半导体课件
合集下载
半导体器件基础课件(PPT-73页)精选全文完整版
有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术
《半导体器件与工艺》课件
晶圆制备
切割
将大块单晶硅切割成小片,得到晶圆。
研磨
对晶圆表面进行研磨,以降低表面粗糙度。
抛光
通过化学和机械作用对晶圆表面进行抛光,使其 表面更加光滑。
薄膜沉积
物理气相沉积
通过物理方法将材料气化并沉积在晶圆表面,如真空 蒸发镀膜。
化学气相沉积
通过化学反应将材料沉积在晶圆表面,如金属有机化 学气相沉积。
有巨大的应用潜力。
制程技术进步
纳米尺度加工
随着制程技术的不断进步,半导体器件的特征尺寸不断缩小,目前已进入纳米尺度。纳米 尺度加工技术面临着诸多挑战,如表面效应、量子效应和隧穿效应等,需要不断探索新的 加工方法和材料体系。
异质集成技术
通过将不同材料、结构和工艺集成在同一芯片上,可以实现高性能、多功能和低成本的半 导体器件。异质集成技术需要解决材料之间的界面问题、应力问题和工艺兼容性问题等。
可靠性试验
对芯片进行各种环境条件下的可靠性试验,如温度循环、湿度、振动等。
失效分析
对失效的芯片进行失效分析,找出失效原因,以提高芯片的可靠性。
05 半导体工艺发展趋势与挑 战
新型材料的应用
01
硅基材料
作为传统的半导体材料,硅基材料在集成电路制造中仍占据主导地位。
随着技术的不断发展,硅基材料的纯度、结晶度和性能不断提升,为半
柔性电子技术
柔性电子技术是将电子器件制作在柔性基材上的技术,具有可弯曲、可折叠、可穿戴等优 点。柔性电子技术在智能终端、可穿戴设备、医疗健康等领域具有广泛的应用前景。
可靠性及成品率问题
可靠性问题
随着半导体器件的特征尺寸不断缩小,可靠 性问题日益突出。需要加强可靠性研究,建 立完善的可靠性评价体系,提高半导体器件 的长期稳定性。
半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。
半导体知识介绍PPT课件
Wafer Mount 晶圆安装 贴蓝膜
Wafer Saw 晶圆切割
Wafer Wash 清洗
UV 光照
➢ 将晶圆粘贴在蓝膜(Mylar)上,使得
即使被切割开后,不会散落;
➢ 通过Saw Blade将整片Wafer切割成一
个个独立的Dice,方便后面的 Die Attach
等工序;
➢ Wafer Wash主要清洗Saw时候产生的各种粉尘,清洁Wafer;
在某一需求范围内,而所给予特别设计的车间。
4
无尘室的等级
洁净度级别 粒 径 (um)
0.1 0.2 0.3 0.5 5.0
1 35 7.5 3
1
NA
10 350 75 30 10
NA
100 NA 750 300 100 NA
1000 NA NA
NA 1000 7
10000 NA NA源自NA 10000 70➢ UV光照,光照后,底下贴膜不会沾的太紧。
17
Die bonding固晶/装片 DB就是把芯片装配到框架上去
Write Epoxy 点银浆
Die Attach 芯片粘接
Epoxy Cure 银浆固化
➢ 银浆成分为环氧树脂填充金属粉末(Ag); ➢ 有三个作用:将Die固定在Die Pad,散热作用,导电作用;
Epoxy Storage: 零下50度存放;
Epoxy Aging: 使用之前回温24H,除去气
泡;
Epoxy Writing:
点银浆于L/F的Pad上,
Pattern可选;
18
引线框架
【Lead Frame】引线框架
经过一系列的操作
溶解
9
拉单晶
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质
简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
半导体工艺技术优质课件
7 ➢第六次光刻:接触孔刻蚀;
8
➢金属Al淀积; ➢第七次光刻:生成金属化图形;
课程设计作业一
课程设计作业一
形成N阱
初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷
形成P阱
去掉光刻胶
在N阱区生长厚氧化层,其他区域被氮化硅层保护 而不会被氧化
优点是选择性好、反复性好、生产效率高、 设备简朴、成本低
缺陷是钻蚀严重、对图形旳控制性较差
干法刻蚀
溅射与离子束铣蚀:经过高能惰性气体离子旳物理轰
击作用刻蚀,各向异性性好,但选择性较差
等离子刻蚀(Plasma Etching):利用放电产生旳游
离基与材料发生化学反应,形成挥发物,实现刻蚀。选 择性好、对衬底损伤较小,但各向异性较差
➢热氧化生成场氧; ➢氮化硅刻蚀; ➢缓冲层刻蚀; ➢清洗表面; ➢阈值电压调整旳离子注入; ➢栅氧生长;
4
➢CVD淀积N+多晶硅栅; ➢第三次光刻:形成多晶硅图形,定义栅极;
5
➢第四次光刻:打开N+区旳离子注入窗口; ➢磷注入;
5
➢光刻胶掩蔽条; ➢第五次光刻:P+区离子注入;
6
➢光刻胶掩蔽条; ➢CVD淀积SiO2; ➢离子注入退火;
掺杂旳均匀性好 温度低:不大于600℃ 能够精确控制杂质分布 能够注入多种各样旳元素 横向扩展比扩散要小得多。 能够对化合物半导体进行掺杂
离子注入系统旳原理示意图
离子注入到无定形靶中旳高斯分布情况
退火
退火:也叫热处理,集成电路工艺中全部旳 在氮气等不活泼气氛中进行旳热处理过程都 能够称为退火
形成N管源漏区
光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区
《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性
《半导体基础》课件
在温度升高或电场加强时,电 子和空穴的输运能力增强。
掺杂可以改变半导体的导电性 能,增加载流子的数量。
半导体中的热传导
01 热传导是热量在半导体中传递的过程。
02 热传导主要通过晶格振动和自由载流子传 递。
03
半导体的热传导系数受到温度、掺杂浓度 和材料类型的影响。
04
在高温或高掺杂浓度下,热传导系数会增 加。
模拟电路和数字电路中均有广泛应用。
场效应晶体管
总结词
