初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念学校数学学问点总结:代数式的相关概念1一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
留意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区分是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种状况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中全部字母的指数的和叫做单项式的次数。
特殊地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的挨次排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中消失的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“x”号;2.数字与字母相乘、单项式与多项式相乘时,一般根据先写数字,再写单项式,最终写多项式的书写挨次.如式子(a+b)·2·a 应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中消失除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的.代数式有单位名称,假如代数式是积或商的形式,则单位直接写在式子后面;假如代数式是和或差的形式,则必需先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
留意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是1”或-1“时,1通常省略不写,但“-”号不能省略。
初中数学代数知识点总结
初中数学代数知识点总结代数是研究数、数量、关系、结构与代数方程(组)属性的通用微积分及其性质的数学分支,初等代数一般初等在中学之时讲授。
下面是为大家整理的关于初中数学代数知识点总结,希望对您有所努力!初中数学代数知识点总结单项式与多项式仅含有一些数和字母的乘法(包括乘方)的式子叫做单项式单独的一个数或字母也是单项式单项式中的数字并集自变量叫做这个单项式(或字母因数)的数字系数,简称系数当一个无理数的系数是1或-1时,“1”通常省略不写一个单项式中,每种字母的指数指数的和叫做这个单项式的次数如果在几个单项式中所,不管它们的对数系数是不是相同,只要他们所含的字母相同,并且相同指数字母的指数为也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数常数甚至是同类项1、多项式有有限个单项式的代数和组成的式子,叫做多项式多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项单项式可以看作是多项式的特例把同类单项式的系数相加相比之下或相减,而单项式中的字母的乘方指数不变在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个质数的次数2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的.式子3、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就夏敬观称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等4、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的市场指数作为积的一个因式3、多项式的乘法多项式与多项式正负,先用一个多项式等每一项乘以另一个多项式的先要各项,再把所得的积相加常用乘法公式公式I平方差公式(a+b)(a-b)=a^2-b^2两个数的和与这两个数的差的积等于这两个数的平方差公式II完全平方公式(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍单项式的除法两个单项式相除,就是它们的系数、同底数的可数分别相除,而里边对于那些只在被除式里出现的字母,连同它们纳指的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的志趣相投指数的相反数一起作为商的因式单项式一个多项式罚一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
