初中数学数与式练习题

合集下载

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

初三数学数与式试题

初三数学数与式试题

初三数学数与式试题1.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8B.C.D.【答案】B【解析】由题意,得:x=64时,=8,8是有理数,将8的值代入x中;当x=8时,,是无理数,故y的值是故选B2.若则.【答案】3【解析】由题意得:a=2,b=3,c=4∴a-b+c=2-3+4=33.(1)计算:(2)给出三个多项式:请你选择其中两个进行加法运算,并把结果因式分解。

【答案】(1)解:原式=(2)解:如选择多项式:则:【解析】(1)根据算术平方根、幂得性质计算。

(2)先选择其中两个多项式相加.然后进行合并同类项,最后进行因式分解得到结果4.计算:【答案】【解析】==5.⑴计算:;⑵解方程:.【答案】(1)-√3+1,(2)x=-7【解析】(1)熟练掌握有理数运算和根式运算,得 -√3+1;(2)解分式方程时,首先求公因式去分母,然后接得x=-76.下列各数中,无理数是()A.0B.C.D.-3.14【答案】B【解析】分析:根据无理数的定义(无理数是指无限不循环小数)进行判断即可.解答:解:A、0不是无理数,是有理数,故本选项错误;B、是无理数,故本选项正确;C、是有理数,不是无理数,故本选项错误;D、-3.14不是无理数,故本选项错误;故选B.点评:本题考查了对无理数定义的理解和运用,无理数含有①含π的,②开方开不尽的根式,③一些有规律的数.7.计算:.【答案】.;【解析】此题考查向量的加法法则思路分析:根据向量的加法法则直接计算解:原式=答案:8.长度单位1纳米米,目前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是米(保留两个有效数字)【答案】2.3×【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,23150科学记数法可表示为2.3×104,然后把纳米转化成米2.3×104×10-9化简得结果.解答:解:23150科学记数法可表示为2.315×104,然后把纳米转化成米,即2.315×104×10-9=2.3×10-5.故答案为:2.3×10-5.9. 4的平方根是()A.2B.±2C.D.±【答案】B【解析】正数的平方根有两个且互为相反数.零的平方根是零,负数没有平方根.选B.10.(本题满分16分)(1)计算(2)解方程:;(3)若,求的值。