场效应晶体管是一种电压控制型器件,利用电场效应来控制导电沟道的通断。
详细描述
场效应晶体管可分为N沟道和P沟道两种类型,通过调整栅极电压来控制源极和漏极之 间的电流。场效应晶体管具有低噪声、高输入阻抗和低功耗等优点,广泛应用于放大器
和逻辑电路中。
集成电路基础
掺杂半导体
N型半导体
通过掺入施主杂质,增加自由电子数量,提高导电能力。
P型半导体
通过掺入受主杂质,增加自由空穴数量,提高导电能力。
宽禁带半导体
碳化硅(SiC)
具有宽禁带、高临界击穿场强等特点, 适用于制造高温、高频、大功率的电子 器件。
VS
氮化镓(GaN)
具有宽禁带、高电子迁移率等特点,适用 于制造蓝光、紫外线的光电器件。
详细描述
二极管由一个PN结和两个电极组成,其单 向导电性是由于PN结的正向导通和反向截 止特性。根据结构不同,二极管可分为点接 触型、肖特基型和隧道二极管等。
双极晶体管
总结词
双极晶体管是一种电流控制型器件,具有放 大信号的功能。
详细描述
双极晶体管由三个电极和两个PN结组成, 通过调整基极电流来控制集电极和发射极之 间的电流,实现信号的放大。双极晶体管在
《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
《半导体材料》课件
解决策略
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dE fds fvdt f dE dt h dk
f h dk dt
v
vv
hk mn*
dv 1 d dE 1 d 2E dk f d 2E
1.3 半导体中电子的运动 有效质量
一、半导体中E(k)与k的关系
能带产生的原因:
A、 定性理论(物理概念):晶体中原子之间的相互作用 ,使能级分裂形成能带。
B、定量理论(量子力学计算):电子在周期场中运动, 其能量不连续形成能带。
Electron States and energy band in Semiconductors
1、原子结构:
主量子数:n 1, 2,3,L
轨道角量子数:l 0,1, 2,L (n 1) 分别记为:s,p,d,f,….
轨道方向量子数: ml l , l 1,L , 0,L , l
自旋方向量子数:
ms
1 2
,
1 2
Electron States and energy band in Semiconductors
Electron States and energy band in Semiconductors
原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在 某一个原子上,可以由一个原于转移到相邻的原子上去,因而 ,电子将可以在整个晶体中运动。这种运动称为电子的共有化 运动 注意:各原子中相似壳层上的电子才有相同的能量,电子只能 在相似壳层间转移。
E h h2k 2
v v 2m0
P hk
vv
pv
v hk
m0 m0
v v 2m0
P hk
vv
pv
v hk 1 dE kˆ
m0 m0 h dk
Electron States and energy band in Semiconductors
电子的平均速度与能量间的关系
(2)导体、绝缘体和半导体的能带模型
Electron States and energy band in Semiconductors
(3)本征激发
当温度一定时,价带电子受到激发而成为导带电
子的过程
本征激发。
Electron States and energy band in Semiconductors
Electron States and energy band in Semiconductors
半导体导带中E(k)与k的关系:
1、定性关系如图所示:
Electron States and energy band in Semiconductors
定量关系必须找出E(k)函数:
晶体中电子的运动状态要比自由电子复杂得 多,要得到E(k)表达式很困难。
1、电子共有化运动
原子中的电子在原子核的势场和其它电子的作用下,分列在不 同的能级上,形成所谓电子壳层
不同支壳层的电子分别用1s;2s,2p;3s,3p,3d;4s…等符号表示 ,每一壳层对应于确定的能量。
当原子相互接近形成晶体时,不同原子的内外各电子壳层之间 就有了一定程度的交叠,相邻原子最外壳层交叠最多,内壳层 交叠较少。
可采用级数展开的方法研究带底或带顶E(k) 关系
半导体中起作用的是位于导带底或价带顶附 近的电子
用泰勒级数展开可以近似求出极值附近的E(k)与k的关系
Electron States and energy band in Semiconductors
以一维情况为例,设能带底位于k=0,将 E(k)在k=0附近按泰勒级数展开,取至二 阶项,得到
v v 2m0
P hk
vv
pv
v hk
m0 m0
k
v k
1
Electron States and energy band in Semiconductors
晶体中的电子的波函数
其 V(x) V(x sa)
布洛赫定律指出 k (x) u k (x)ei2kx
uk (x) uk (x na) 其中s和n为整数
而是上下两个能带 中分别包含2n个状 态,各可容纳4n个 电子。
空带 即导带
满带 即价带
§1·2 半导体中的电子状态和能带 Electron States and energy band in Semiconductors 二 、半导体中电子的状态和能带
重点:E(k)-k关系
Electron States and energy band in Semiconductors
§1·2 半导体中的电子状态和能带
Electron States and energy band in Semiconductors
重点:
• 电子的共有化运动
• 导带、价带与禁带
Electron States and energy band in Semiconductors
一、原子的能级与晶体的能带
E(k ) E(0) ( ddEk ) k 12 ( ddkE ) k ... k0
2
E(k
)
E(0)
(
dE dk
)k
0
k
1 2
(
d2E dk 2
)k 0
k
2
...
