高考物理 秒杀必备 机械运动、机械波
机械波高考知识点
机械波高考知识点机械波是物理学中的重要概念,涉及到波动现象和能量传递。
在高考物理考试中,机械波也是一个必考的知识点。
了解机械波的基本概念和特性,对于正确理解和解答波动问题至关重要。
下面,我们将重点介绍与机械波相关的一些高考知识点。
一、机械波的分类机械波分为横波和纵波两种。
横波是指波动方向与能量传播方向垂直的波,典型的例子是水波和光波。
纵波是指波动方向与能量传播方向相同的波,典型的例子是声波。
二、机械波的传播机械波的传播需要介质的存在,介质可以是固体、液体或气体。
横波和纵波在不同介质中的传播也有所不同。
在固体中,横波和纵波均可传播,而在气体和液体中,横波只能是表面波,不能在介质内部传播,而纵波可以在介质内部传播。
三、机械波的传播速度机械波的传播速度与介质的性质有关。
在同一介质中,传播速度与波长和频率有关。
传播速度等于波长乘以频率。
在同一介质中,频率越高,波长越短,传播速度越快。
四、机械波的特性机械波具有反射、折射、衍射和干涉等特性。
①反射:当波遇到障碍物或界面时,会发生反射现象。
在反射过程中,波的传播方向发生改变,但频率和波长保持不变。
②折射:当波从一种介质传播到另一种介质时,会发生折射现象。
在折射过程中,波的传播方向和速度均发生改变,频率保持不变,但波长会改变。
③衍射:当波通过一个孔或绕过一个障碍物时,会发生衍射现象。
衍射现象可以解释波的弯曲现象。
④干涉:当两个或多个波相遇时,会发生干涉现象。
干涉现象可以是增强或减弱。
五、机械波的传播方向机械波的传播方向有水平传播、竖直传播和斜向传播三种。
水平传播是指波动方向与水平方向垂直,竖直传播是指波动方向与竖直方向垂直,斜向传播是指波动方向与一定角度的方向垂直。
六、机械波的波动方程机械波的波动方程是描述波动过程的重要公式。
对于一维情况下的机械波,波动方程可以写为y(x,t)=Asin(kx±ωt+φ),其中y表示波动的振幅,x表示相对于平衡位置的位移,t表示时间,A是振幅,k是波数,ω是角频率,φ是初始相位。
高三物理 机械振动和机械波
高三物理机械振动和机械波知识要点:1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:(1)回复力不为零。
(2)阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
机械振动是高中阶段力学学习中最复杂的运动,所以本部分内容的高考大纲要求和学习方法与其他章节也有所区别。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
(4)频率f:振动物体单位时间内完成全振动的次数。
(5)角频率 :角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f Tf ===122,ωππ。
高中物理机械振动和机械波知识点
高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
高考物理第六章机械振动和机械波知识点
高考物理第六章机械振动和机械波知识点高考物理第六章机械振动和机械波知识点机械振动和机械波部分是高中物理的一大重要版块,学好这一部分对整个高中阶段物理的学习至关重要。
下面是店铺为大家精心推荐的机械振动和机械波知识点总结,希望能够对您有所帮助。
机械振动和机械波必背知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。
例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。
1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的`频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
高三物理机械振动和机械波知识点总结
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线。
(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
高考物理知识点之机械振动与机械波
高考物理知识点之机械振动与机械波考试要点基本概念一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
(2)回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