代数式的定义与概念 初一上册
《代数式的定义与概念》,初一上册1. 代数式的定义代数式是由数字、字母和运算符号等按照一定规律组成的式子。
代数式中的字母通常表示未知数,是代数问题中的关键概念之一。
在初一上册数学学习中,代数式的概念是非常重要的,它不仅是学习代数的基础,也是培养学生逻辑思维和数学推理能力的重要手段。
2. 代数式的深度评估在初一上册的数学课程中,代数式的学习主要集中在整数四则运算的基础上。
学生需要通过简单的例子,逐步理解代数式中的字母代表的是什么意义,以及代数式是如何进行运算的。
还需要对代数式中的加法、减法、乘法和除法等运算进行深入理解和掌握,这是日后学习更复杂代数问题的基础。
3. 代数式的广度评估在初一上册数学课程中,代数式的学习不仅仅局限于整数的操作,还会引入一些基本的方程式和应用题。
这就需要学生通过代数式的运算,解决一些实际生活中的问题,培养学生的数学建模和解决实际问题的能力。
这样就可以让学生在代数式的学习中,既能理论性地掌握代数式的运算规则,又能在实践中灵活应用,更好地理解代数式的概念。
4. 个人观点和理解在我看来,初一上册的代数式学习,不仅仅是为了应付考试和完成作业,更重要的是培养学生的逻辑思维和数学推理能力。
代数式作为数学中的基础概念,虽然在初中阶段可能难以直接理解其深层意义,但通过老师的指导和自己的努力,是可以逐步理解和掌握的。
我认为代数式的学习,其实是一个锻炼思维和抽象能力的过程,这对学生的数学素养和学科能力的全面提高是非常有益的。
5. 总结和回顾初一上册的代数式学习,是培养学生逻辑思维和数学推理能力的一个重要阶段。
通过对基本代数式的学习,学生可以逐步理解代数式的概念和规则,并在实际生活中灵活应用。
代数式的学习也需要学生持之以恒、多加练习,通过不断地总结和回顾,来更好地掌握代数式的知识。
在初一上册代数式的学习中,希望同学们能够深入思考,积极参与,从而更好地掌握代数式的概念和运算规则。
通过对代数式的定义与概念进行深入探讨,我们不仅可以对代数式有一个全面、深刻和灵活的理解,同时也能够为学生提供一个更好的学习指导,使他们能够更好地理解和掌握初一上册数学中代数式的相关知识。
初中数学代数知识点大全
初中数学代数知识点大全代数是数学的一个重要分支,它研究数与数之间的关系以及运算规律。
在初中数学学习中,代数是一个重要的内容,通过代数的学习,学生可以学会运用符号和代数表达式描述问题,进行算式的变形和计算,培养逻辑思维和解决问题的能力。
下面将给大家介绍初中数学代数知识点大全。
一、代数式与项的概念1. 代数式:由数、字母和数学符号(如+、-、×、÷等)组成的有意义的表达式。
2. 项:代数式中的基本单位,由数与字母的积组成,或者只是单独一个数或字母。
二、代数式的加减法1. 代数式的加法:对应项相加,合并同类项。
2. 代数式的减法:对应项相减,合并同类项。
三、代数式的乘法与因式分解1. 代数式的乘法:将每一个项相乘得到的新的代数式。
2. 因式分解:将代数式中的项用括号括起来,根据因式的乘法规则进行合并。
四、代数式的除法与分式1. 代数式的除法:将代数式相除,可以通过因式分解的方式进行。
2. 分式:含有分子和分母的代数式,分母不能为零。
五、方程与等式1. 方程:由等号连接的两个代数式构成,含有未知数的代数式。
求解方程即求解未知数的值。
2. 等式:由等号连接的两个代数式。
六、一次方程与二次方程1. 一次方程:未知数的最高次数为1的方程,如ax+b=0。
2. 二次方程:未知数的最高次数为2的方程,如ax²+bx+c=0。
七、函数与图像1. 函数:表示两个变量之间依赖关系的关系式。
2. 图像:函数在平面直角坐标系上的表示。
八、线性函数与一次函数1. 线性函数:函数的表达式为y=kx+b,k和b为常数,表示直线函数。
2. 一次函数:最高次数为一次的函数。
九、整式与分式1. 整式:只含有加减乘幂四种运算的代数式。
2. 分式:含有除法运算的代数式。
十、因式分解与最大公因数1. 因式分解:将代数式中的各个项写成最简单的乘积形式的过程。
2. 最大公因数:能整除多个整数的最大正整数。
十一、一次函数与二次函数的图像1. 一次函数的图像:直线。
初中 数学代数知识点总结
初中数学代数知识点总结一、代数式代数式是由数字、字母和运算符号组成的表达式。
