0.15
比它小的概率是0.05
0.15
0.1
0.05
0
-1
0
31-c0 2
3
4
5
6
7
8
大样本下的解决方案(3)
如果2未知,则
x ~ N (0 , 1) s n
选择拒绝域为
x3
s
z 0 . 05
n
假定由36听罐头所组成的一个样本的样 本均值 x 2.92 磅,样本标准差 s=0.18 ,你能拒绝原假设吗?
x
s
3
2.92 0.18
影响 b 的因素
True Value of Population Parameter
Increases When Difference Between Hypothesized Parameter & True Value Decreases

《假设检验》PPT课件-(2)

《假设检验》PPT课件-(2)
t检验的正确应用
资料的代表性与可比性 所谓代表性是指该样本从相应总体中经随机抽样获得,能够代表总体的特征; 所谓可比性是指各对比组间除了要比较的主要因素外,其它影响结果的因素应尽可能相同或相近 为了保证资料的可比性,必须要有严密的实验设计,保证样本随机抽取于同质总体,这是假设检验得以正确应用的前提 。
在两个样本均数比较时,若两组样本含量都很大,可用u检验,其计算公式为:
u为标准正态离差,按正态和1993抽查部分12岁男童对其发育情况进行评估,其中身高的有关资料如下,试比较这两个年度12岁男童身高均数有无差别。
1973 年:n1=120 =139.9cm s1=7.5cm; 1993 年:n2=153 =143.7cm s2=6.3cm。 H0 :1=2,即该市两个年度12岁男童平均身高相等; H1 :1≠2,即该市两个年度12岁男童平均身高不等。 双侧 =0.05。
-t
t
0
-2.064
2.064
0
=24
0.025
0.025
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
P=P(|t|≥5.4545)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性P(| t | ≥5.4545)小于0.05,是小概率事件,即现有样本信息不支持H0。 抉择的标准为: 当P≤ 时,拒绝H0,接受H1 当P> 时,不拒绝H0 本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,差别有统计学意义。认为该病女性患者的Hb含量高于正常女性的Hb含量。
根据抽样误差理论,在H0假设前提下,统计量t服从自由度为n-1的t分布,即t值在0的附近的可能性大,远离0的可能性小,离0越远可能性越小。 t值越小,越利于H0假设 t值越大,越不利于H0假设

统计学试验假设检验PPT(完整版)

统计学试验假设检验PPT(完整版)
统计学试验假设检验
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.

假设检验例题与习题课件

假设检验例题与习题课件

比例
方差
Z 检验
t 检验
Z 检验
(单尾和双尾) (单尾和双尾) (单尾和双尾)
2检验
(单尾和双尾)
学习交流PPT
10
总体均值检验
学习交流PPT
11
•【例】某机床厂加工一种零件,根 据经验知道,该厂加工零件的椭圆 度近似服从正态分布,其总体均值 为 0=0.081mm , 总 体 标 准 差 为 = 0.025 。今换一种新机床进行加工,
第 7章 假设检验例题与习题
学习交流PPT
1
假设检验在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
学习交流PPT
2
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验
5. 利用P - 值进行假设检验
学习交流PPT
3
拒绝 H0
.025
-1.96 0 1.96 Z
检验统计量:
z=x0 =0.0760.08=12.83 n 0.025200
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
学习交流PPT
13
2 已知均值的检验
(P 值的计算与应用)
•第1步:进入Excel表格界面,选择“插入”下拉菜单
显著地高于1200小时
学习交流PPT
18
•【 例 】 某 机 器 制 造 出 的 肥 皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取 10 块 肥 皂 为 样 本 , 测 得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。

《假设检验习题答案》课件

《假设检验习题答案》课件

论语(节选)(一)颜渊问仁。

子曰:"克己复礼为仁。

一日克己复礼,天下归仁焉。

为仁由己,而由人乎哉?"颜渊曰:"请问其目?"子曰:"非礼勿视,非礼勿听,非礼勿言,非礼勿动。

"颜渊曰:"回虽不敏,请事斯语矣。

" ——《论语·颜渊》翻译:颜渊问什么是仁。

孔子告诉他:"严格要求自己按照礼的要求去做就是仁。

一旦做到克己复礼,天下就回到仁上了。

修养仁德靠自己,难道还能依靠别人吗?"颜渊接着问:"请问实践仁德的具体途径?"孔子告诉他说:"不符合礼制的东西不看,不符合礼制的信息不听,不符合礼制的话不说,不符合礼制的事情不做。