2
2 k 0
k=0时能量极小,所以(dE / dk)k0=0,因而
E(k
)
E(0)=
1 2
(
d2E dk 2
能带理论的应用:
能带(energy band)包括允带和禁带。 允带(allowed band):允许电子能量存在的能量范围。 禁带(forbidden band):不允许电子存在的能量范围。
注:允带又分为空带、满带、导带、价带。 空带(empty band):不被电子占据的允带。 满带(filled band):允带中的能量状态(能级)均被电子 占据。 导带(conduction band):电子未占满的允带(有部分电 子。) 价带(valence band):被电子占据的允带(低温下通常被 价电子占满)。
出现准 连续能级
N个原子的能级的分裂
Electron States and energy band in Semiconductors
金刚石型结构价电子的能带:
对于由N个原子组成的晶体,共有4N个价电子位
于满带(价带)中,其上的空带就是导带,二者之间 是不允许电子状态存在的禁区——禁带。
对于硅与锗,由于 轨道的杂化,两个 能带并不分别与s,p 能级对应,
C、半导体中导带的电子和价带的空穴参与导电,这是与金 属导体的最大差别。
D、绝缘体的禁带宽度很大,激发电子需要很大的能量,在 通常温度下,能激发到导带中的电子很少,所以导电性很差。
E、半导体禁带宽度比较小,数量级在1eV左右,在通常温 度下已有不少电子被激发到导带中去,所以具有一定的导电能力 ,这是绝缘体和半导体的主要区别。室温下,金刚石的禁带宽度 为6~7eV,它是绝缘体;硅为1.12eV,锗为0.67eV,砷化镓为 1.43eV,所以它们都是半导体。
Electron States and energy band in Semiconductors
Electron States and Relating Bonds in Semiconductors
• 由于外壳层电子的共 有化运动加剧,原子的 能级分裂亦加显著:
• s能级 • p能级
N个子带 3N个子带
)
k
0
k
2
(d 2E
/
dk 2 )k0为一定值,令
Hale Waihona Puke 1 h2(d2E dk 2
)k
=
0
1 mn
,得到:
E(k
)
E(0)=
h2k 2 2mn
mn*=h2
/
d2E dk 2
Electron States and energy band in Semiconductors
电子有效质量:
mn*=h2
其波矢k n 2a
说明分布几率是晶格的周期函数,但对每个原胞的
相应位置,电子的分布几率一样的。这里的波矢k描述晶体中电 子的共有化运动状态。
Electron States and energy band in Semiconductors
(3)布里渊区与能带
简约布里渊区与能带简图(允带与允带之间系禁带)
由量子力学知识,电子的运动可看成波包的运动,波 包的群速为电子的平均速度,设波包由许多频率相差不 多的波组成,则波包中心的运动速度(群速)为
v
d
dk
1 h
d (h)
dk
1 h
dE dk
hk mn*
注: mn* m0
E(k
)
E(0)=
h2k2 2mn
能带底附近 : mn* 0, k 0 速度v(k) 0
被调幅的平面波
Electron States and Relating Bonds in Semiconductors
对自由电子:
/ kk / A2 ,
其波矢 k 1
说明电子在空间是等几率分布的,即自由电子在
空间作自由运动。波矢k描述自由电子的运动状态。
对半导体-晶体中的电子:
/ kk / / u k (r)u k (r) /,
波函数:描述微观粒子的状态
薛定谔方程:决定粒子变化的方程
[
h2 82m
d2 dr 2
V (r)](r)