代数式中的字母代表数,称为未知数或变量,代数式的值随着变量的取值而变化。
代数式包括单项式、多项式、等式和不等式等。
1. 单项式:由一个项组成的代数式,例如3x、5y、-7等都是单项式。
2. 多项式:由多个项相加(或相减)而成的代数式,例如3x+5y、2x²+3x+7等都是多项式。
3. 等式和不等式:包含等号或不等号的代数式,例如2x+3=7、4x-5≥3等都是等式和不等式。
二、代数运算代数运算是对代数式进行加法、减法、乘法、除法、乘方等运算的过程。
了解代数运算规律,可以帮助我们解决各种数学问题。
1. 加法:将两个或多个代数式相加,例如a+b、x+y+z等。
2. 减法:将一个代数式减去另一个代数式,例如a-b、x-y等。
3. 乘法:将两个或多个代数式相乘,例如a×b、x×y×z等。
4. 除法:将一个代数式除以另一个非零的代数式,例如a÷b、x÷y等。
5. 乘方:将一个数或一个代数式自己相乘若干次,例如a²、x³等。
三、方程与不等式方程和不等式是数学中常见的问题类型,通过代数表达式的运算得到的等式或不等式称为方程或不等式。
解方程和不等式是我们学习代数知识的重要内容。
1. 一元一次方程:形式为ax+b=0的方程,其中a、b为已知数,x为未知数,a≠0。
2. 一元二次方程:形式为ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数,a≠0。
3. 一元一次不等式:形式为ax+b>0、ax+b≥0、ax+b<0、ax+b≤0的不等式,其中a、b为已知数,x为未知数,a≠0。
4. 一元二次不等式:形式为ax²+bx+c>0、ax²+bx+c≥0、ax²+bx+c<0、ax²+bx+c≤0的不等式,其中a、b、c为已知数,x为未知数,a≠0。
七年级代数式知识点及例题
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
【初中数学】初中数学知识点:代数式的概念
【初中数学】初中数学知识点:代数式的概念代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
单独一个数和字母也就是代数式。
例如:ax+2b,-2/3,b^2/26,√a+√2等。
代数式的性质:(1)单独一个数或一个字母也是代数式,如-3,a.(2)代数式中就可以存有运算符号,不应当所含等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈,也就是说,等式或不等式不是代数式,但代数式中可以所含括号。
可以存有绝对值。
比如:|x|,|-2.25|等。
(3)代数式中的字母表示的数必须使这个代数式有意义,即在实际问题中,字母表示的数要符合实际问题。
代数式的分类:在实数范围内,代数式分为有理式和无理式。
一、有理式有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。
这种代数式中对于字母只展开非常有限次提、减至、乘坐、除和整数次乘方这些运算.整式有包括单项式(数字或字母的乘积或单独的一个数字或字母)和多项式(若干个单项式的和).1.单项式没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫作单项式(或字母因数)的数字系数,缩写系数单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数2.多项式个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。
不含字母的项叫做常数项。
多项式的次数:多项式里,次数最低的项的次数,就是这个多项式的次数。
齐次多项式:各项次数相同的多项式叫做齐次多项式。
不容约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称作有理数范围内不容约多项式。
实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
等距多项式:在多元多项式中,如果任一两个元互相交换税金的结果都和原式相同,则表示此多项式就是关于这些元的等距多项式。
初中数学数与式的复习概括
数与式一.实数和代数式的有关概念1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