(3)“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
(1)由定义知:F∝x,方向相反。
(2)由牛顿第二定律知:F ∝a ,方向相同。
(3)由以上两条可知:a ∝x ,方向相反。
(4)v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
(1)振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
高考物理必考知识点机械波
高考物理必考知识点机械波: 机械波在高考物理中,机械波是一个非常重要的知识点。
了解机械波的性质、传播方式以及相关的公式和实验是学生必备的知识,也是考试中常常出现的考点之一。
本文将深入探讨机械波的相关内容,帮助学生更好地理解和掌握这一知识点。
一、机械波的定义和特点机械波是一种通过介质传播的波动。
相较于电磁波,机械波需要介质的存在来传播。
介质可以是固体、液体或气体,而机械波的传播速度与介质的性质有关。
机械波具有波长、频率、波速和振幅等特点。
其中,波长是指相邻两个波峰或波谷之间的距离,频率是指波的周期内所包含的波峰或波谷的个数,波速是指波传播的速度,振幅则是波的最大偏离平衡位置的距离。
二、机械波的分类根据波的传播方向和介质振动方向之间的关系,我们可以将机械波分为横波和纵波两种。
在横波中,波的传播方向与介质振动方向垂直,而在纵波中,波的传播方向与介质振动方向平行。
此外,机械波还可以根据是否需要介质传播来进行分类,例如,声波就是一种需要介质传播的机械波。
三、机械波的传播方式在介质中传播的机械波有两种传播方式,即波的传播可以是沿某一方向直线传播(直线波),也可以是从波源周围向外辐射传播(球面波)。
对于直线波来说,波的传播方向与波前垂直,传播方式比较简单。
而球面波则是由点式波源产生,波前呈球面扩展,传播方式比较复杂。
在实际生活中,我们常常会遇到这两种类型的机械波。
四、机械波的传播速度机械波在传播过程中具有一定的传播速度。
根据波的性质,机械波的传播速度可以通过以下公式计算:v = λ × f,其中v代表波速,λ代表波长,f代表频率。
从这个公式可以看出,波速与波长和频率有关。
波长越大,传播速度越慢;频率越高,传播速度越快。
五、机械波的干涉和衍射机械波在传播过程中,当遇到一个障碍物时,会发生干涉和衍射现象。
干涉是指两个或多个波相遇时产生的波的加强或减弱现象,而衍射则是波通过一个障碍物或绕过障碍物后呈现出弯曲现象。
2025年高考物理专题突破:机械振动和机械波(原卷版)
机械振动机械波质量监测试卷本试卷分第Ι卷(选择题)和第Ⅱ(非选择题)两部分。
满分:100分;考试时间:75分钟注意事项:1.答题前,考生先将自己的姓名.班级.座号.准考证号填写在答题卡上。
2.答选择题时,必须使用2B铅笔填涂;答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁.完整。
3.考试结束后,将答题卡交回(试题卷自己保存,以备评讲)。
第I卷(选择题,共43分)一、单项选择题:(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求)1.无人驾驶汽车上安装的车载雷达系统可以发出激光和超声波信号,其中()A.激光是横波B.超声波是横波C.激光是机械波D.超声波是电磁波2.如图所示,弹簧振子在B、C间做简谐振动,O为平衡位置,5cm==,若振子从B第一次运动BO OC到O的时间是0.5s,则下列说法正确的是()A.振幅是10cm B.振动周期是1sC.经过一次全振动,振子通过的路程是10cm D.从B开始经过3s,振子通过的路程是30cm3.蟾蜍在池塘边平静的水面上鸣叫,某时形成如图所示的水波。
若蟾蜍的鸣叫频率不变,下列选项正确的是()A.岸边的人接收到鸣叫的声波是横波B.水波从浅水区传入深水区,频率变小C.水面上的落叶遇到水波后做受迫振动D.水波遇到大石头比遇到小石头更容易发生衍射现象4.如图甲所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动,取向右为正方向,振子的位移x随时间t的变化如图乙所示,下列说法正确的是()A.0.1πB.0.2πC.0.4πD.0.8π6.我国的YLC-2E型反隐形米波雷达能探测到450公里外超音速飞行的各类隐形战斗机,堪称隐形战斗机A.波沿x轴负方向传播B.当0.5st=时P点和M点的位移相同C.质点M在1s3t=时位移为-0.02m D.质点N的平衡位置坐标N7.5mx=A.0t=时,1号浮球位于平衡位置下方且沿z轴正向运动B.0t=时,6号浮球位于平衡位置上方且沿z轴负向运动.B...14.(14分)一列横波在x轴上传播,在10t=时刻波形如图中实线所示,。