"颜渊说:"我虽然不聪明,但我一定照着您的话去做。

(二)仲弓问仁。

子曰:"出门如见大宾,使民如承大祭。

己所不欲,勿施于人。

在邦无怨,在家无怨。

"仲弓曰:"雍虽不敏,请事斯语矣。

" ——《论语·颜渊》翻译:仲弓问什么是仁。

孔子告诉他:"出门在外要像接见贵宾那样敬慎,治理百姓要像承担重大祭祀那样严肃谨慎。

自己不喜欢做的事情,不要强加给别人。

这样在朝廷和家族中都不会招致怨恨。

"仲弓说:"我虽然不聪明,但我一定照着您的话做。

"(三)子贡问曰:“有一言而可以终身行之者乎?”子曰:“其恕乎!己所不欲,勿施于人。

”——《论语·卫灵公》翻译:子贡问孔子:“有没有一个字可以终身奉行的呢?”孔子回答说:“那就是‘恕’吧!自己不愿意的,不要强加给别人。

”(四)有子曰:“其为人也孝弟,而好犯上者,鲜矣;不好犯上,而好作乱者,未之有也。

君子务本,本立而道生。

孝弟也者,其为仁之本与?”——《论语·学而》翻译:有子说:”孝顺父母,顺从兄长,而喜好触犯上层统治者,这样的人是很少见的。

假设检验例题与习题40页PPT

假设检验例题与习题40页PPT
H0: 2% H1: < 2%
8 -6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
பைடு நூலகம்推断统计
参数估计
假设检验
8 -1
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
8 -2
统计学
(第二版)
双侧检验
H0: 1500 H1: 1500
8 -5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
3. 先确立备择假设H1
8 -4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有证据表明这批灯泡的使用 寿命有显著提高
统计学
(第二版)
【例】某电子元件批量生产的 质量标准为平均使用寿命1200 小时。某厂宣称他们采用一种 新工艺生产的元件质量大大超 过规定标准。为了进行验证, 随 机 抽 取 了 100 件 作 为 样 本 , 测得平均使用寿命1245小时, 标 准 差 300 小 时 。 能 否 说 该 厂 生产的电子元件质量显著地高 于规定标准? (=0.05)
第4步:将Z的绝对值2.83录入,得到的函数值为
0.997672537
P值=2(1-0.997672537)=0.004654
8 - 14
P值远远小于2,故拒绝H0
统计学
(第二版)
【例】根据过去大量资料,
某厂生产的灯泡的使用寿命 服 从 正 态 分 布 N~(1020 , 1002)。现从最近生产的一批 产 品 中 随 机 抽 取 16 只 , 测 得 样 本 平 均 寿 命 为 1080 小 时 。 试 在 0.05 的 显 著 性 水 平 下 判 断这批产品的使用寿命是否 有显著提高?(=0.05)
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
备择假设的方向为“<”(寿命不足1000小 时)
▪ 建立的原假设与备择假设应为
8 -8
H0: 1000 H1: < 1000
统计学
(第二版)
一个正态总体参数的检验
一. 检验统计量的确定 二. 总体均值的检验 三. 总体比例的检验 四. 总体方差的检验
8 -9
统计学
(第二版)
一个总体参数的检验
统计学
(第二版)
第 7章
假设检验例题与习题
8 -1
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
推断统计
参数估计
假设检验
8 -2
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
4. 建立的原假设与备择假设应为 H0: = 10 H1: 10
8 -4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
1. 将研究者想收集证据予以支持的假设作为备择 假设H1
▪ 例如,一个研究者总是想证明自己的研究结论是正 确的
▪ 一个销售商总是想正确供货商的说法是不正确的 ▪ 备择假设的方向与想要证明其正确性的方向一致
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:
z = x 0 = 0.076 0.081 = 2.83 n 0.025 200
结论:
不能认为该厂生产的元件寿命 显著地高于1200小时
统计学
(第二版)
【例】某机器制造出的肥
皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取 10 块 肥 皂 为 样 本 , 测 得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。
8 - 17
单侧检验
统计学
(第二版)
H0: 1200 H1: >1200 = 0.05 n = 100 临界值(s):
拒绝域
0.05
8 - 18
0 1.645 Z
Байду номын сангаас
检验统计量:
z = x 0 = 1245 1200 = 1.5 n 300 100
决策:
在 = 0.05的水平上不拒绝H0
2. 将研究者想收集证据证明其不正确的假设作为 原假设H0
3. 先确立备择假设H1
8 -5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
8 - 15
单侧检验
统计学
(第二版)
H0: 1020 H1: > 1020 = 0.05 n = 16 临界值(s):
拒绝域
0.05
8 - 16
0 1.645 Z
检验统计量:
z = x 0 = 1080 1020 = 2.4 n 100 14
决策:
在 = 0.05的水平上拒绝H0
结论:
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为
H0: 1500 H1: 1500
8 -6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
8 -3
统计学
(第二版)
双侧检验
(原假设与备择假设的确定)
1. 属于决策中的假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采取 相应的行动措施
3. 例如,某种零件的尺寸,要求其平均长度为 10cm,大于或小于10cm均属于不合格
我们想要证明(检验)大于或小于这两种可能性 中的任何一种是否成立
一个总体
均值
比例
方差
Z 检验
t 检验
Z 检验
(单尾和双尾) (单尾和双尾) (单尾和双尾)
2检验
(单尾和双尾)
8 - 10
统计学
(第二版)
总体均值检验
8 - 11
统计学
(第二版)
【例】某机床厂加工一种零件,根 据经验知道,该厂加工零件的椭圆 度近似服从正态分布,其总体均值 为 0=0.081mm , 总 体 标 准 差 为 = 0.025 。今换一种新机床进行加工, 抽取n=200个零件进行检验,得到的 椭圆度为0.076mm。试问新机床加 工零件的椭圆度的均值与以前有无 显著差异?(=0.05)
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
H0: 2% H1: < 2%
8 -7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
相关文档
最新文档