初中数学知识点全面总结
一、初一数学上册知识点:代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、初一数学上册知识点:几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、初一数学上册知识点:有理数。
1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、初一数学上册知识点:有理数法则及运算规律。
2024年人教版七年级数学知识点总结(2篇)
2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
初中数学知识点(代数)
初中数学知识点(代数)一、代数式代数式是由数、字母和运算符号组成的表达式。
代数式可以分为单项式和多项式。
1. 单项式:只包含一个字母和它的指数的代数式,如:5x²、3a³等。
2. 多项式:由若干个单项式相加或相减组成的代数式,如:3x² + 2x 1、4a³ + 5ab²等。
二、代数式的运算1. 加法:将两个或多个代数式相加,如:3x² + 2x 1 + 4x²3x + 2。
2. 减法:将两个或多个代数式相减,如:3x² + 2x 1 (4x²3x + 2)。
3. 乘法:将两个或多个代数式相乘,如:(3x² + 2x 1) ×(4x² 3x + 2)。
4. 除法:将一个代数式除以另一个代数式,如:(3x² + 2x 1) ÷ (4x² 3x + 2)。
三、方程方程是含有未知数的等式。
解方程就是求出未知数的值,使得等式成立。
初中阶段主要学习一元一次方程和一元二次方程。
1. 一元一次方程:未知数的最高次数为1的方程,如:2x + 3 = 7。
2. 一元二次方程:未知数的最高次数为2的方程,如:x² 5x +6 = 0。
四、不等式不等式是表示两个数之间大小关系的式子。
初中阶段主要学习一元一次不等式和一元二次不等式。
1. 一元一次不等式:未知数的最高次数为1的不等式,如:2x + 3 > 7。
2. 一元二次不等式:未知数的最高次数为2的不等式,如:x²5x + 6 ≥ 0。
五、函数函数是描述变量之间关系的数学概念。
初中阶段主要学习一次函数和二次函数。
1. 一次函数:函数表达式为y = kx + b(k ≠ 0)的函数,其中k是斜率,b是截距。
2. 二次函数:函数表达式为y = ax² + bx + c(a ≠ 0)的函数,其中a、b、c是常数。
初一代数式知识点总结归纳
初一代数式知识点总结归纳代数式是初中数学学习中的重要内容,它是数学语言的一种表达方式,能够帮助我们描述数学问题并进行计算。
在初一阶段,我们学习了一些基础的代数式知识点,本文将对这些内容进行总结归纳。
一、代数式的定义与基本概念代数式是由数字、字母和运算符号组成的表达式。
它可以用来表示数值、量、关系等,并且可以进行运算。
字母在代数式中表示未知数或变量,通过代数式我们可以进行数学推理和问题求解。
代数式由常数项、变量项和算符组成。
常数项是没有变量的项,变量项由变量和指数相乘得到。
算符包括加法、减法、乘法和除法。
二、代数式的分类1. 单项式:只包含一个项的代数式,例如:3x、-2y²。
2. 多项式:包含两个或两个以上项的代数式,例如:x²+2xy-3。
3. 幂:由底数和指数组成,例如:a⁵。
4. 系数:乘以变量项的数字因子,例如:3x中的3就是系数。
三、代数式的运算1. 合并同类项:将具有相同变量和指数的项进行合并,例如:3x+5x可以合并为8x。
2. 展开式:将括号内的代数式按照分配率进行展开,例如:2(x+3)可以展开为2x+6。
3. 因式分解:将代数式转化为乘积形式,例如:2x+6可以因式分解为2(x+3)。
4. 提取公因式:将多项式中的公共因子提取出来,例如:2x²+4x可以提取出2x,得到2x(x+2)。
四、一元一次方程一元一次方程是代数学中常见的一种方程类型,形式为ax+b=0,其中a和b为已知数,x为未知数。
我们可以通过移项、合并同类项、消元等方式解一元一次方程。
五、等式的性质等式是两个代数式之间用等号连接的关系。
在等式中,左右两边的代数式的值相等。
1. 对等式进行加减法:等式两边同时加减相同的数,等式仍成立。
2. 对等式进行乘除法:等式两边同时乘除相同的非零数,等式仍成立。
3. 对等式进行代入运算:在等式中,可将一个代数式代入到另一个代数式中,等式仍成立。
六、绝对值绝对值是一个数与零点之间的距离。