2024届新高考物理知识点总结大全(2024.5.28考前必看)
新高考物理知识点总结大全(2024.5.27)力学一、*机械运动及其描述1.机械运动及其描述2.描述运动的物理量二、直线运动1.直线运动2.匀变速直线运动3.匀变速直线运动规律的应用4.运动图像、V-T图像三、相互作用---力1.力2.重力3.弹力4.摩擦力5.力的合成与分解6.共点力平衡7.受力分析的方法8.平衡问题中常见的临界与极值四、运动和力的关系1.牛顿第一定律2.牛顿第二定律3.牛顿第三定律4.牛顿运动定律的应用5.斜面、连接体、传送带、板块等模型五、曲线运动1.曲线运动的理解2.运动的合成与分解3.抛体运动4.圆周运动六、万有引力与宇宙航行1.开普勒行星运动定律2.万有引力定律3.万有引力定律的应用(1)三大宇宙速度(2)引力势能及其应用(3)同步卫星、近地卫星、一般卫星(4)双星、多星系统问题(5)潮汐问题(6)中子星与黑洞问题(7)拉格朗日点问题七、功和能1.功2.功率3.动能与动能定理4.重力势能和弹性势能5.机械能守恒定律6.能量守恒定律八、动量守恒定律1.动量2.冲量3.动量定理4.动量守恒定律5.动量守恒定律的应用(1)碰撞问题(2)爆炸问题(3)反冲问题(4)多过程问题九、机械振动与机械波1.机械振动2.机械波电磁学十、静电场1.电荷间的相互作用2.电场力的性质3.电场能的性质4.静电现象5.电容器6.带电粒子在电场中的运动十一、恒定电流1.电流2.导体的电阻3.部分电路欧姆定律4.电功和电功率5.焦耳定律6.非纯电阻电路7.电动势8.闭合电路的欧姆定律9.动态电路分析10.故障电路分析11.含容电路分析12.简单逻辑电路十二、磁场1.磁现象和磁场2.安培力3.洛伦兹力4.带电粒子在磁场中的运动5.带电粒子在复合场中的运动6.质谱仪、回旋加速器、霍尔效应、电磁流量计、磁流体发电机十三、电磁感应1.电磁感应现象2.感应电流方向的判断3.法拉第电磁感应定律4.电磁感应中的能量转化5.自感和涡流十四、交变电流1.交变电流的产生2.描述交变电流的物理量3.电感和电容对交变电流的影响4.变压器5.远距离输电十五、电磁波1.电磁波的产生与应用2.电磁波谱十六、传感器1.传感器及其元件2.传感器的应用热学十七、分子动理论1.阿伏伽德罗常数2.分子的大小3.扩散现象4.布朗运动5.分子热运动6.分子间的相互作用力7.分子势能8.温度和温标9.物体的内能十八、气体、固体、液体1.气体2.固体3.液体4.饱和汽和饱和汽压5.物态变化十九、热力学定律1.热力学第一定律2.能量守恒定律3.热力学第二定律4.热力学第三定律5.能源与可持续发展二十、*热机、制冷机1.热机原理与热机效率2.内燃机原理3.*汽轮机与发电机4.*制冷剂原理5.*电冰箱与空调光学二十一、光的传播与反射1.光沿直线传播2.光的反射二十二、光的折射1.光的折射定律二十三、全反射1.全反射现象2.全反射的条件3.全反射的应用二十四、光的干涉1.双缝干涉2.薄膜干涉二十五、光的衍射1.衍射图样2.衍射条件二十六、*光的颜色与色散1.光的颜色2.三棱镜色散二十七、光的偏振1.偏振现象及其解释2.偏振的应用二十八、激光1.激光的原理和产生条件2.激光的特点及其应用近代物理二十九、波粒二象性1.能量的量子化2.光电效应3.康普顿效应4.物质的波粒二象性三十、原子结构1.电子的发现2.核式结构模型3.波尔的原子模型三十一、原子核1.原子核的组成2.放射性元素衰变3.核力和结合能4.核能5.粒子和宇宙三十二、*相对论简介1.狭义相对论2.时间和空间的相对性3.广义相对论物理实验(共16个)一、物理实验基础1.常用仪器的使用与读数2.误差和有效数字二、力学实验1.研究匀变速直线运动(1)测量做直线运动物体的瞬时速度(2)测定匀变速直线运动的加速度2.*利用单摆测定重力加速度3.探究弹力和弹簧伸长的关系*测量动摩擦因数4.验证力的平行四边形定则5.验证牛顿运动定律6.曲线运动(1)探究平抛运动的特点(2)用频闪相机研究平抛运动(3)探究向心力大小与半径、角速度、质量的关系(4)探究功与物体速度变化的关系7.探究动能定理(1)探究动能定理(2)用现代方法验证动能定理8.验证机械能守恒定律9.验证动量守恒定律(1)验证动量守恒定律(2)用现代方法验证动量守恒定律三、电学实验10.描绘小电珠的伏安特性曲线11.测定金属的电阻率(1)伏安法测量未知电阻(2)半偏法测量电表内阻(3)测量电阻丝的电阻率(4)特殊方法测电阻12.测定电源的电动势和内阻13.练习使用多用电表14.传感器的简单使用*观察电容器充、放电现象*探究影响感应电流方向的因素*探究变压器原、副线圈电压与匝数的关系四、热学实验(1)用油膜法估测分子的大小(2)气体实验定律五、光学实验(1)测量玻璃的折射率(2)测量折射率的创新方法(3)双缝干涉实验六、创新实验(1)力学创新实验(2)电学创新实验物理学史、方法、单位制一、物理学史二、方法三、单位制1.力学单位制2.单位制和量纲【专题01】直线运动一、匀变速直线运动1.概念:沿着一条直线且加速度不变的运动。
高考物理考点分析之机械振动与机械波
高考物理考点分析之机械振动与机械波高考物理考点分析之机械振动与机械波机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。
然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。
运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。
理解好对称性这一点对解决有关问题很有帮助。
4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起是讨论简谐运动的一种好方法。
6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
○2产生共振的条:驱动力频率等于物体固有频率。
○3共振的应用:转速计、共振筛。
高考物理必考难点秒杀技法波的传播方向与质点振动方向判析
高考物理必考难点秒杀技法波的传播方向与质点振动方向判析波的传播方向与质点振动方向是高考物理中一个常考的难点,通过掌握一些解题技巧,可以轻松应对这类问题。
本文将针对这个难点,给出一些秒杀技法并附上相应的解析。
一、波的传播方向与质点振动方向的关系在波的传播过程中,波动传播的是能量和信息,而质点则只是作简谐振动。
波的传播方向与质点振动方向的关系可以通过以下两种情况来判析。
1.在机械波中,质点振动方向与波的传播方向相同。
这种情况下,质点在波的传播过程中沿着波的传播方向作拍动或往复振动。
例如:声波传播时,介质中的质点受到声波的作用,沿着波的传播方向作前后或往复运动。
2.在机械波中,质点振动方向与波的传播方向垂直。
这种情况下,质点在波的传播过程中作横向运动。
例如:横波在绳子上传播时,质点在绳子方向上的振动与波的传播方向垂直,即质点在绳子上作垂直于波的传播方向的横向运动。
二、波的传播方向与质点振动方向的判断方法在解题过程中,我们可以通过以下两种方法来判断波的传播方向与质点振动方向的关系。
1.观察介质中质点的运动如果介质中的质点同时有振动和移动,那么质点的运动方向就是波的传播方向。
在这种情况下,质点的振动方向与波的传播方向相同。
例如:水波传播时,水面上的质点既有上下振动的运动,也有左右的移动,其中上下振动的运动是质点的振动方向,即波的传播方向。
2.利用波的性质根据波的性质,我们也可以判断波的传播方向与质点振动方向的关系。
例如:光波是一种横波,在光的传播中,波的传播方向与质点振动方向垂直。
因此,如果题目给出了光的传播方向,我们就可以确定质点的振动方向与之垂直。
三、题目分析与解析以下是一些例题,通过分析题目并运用上述判析方法,可以快速解决这类问题。
例题一:解析:根据题目描述,我们知道波的传播方向是沿着x轴正向的,而绳上的质点振动方向则是垂直于波的传播方向的。
由于初型是常数曲线,那么在波的传播过程中,绳上的质点呈现纵向振动。
高考物理专题——机械振动和机械波 光学
一、机械振动和机械波1.简谐运动的图象信息(1)由图象可以得出质点做简谐运动的振幅、周期。
(2)可以确定某时刻质点离开平衡位置的位移。
(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向。
2.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同。
(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同。
(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变。
(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v=λT=λf。