中考数学总复习知识点总结:第二章 代数式
第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
初中数学知识点总结代数式的相关概念
初中数学知识点总结代数式的相关概念代数式是由数或字母和基本运算符号(如加减乘除)组成的数学表达式。
它是数学中重要的基础概念之一,用来描述数与数之间的关系。
在初中数学中,代数式是学习代数的基础,了解代数式的相关概念对于后续学习代数的知识具有重要的意义。
一、代数式的定义代数式是由数字、字母、运算符号组成的表达式,它可以包含一个或多个项,每个项由系数与字母的乘积构成。
代数式中的字母表示未知数,而数字作为字母的系数表示了未知数的倍数。
代数式可以用于表示实际问题中的数学关系,是解决各种数学问题的基础。
二、代数式的基本运算1.加法:将两个或多个代数式按照字母的指数相同的项进行合并,然后将系数相加得到最终的和。
例如:3x+2x=5x。
2.减法:将减数取相反数,然后按照加法的规则进行计算。
例如:2x-3x=-x。
3.乘法:将两个代数式中的每一项按照字母的指数相加的规则进行相乘,并将得到的各项的系数相乘得到最终的积。
例如:(3x+2y)×2=6x+4y。
4.除法:将被除式除以除式,按照乘法的逆运算进行计算。
例如:(6x+4y)÷2=3x+2y。
三、代数式的合并与分解1.合并同类项:将代数式中字母的指数相同的项进行合并,然后将系数相加得到最终的结果。
例如:2x+3x=5x,2y^2+3y^2=5y^22.分解:将代数式按照括号中字母的指数进行分解,将各项按照运算符号进行合并得到最终的结果。
例如:3x+6=3(x+2)。
四、代数式的求值代数式可以通过给字母赋予具体的数值来求得结果,这个过程叫做代数式的求值。
例如:求代数式3x+2在x=4时的值,代入x=4得到3×4+2=14五、代数式的应用代数式是解决实际问题的有效工具,可以用来描述和计算各种数学关系。
例如:利用代数式可以表示速度、力和电流等物理量之间的关系,在解决与这些物理量相关的问题时,代数式能够提供有效的数学模型。
总结:代数式是由数字、字母和运算符号组成的数学表达式,用来描述数与数之间的关系。
初三代数式知识点归纳总结
初三代数式知识点归纳总结代数式是初中数学学习中的重要内容,它是数学语言的一种表达方式,既简洁又灵活。
在初三阶段,我们学习了很多代数式的知识点。
下面就对初三代数式的相关内容进行归纳总结。
1. 代数式的定义和基本概念代数式由字母、数字和运算符号组成的式子,它可以表示一类数,并可根据需要进行计算和变形。
代数式由项构成,项由系数和字母的乘积构成。
代数式可以通过合并同类项、提取公因式等方式进行简化和变形。
2. 一元一次代数式一元一次代数式是由一个字母的一次幂和常数项构成的代数式。
一元一次代数式的一次幂指数为1,例如:2x + 3。
我们学习了解一元一次方程的求解过程,可以通过各种运算,将方程化简为最简形式,并求得方程的解。
3. 多项式代数式多项式代数式是由多个项相加或相减而成的代数式,其中每个项可以是常数项或含有字母的项。
多项式代数式可以进行加法、减法和乘法运算。
我们学习了多项式的合并同类项、提取公因式、因式分解等基本运算法则。
4. 代数式的乘法公式和因式分解代数式的乘法公式是用于展开代数式的重要工具。
其中,平方差公式和求和差公式是最基本的乘法公式。
在因式分解中,我们学习了怎样将一个代数式分解成几个乘积的形式,以便于进行进一步的计算和运算。
5. 二次根式和二次代数式二次根式是指含有平方根(二次根号)的根式,例如:√(2x + 3)。
我们学习了二次根式的化简和运算法则,例如消去根号、分解因式等。
二次代数式是含有平方项的代数式,例如:x^2 + 2x + 1。
对于二次代数式,我们学习了使用配方法、完全平方公式等进行变形和求解。
6. 代数式的方程与不等式代数式可以用于表示方程和不等式。
在初三阶段,我们学习了一元二次方程和一元二次不等式的解法,以及用图像解法、配方法等求解代数式方程和不等式的方法。
我们还学习了方程和不等式的根、解集等概念。
通过对初三代数式的归纳总结,我们对代数式的定义、基本概念和运算法则都有了更深入的理解。
初中数学基础知识点_H一、初一数学上册知识点:代数初步知识。
一、初一数学上册知识点:代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、初一数学上册知识点:几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、初一数学上册知识点:有理数。