二、光的折射和全反射对折射率的理解(1)公式:n=sin θ1 sin θ2(2)折射率由介质本身的性质决定,与入射角的大小无关。
(3)折射率与介质的密度没有关系,光密介质不是指密度大的介质,光疏介质不是指密度小的介质。
(4)折射率的大小不仅与介质本身有关,还与光的频率有关。
同一种介质中,频率越大的色光折射率越大,传播速度越小。
(5)同一种色光,在不同介质中虽然波速、波长不同,但频率相同。
(6)折射率大小不仅反映了介质对光的折射本领,也反映了光在介质中传播速度的大小v=c n。
三、光的波动性1.三种现象:光的干涉现象、光的衍射现象和光的偏振现象。
2.光的干涉(1)现象:光在重叠区域出现加强或减弱的现象。
(2)产生条件:两束光频率相同、相位差恒定。
(3)典型实验:杨氏双缝实验。
3.光的衍射(1)现象:光绕过障碍物偏离直线传播的现象。
(2)产生条件:障碍物或孔的尺寸与波长相差不多或更小。
(3)典型实验:单缝衍射、圆孔衍射和不透明圆盘衍射。
四、电磁波1.电磁波是横波:在传播方向上的任一点,E和B随时间做正弦规律变化,E与B彼此垂直且与传播方向垂直。
2.电磁波的传播不需要介质:电磁波在真空中的传播速度与光速相同,即c=3×108 m/s。
3.电磁波具有波的共性:能产生干涉、衍射等现象。
高考物理最新力学知识点之机械振动与机械波知识点总复习含解析
高考物理最新力学知识点之机械振动与机械波知识点总复习含解析一、选择题1.一简谐横波沿水平绳向右传播,波速为v ,传播周期为T ,介质中质点的振幅为A 。
绳上两质点M 、N 的平衡位置相距34波长,N 位于M 右方。
设向上为正,在t =0时刻M 位移为2A +,且向上运动;经时间t (t <T ),M 位移仍为2A+,但向下运动,则( )A .在t 时刻,N 位移为负,速度向下B .在t 时刻,N 位移为负,速度向上C .在t 时刻,N 恰好在波谷位置D .在t 时刻,N 恰好在波峰位置2.如图所示,A 、B 两物体组成弹簧振子,在振动过程中,A 、B 始终保持相对静止,下列给定的四幅图中能正确反映振动过程中物体A 所受摩擦力F f 与振子对平衡位置位移x 关系的图线为A .B .C .D .3.图甲所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是A .在t =0.2s 时,弹簧振子运动到O 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地减小D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同4.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 5.下图表示一简谐横波波源的振动图象.根据图象可确定该波的( )A .波长,波速B .周期,振幅C .波长,振幅D .周期,波速6.一列简谐横波在某时刻的波形图如图所示,已知图中的质点b 比质点a 晚0. 5s 起振,质点b 和质点c 平衡位置之间的距离为5m ,则该波的波速为A .1m/sB .3m/sC .5m/sD .8m/s7.一列简谐横波沿x 轴传播,t=0时刻的波形如图所示.则从图中可以看出( )A .这列波的波长为5mB .波中的每个质点的振动周期为4sC .若已知波沿x 轴正向传播,则此时质点a 向下振动D .若已知质点b 此时向上振动,则波是沿x 轴负向传播的8.一列沿x轴正方向传播的简谐横波,t=0时刻的波形如图中实线所示,t=0.2 s时刻的波形如图中的虚线所示,则A.质点P的运动方向向右B.波的周期可能为0.27 sC.波的频率可能为1.25 HzD.波的传播速度可能为20 m/s9.如图所示,MN为半径较大的光滑圆弧轨道的一部分,把小球A放在MN的圆心处,再把另一小球B放在MN上离最低点C很近的B处,今使两球同时自由释放,则在不计空气阻力时有()A.A球先到达C点B.B球先到达C点C.两球同时到达C点D.无法确定哪一个球先到达C点10.一列简谐横波沿x轴传播,a、b为x轴上的两质点,平衡位置分别为 x=0,x=x b(x b>0).a 点的振动规律如图所示。
高考物理经典题型:三种模型解决机械振动和机械波
三种模型解决机械振动和机械波距离高考还有不到一个月了,各位同学也早已进入到最后的冲刺阶段。
对于现阶段的复习,建议各位同学要回归课本,巩固知识点,重温近几年天津卷的真题,加强解题的规范性和准确性。
机械振动和机械波作为高考选择题的必考考点,常在多选题中出现,因此也成为选择题中的难点和失分点。
因此,我今天要和各位同学分享机械振动和机械波中常见的三种模型。
模型一:长度/时间模型(多解性)1、长度模型特征:已知两点间距为x和振动情况,求波长。
方法:按传播方向平移振动图像,写出多解表达式。
例题:(2008 天津)一列简谐横波沿直线由a向b传播,相距10.5m的a、b两处的质点振动图象如图中a、b所示,则()A.该波的振幅可能是20cmB.该波的波长可能是8.4mC.该波的波速可能是10.5m/sD.该波由a传播到b可能历时7s【分析】由振动图象可知波的振幅及周期;由图象得出同一时刻两质点的位置及振动方向,则可得出ab间可能含有的波长数,则可得出波长的表达式,波速公式可得出波速的可能值;则可知该波从a传播到b点可能经历的时间.【解答】解:A 、由图可知,波的周期为4s ,振幅为10cm ,故A 错误;B 、由图可知,在0时刻a 在负向最大位置处,b 在平衡位置向正方向运动,而波由a 向b 传播,则ab 间距离与波长关系为l =(n +34)λ=4n+34λ(n =0,1,2,3﹣﹣﹣﹣﹣﹣),将8.4m 代入n 无解,故B 错误;C 、由B 可知λ=424n+3m ,由v =λT 可知,v =424n+34m/s =10.54n+3m/s (n =0、1、2﹣﹣﹣﹣﹣﹣),将10.5m/s 代入,n 无解,故C 错误;D 、由a 到b 需要的时间t =l v=(4n+3)s ,当n =1时,t =7s ,故D 正确; 故选:D 。
2、 时间模型特征:已知时间间距为t 的两个时刻的振动情况,求周期。
方法:按传播方向平移振动图像,求多解表达式。
2025高考物理 机械振动和机械波
2025高考物理 机械振动和机械波一、单选题1.如图所示,半径为R 的圆盘边缘有一钉子B ,在水平光线下,圆盘的转轴A 和钉子B 在右侧墙壁上形成影子O 和P ,以O 为原点在竖直方向上建立x 坐标系。
0t =时从图示位置沿逆时针方向匀速转动圆盘,角速度为ω,则P 做简谐运动的表达式为( )A .sin()2πω=-x R t B .sin()2πω=+x R t C .2sin()2πω=-x R t D .2sin()2πω=+x R t 2.如图所示,为一个水平弹簧振子的振动图像,下列说法不正确的是( )A .1s t =到2s t =内,弹簧振子的动能不断减小B .该弹簧振子的振动方程为10sin cm 2x t π=-C .3s t =时,弹簧振子的加速度沿x 轴负方向D .0t =到10s t =弹簧振子的路程为100cm3.直立的轻弹簧一端固定在地面上,另一端拴住一个铁块,现让铁块在竖直方向做往复运动,从铁块所受合力为零开始计时,取向上为正方向,其运动的位移-时间图像如图所示( )A .t =0.25s 时物体对弹簧的压力最大B .t =0.25s 和t =0.75s 两时刻弹簧的弹力相等C .t =0.25s 至t =0.50s 这段时间物体做加速度逐渐增大的加速运动D .t =0.25s 至t =0.50s 这段时间内物体的动能和弹簧的弹性势能之和在增大4.如图所示为相同的小球(可看作质点)构成的单摆,所有的绳子长度都相同,在不同的条件下的周期分别1234T T T T 、、、,关于周期大小关系的判断,正确的是( )A .1234>>>T T T TB .4132T T T T <=<C .4132T T T T >=>D .1234T T T T <<<二、多选题5.如图甲所示,一光滑绝缘小圆槽MN 固定在水平面上,M 、N 两点之间的弧长远小于圆槽的半径R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理秒杀必备机械运动、机械波机械运动、机械波一、主要内容本章内容包括机械振动、回复力、振幅、周期、频率、简谐振动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。
二、基本方法本章中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。
图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。
三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。
另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。
例1 一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T,第二次被压缩12x后释放做自由振动,周期为T,则两次振动周期之比T?T为 [ ] 212 A(1?1 B(1?2C(2?1 C(1?4【错解】压缩x时,振幅为x,完成一次全振动的路程为4x。