1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、初一数学上册知识点:有理数法则及运算规律。
初一代数重点知识点归纳总结
初一代数重点知识点归纳总结代数是数学的一个重要分支,也是初中数学学习的一项重点内容。
在初一阶段,学生接触到了代数的基本概念和运算法则。
本文将对初一代数的重点知识点进行归纳总结,以帮助同学们更好地理解和掌握代数知识。
一、代数式和代数方程1. 代数式:代数式是由数、字母和运算符号组成的式子,可以表示数,也可以表示未知数。
例如:3x + 2y,其中x和y是未知数。
2. 代数方程:代数方程是一个含有未知数的等式,其中包含有等号。
例如:2x + 5 = 10,这是一个代数方程,解x=2。
3. 代数式的运算法则:(1) 加减法法则:同类项相加减,不同类项不能相加减。
(2) 乘法法则:同底数幂相乘,指数相加;乘方的指数相乘。
(3) 除法法则:同底数幂相除,指数相减。
二、一元一次方程和方程的应用1. 一元一次方程:一元一次方程是指只含有一个未知数的一次幂和常数项,并且其次数为1。
例如:2x + 3 = 7,这是一个一元一次方程,解x=2。
2. 解一元一次方程的步骤:(1) 将方程中的未知数项移到等号的一边,常数项移到另一边。
(2) 合并同类项,并将未知数项系数化为1。
(3) 通过乘除法消去系数,求解未知数的值。
3. 方程的应用:方程的应用涵盖了许多实际问题,如等量关系、速度、工资等。
通过建立方程,可以求解未知数的值,进而解决问题。
三、平方根与整式的因式分解1. 平方根:平方根是指某个数的平方等于它的被开方数。
例如:√9 = 3,因为3的平方等于9。
2. 整式的因式分解:整式的因式分解是将一个多项式表示为几个整式的乘积。
例如:2x² + 4x = 2x(x + 2),这是对整式2x² + 4x的因式分解。
四、图表法解方程组1. 方程组:方程组是由若干个方程组成的一组方程。
例如:{2x + 3y = 8,4x - 2y = 2},这是一个方程组。
2. 图表法解方程组的步骤:(1) 将方程组的两个方程转化为图像。
初中数学知识归纳数与代数式的关系与计算
初中数学知识归纳数与代数式的关系与计算数与代数式是初中数学中非常基础但也非常重要的概念。
理解数和代数式之间的关系以及如何计算它们,对于学习进一步的数学知识起着关键的作用。
本文将对初中数学中数与代数式的关系进行归纳,并介绍一些计算方法和技巧。
1. 数与代数式的概念数是数学中最基本的概念之一,它用于计量和表示事物的数量。
在数的概念中,我们学习了自然数、整数、有理数和实数等不同类型的数,并且了解了它们之间的运算规则和性质。
代数式是由数及运算符号构成的表达式,它可以用来表示数的关系和运算。
代数式中的数称为系数,而运算符号可以是加、减、乘、除等。
代数式是解决问题和推理的重要工具,它可以帮助我们进行数学运算和推导出未知数的值。
2. 数与代数式的关系数和代数式之间有一定的联系和互通性。
具体而言,代数式可以用数进行计算和求解,而数也可以用代数式进行表示和推导。
例如,设有一个代数式3x表示一个数与3的乘积。
如果我们将x 赋予一个具体的数值,比如x=2,那么代数式3x就可以计算出一个具体的数值6。
反过来,如果我们知道代数式3x等于6,我们可以通过代数运算推导出未知数x的值为2。
这说明数和代数式是密切相关的,代数式可以表示数的关系和运算规律,而数可以通过代数式进行计算和求解。
3. 数与代数式的计算在数与代数式的计算中,我们需要掌握一些基本的技巧和方法。
下面将介绍一些常见的计算规则和技巧。
3.1 简化和展开代数式当给定一个复杂的代数式时,我们常常需要对其进行简化或展开。
简化代数式是指将其化简为更简单的形式,而展开代数式是将其分解成更复杂的形式。
例如,对于代数式3(x+2)-2x,我们可以先展开括号,得到3x+6-2x。
然后合并同类项,得到x+6。
这就是代数式的简化形式。
3.2 代数式的运算在代数式的运算中,我们需要掌握加减乘除等基本运算规则,并且注意运算的顺序。
例如,对于代数式2x+3y-4z,如果给定x=2,y=3,z=1,那么我们可以根据代数式进行计算,得到2(2)+3(3)-4(1) = 4+9-4 = 9。
初中数学知识点总结,代数式:单独一个数或者一个字母也是代数式,公式两..