压缩2x时,振幅即为2x,完成一次全振动的路程为8x。
由于两种情况下全振动的路程的差异,第二次是第一次的2倍。
所以,第二次振动的周期一定也是第一次的2倍,所以选B。
【错解原因】上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。
用了匀速或匀加速运动的规律。
说明这些同学还是没有掌握振动的特殊规律。
【分析解答】事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。
所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。
【评析】本题给出的错解是初学者中最常见的错误。
产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。
只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。
例2 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平A(频率不变,振幅不变 B(频率不变,振幅改变C(频率改变,振幅不变 D(频率改变,振幅改变【错解】错解一:因为单摆的周期(频率)是由摆长l和当地重变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。
所以振幅也不变,应选A。
而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。
错解三:认为频率要改变,理由同错解二。
而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能E=mgh,E不变,m变为原来的4倍,h一定变PP小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。
【错解原因】此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。
若有关系,有什么关系,是应该弄清楚的。
而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。
错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。
判断只从能量不变去看,当E不变时,E=mgh,m变大了,h一定变小。
说明有些同学考虑问题还是不够总P全面。
【分析解答】 (1)实际上,通过实验我们已经了解到,决定单单摆的周期与质量无关,与单摆的运动速度也无关。
当然,频率也与质量和速度无关,所以不能选C,D。
(2)决定振幅的是外来因素。
反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能E K的重力势能也不变。
但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能E=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。
因此正P确答案应选B。
【评析】本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率例3 如图6-1所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。
问h应为多高,【错解】对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:对A球,它做自由落体运动,自h高度下落至O点【错解原因】上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往上述解答漏掉一些解,即上述解答只是多个解答中的一个。
对B球振动周期到达O点的时间为显然,前面的解仅仅是当n=0时的其中一解而已。
【评析】在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。
例4 水平弹簧振子,每隔时间t,振子的位移总是大小和方向都相【错解】 1(首先排除A,认为A是不可能的。
理由是:水平弹簧振子的运动轨迹可简化为如图6-2,O为平衡位置,假设计时开始时,振子位于A点,每隔时间t,振子的位移总是大小和方向都相同,所以tB之间非A即B点,而这两点距平衡位置都等于振幅,所以加速度都等所以振子的动能总是相同的,所以选C是对的。
同的,都等于振幅,所以D是对的。
综上所述,应选B,C,D。
【错解原因】错解1是排除A,之所以产生错误,是因为在头脑中形成思维定势,认为在时间t内,振子只能在一个周期内振动。
很多学生在解决振动和波的问题时,习惯上把所有问题都限定在一个周期内,而没有考虑到在时间t内,振子可能已经完成多个全振动了。
错解2的产生主要是对加速度的矢量性认识不够或头脑中根本就没有这个概念,认为位置对称,加速度大小一样就是加速度相同。
3(选择C是对的。
4(对弹簧振子这样一个物理模型认识不全面,所谓水平弹簧振子的弹簧是哪段没弄清楚。
【分析解答】 1(由题意可知,t=nt,n可以是1,2,3…,选项A是正确的。
相反,且对称于平衡位置,所以加速度的方向是相反的。
3(同错解3。
4(水平弹簧振子的弹簧应为如图6,3a或6,3b的样子。
当振子的位置在平衡位置两侧时,弹簧长度是不同的。
所以选项D不对。
另外,符合题意条件的不一定非选最大位移处的两点,也可以选其他的点分析,如图6-4P,Q两点,同样可以得出正确结论。
所以此题的正确答案为A,C。
例5 一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子A(t,tB(t,t 12 12C(t,tD(无法判断 12度也大,因而时间短,所以t,t,应选C。
12错解三:因为这是一个变加速运动问题,不能用匀速运动或匀变速运动规律求解,因而无法判断t和t的大小关系,所以选D。
12【错解原因】主要是对简谐运动的特殊运动规律不清楚,只记住了周期公式,没注意分析简谐运动的全过程,没能深入地理解和掌握这种运动形式的特点。
因而解题时错误地沿用了匀速或匀变速运动的规律,选择A的同学就是用匀速运动规律去解,而选择C的同学用了匀变速运动规律去解,因而错了。
事实上,简谐运动的过程有其自身的许多规律,我们应该用它的特殊规律去求解问题,而不能用匀速或匀变速运动规律去求解。
【分析解答】方法一:用图象法,画出x-t图象,从图象上,我们可以很直观地看出:t,t,因而正确答案为:B。
12方法二:从图象为正弦曲线和数学知识可写出位移随时间的函数关系式,物理学上称为振动方程,从平衡位置开始,振子的振动方程为:【评析】以上两种方法,第一种方法是定性分析,在选择题练习时,是要重点掌握的。
第二种方法可以进行定量计算,但由于要涉及振动方程,所以不做统一要求。
t'=nT+t。
此处,为了题目简明起见,题文中用了“第一次”和“最短时间”等字样。
2否则就无法比较两个过程所用时间的长短。
例6 图6-6中实线是一列简谐波在某一时刻的波形图线,虚线是0.2s后它的波形图线。
这列波可能的传播速度是_______。
【错解】从图上可以看出波长λ=4m,而从两次的波形图可知:v=5m/s(【错解原因】面的。
实际上,只有当波向右(沿x正方向)传播时,上述关系才成立。
【分析解答】从图上可以看出λ=4m。
当波沿x正方向传播时,两次波形之间间隔的时间为:此题的答案为:(20n+5)m/s和(20m+15)m/s,(n=0,1,2,…)【评析】对于这种已知条件较为含糊的波的问题,要从波的传播方向、时间和空间的周期性等方面进行全面周到的分析,这也是解决机械波问题时,初学者经常忽略的问题。
例7 一简谐波的波源在坐标原点o处,经过一段时间振动从o点向右传播20cm到Q点,如图6-7所示,P点离开o点的距离为30cm,试判断P质点开始振动的方向。
传到P点,所以画出如图6-8所示的波形图。
因为波源在原点,波沿x轴正方向传播,所以可判定,P点开始振动的方向是沿y轴正方向(即向上)。
【错解原因】主要原因是把机械波的图象当成机械振动的图象看面的波形也变化了。
【分析解答】因为原图中的波形经历了半个周期的波形如图6-9所示,在此波形基础上,向前延长半个波形即为P点开始振动时的波形图,因为波源在原点处,所以介质中的每个质点都被其左侧质点带动,所以P点在刚开始时的振动方向沿y轴负方向(即向下)从个角度来看,原图中Q点开始振动时是向下的,因为所有质点开始振动时的情况均另外一相同,所以P点开始振动的方向应是向下的。
【评析】本题中的错解混淆了振动图象与波的图象,那么这两个图象有什么不同呢,(1)首先两个图象的坐标轴所表示的物理意义不同:振动图象的横坐标表示时间,而波动图象的横坐标表示介质中各振动质点的平衡位置。
(2)两个图象所描述的对象不同:振动图象描述的是一个质点的位移随时间的变化情况,而波的图象描述的是介质中的一群质点某一时刻各自振动所到达的位置情况。