初中数学知识点总结,代数式:单独一个数或者一个字母也是代数式,公式两条:平方差公式/完全平方公式初中数学知识点初中数学圆的知识点初中数学函数知识点初中数学概率知识点初中数学知识点汇总初中数学代数知识点中考数学复习指导数学中考总复习高考必备数学知识点初中化学知识点总结初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直直线,在直线上取一点表示示0,选取某一长度作为单单位长度,规定直线上向右右的方向为正方向,就得到到数轴。
②任何一个有理数数都可以用数轴上的一个点点来表示。
③如果两个数只只有符号不同,那么我们称称其中一个数为另外一个数数的相反数,也称这两个数数互为相反数。
在数轴上,,表示互为相反数的两个点点,位于原点的两侧,并且且与原点距离相等。
④数轴轴上两个点表示的数,右边边的总比左边的大。
正数大大于0,负数小于0,正数数大于负数。
绝对值:①①在数轴上,一个数所对应应的点与原点的距离叫做该该数的绝对值。
②正数的绝绝对值是他的本身、负数的的绝对值是他的相反数、00的绝对值是0。
两个负数数比较大小,绝对值大的反反而小。
有理数的运算::加法:①同号相加,取取相同的符号,把绝对值相相加。
②异号相加,绝对值值相等时和为0;绝对值不不等时,取绝对值较大的数数的符号,并用较大的绝对对值减去较小的绝对值。
③③一个数与0相加不变。
减法:减去一个数,等于于加上这个数的相反数。
乘法:①两数相乘,同号号得正,异号得负,绝对值值相乘。
②任何数与0相乘乘得0。
③乘积为1的两个个有理数互为倒数。
除法法:①除以一个数等于乘以以一个数的倒数。
②0不能能作除数。
乘方:求N个个相同因数A的积的运算叫叫做乘方,乘方的结果叫幂幂,A叫底数,N叫次数。
混合顺序:先算乘法,,再算乘除,最后算加减,,有括号要先算括号里的。
2、实数无理数:无无限不循环小数叫无理数平方根:①如果一个正数数X的平方等于A,那么这这个正数X就叫做A的算术术平方根。
初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念 知识点总结 【一】代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号; (3)代数式可按运算关系和运算结果两种情况理解。
【三】整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
【四】升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
【五】代数式书写要求: 1.代数式中出现的乘号通常用〝·〞表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用〝×〞号; 2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b) ·2·a 应写成2a(a+b); 3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘; 4.在代数式中出现除法运算时,按分数的写法来写; 5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,那么单位直接写在式子后面;如果代数式是和或差的形式,那么必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数 单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点总结:代数式的相关概念
知识点总结
一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情形明白得。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
专门地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数确实是那个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按那个字母升(降)幂排列。
五、代数式书写要求:
1.代数式中显现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;
2.数字与字母相乘、单项式与多项式相乘时,一样按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a
应写成2a(a+b);
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中显现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,假如代数式是积或商的形式,则单位直截了当写在式子后面;假如代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
注意:(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要不记得被省略的1。
3.多项式的次数:多项式中次数最高的项的次数确实是多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。
一个多项式有几项,就叫几项式,它的项数确实是几。
多项式的项数实质是“和”中单项式的个数。
八、列代数式:用含有数、字母和运算符号的式子把问题中的数量表示出来确实是列代数式。
正确列出代数式,要把握以下几点:(1)列代数式的关键是明白得和找出问题中的数量关系;(2)要把握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;(3)要善于抓住问题中的语,如和、差、积、商、大、小、几倍、平方、多、少等。
九、代数式求值:一样地,用数值代替代数式中的字母,按照代数式中指明的运算运算的结果叫做代数式求值。
代数式求值的三种方法:1.直截了当代入求值;2.化简代入求值;
3.整体代入求值。
常见考法
列代数式与代数式求值是中考的必考知识点,它涉及的知识范畴广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,专门的探究规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观看出规律,并尝试归纳出代数式或公式,再加以验证。
误区提醒
(1)列代数式时,由于审题不清,对条件明白得不透,专门容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。
假如没有对实数运算把握好,就会显现运算顺序搞错的现象。
(3)在进行规律探究中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,显现以点概面,以偏概全的现象。
【典型例题】(2021广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子
【解析】第1个“口”需要4枚棋子;
第2个“口”需要8枚棋子;
第3个“口”需要12枚棋子;
语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。
假如有选择循序渐进地让学生背诵一些优秀篇目、杰出段落,对提高学生的水平会大有裨益。
现在,许多语文教师在分析课文时,把文章解体的支离破裂,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的干洁净净。
造成这种事倍功半的尴尬局面的关键确实是对文章读的不熟。
常言道“书读百遍,其义自见”,假如有目的、有打算地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便能够在读中自然领会文章的思想内容和写作技巧,能够
在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、制造和进展。
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
依次类推,第n个“口”需要4n枚棋子,故选A。