数与式的计算100题(真题专练)备战2023年中考数学考点微专题

数与式的计算100题(真题专练)备战2023年中考数学考点微专题

考向1.9 数与式的计算100题(真题专练)1.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|212|π-︒-+-+--+- 2.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.3.(2021·湖南张家界·中考真题)计算:2021(1)222cos608-+-︒4.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 5.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒6.(2021·内蒙古呼伦贝尔·中考真题)计算:2122sin 60133---︒+7.(2021·广西柳州·中考真题)计算:391-8.(2021·黑龙江大庆·()2222sin 451+︒-- 9.(2021·上海·中考真题)计算: 1129|1228-+- 10.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭.11.(2020·新疆·中考真题)计算:()()2012π34-++-12.(2020·青海·中考真题)计算:10311345( 3.14)273π-⎛⎫+︒+- ⎪⎝⎭13.(2020·甘肃天水·中考真题)(1)计算:114sin 6032|2020124-︒⎛⎫-+ ⎪⎝⎭.(2)先化简,再求值:21111211a a a a a a ---÷-+++,其中3a = 14.(2020·北京·中考真题)计算:11()18|2|6sin 453---︒15.(2020·山东菏泽·中考真题)计算:20201202012|63|2345(2)2-⎛⎫++︒--⋅ ⎪⎝⎭.16.(2020·四川乐山·中考真题)计算:022cos60(2020)π--︒+-.17.(2020·浙江·﹣1|.18.(2020·浙江嘉兴·中考真题)(1)计算:(2020)0﹣3|; (2)化简:(a +2)(a ﹣2)﹣a (a +1).19.(2020·浙江台州·中考真题)计算:3-20.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+-;(2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.21.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =.22.(2021·河南·中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷⎪⎝⎭. 23.(2021·湖北鄂州·中考真题)先化简,再求值:2293411x x x x x x -+÷+--,其中2x =.24.(2021·广西玉林·()()01416sin30π--+--°.25.(2021·广西玉林·中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()22-++a b b a b 的值.27.(2021·北京·中考真题)计算:02sin60(5π--.28.(2021·江苏宿迁·中考真题)计算:()0π1-4sin45°29.(2021·湖北荆州·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =30.(2021·浙江衢州·中考真题)先化简,再求值:2933x x x +--,其中1x =.31.(2021·浙江衢州·01()|3|2cos602--+︒.32.(2021·湖北随州·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 33.(2021·山东菏泽·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n满足32m n =-. 34.(2021·湖北十堰·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭.35.(2021·湖北十堰·1133-⎛⎫︒+-- ⎪⎝⎭.36.(2021·湖南常德·中考真题)化简:2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭37.(2021·湖南常德·中考真题)计算:012021345-+︒.38.(2021·湖南郴州·中考真题)先化简,再求值:2213111a a a a a a --⎛⎫-÷⎪+--⎝⎭,其中a =39.(2021·湖南郴州·中考真题)计算:11(2021)|2tan 602π-⎛⎫--+⋅︒ ⎪⎝⎭.40.(2021·湖南怀化·中考真题)计算:021(3)()4sin 60(1)3π--+︒--41.(2021·湖北黄冈·中考真题)计算:0|12sin 60(1)π-︒+-.42.(2021·新疆·中考真题)先化简,再求值:22414421x x x x x x ⎛⎫-+⋅⎪+++-⎝⎭,其中3x =.43.(2021·湖南长沙·中考真题)计算:(02sin 451-+°44.(2021·四川广安·中考真题)先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值.45.(2021·四川广安·中考真题)计算:()03.1414sin 60π-︒.46.(2021·湖南邵阳·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭.47.(2021·四川眉山·中考真题)计算:(1143tan 602-⎛⎫-︒-- ⎪⎝⎭48.(2021·江苏苏州·中考真题)先化简再求值:21111x x x-⎛⎫+⋅⎪-⎝⎭,其中1x =.49.(2021·江苏苏州·223--.50.(2021·江苏扬州·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.51.(2021·湖南邵阳·中考真题)计算:()020212tan 60π--︒.52.(2021·甘肃武威·中考真题)先化简,再求值:2224(2)244x x x x x --÷--+,其中4x =. 53.(2021·甘肃武威·中考真题)计算:011(2021)()2cos 452π--+-︒.54.(2021·云南·中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 55.(2021·浙江金华·中考真题)已知16x =,求()()()2311313x x x -++-的值.56.(2021·浙江金华·中考真题)计算:()202114sin 45+2-︒-.57.(2021·浙江温州·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++.58.(2021·四川南充·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-. 59.(2021·四川凉山·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.60.(2021·四川泸州·中考真题)计算:120211423cos304.61.(2021·重庆·中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.62.(2021·四川自贡·0|7|(2-+.63.(2021·浙江丽水·中考真题)计算:0|2021|(3)-+-64.(2020·广西贺州·中考真题)计算:()24π345+-︒--+︒.65.(2020·福建·中考真题)先化简,再求值:211(1)22x x x --÷++,其中1x =.66.(2020·四川广安·中考真题)计算:202011(1)12cos 45()2--+-.67.(2020·四川广安·中考真题)先化简,再求值:221(1)11x x x -÷+-,其中x=2020.68.(2020·广西柳州·中考真题)计算:11682⨯-+.69.(2020·广西·中考真题)计算:(0+(﹣2)2+|﹣12|﹣sin30°.70.(2020·贵州黔南·中考真题)(1)计算()1013tan602cos6020202-⎛⎫--︒+-︒- ⎪⎝⎭;(2)解不等式组:312324xx -⎧⎪⎨⎪+⎩.71.(2020·辽宁鞍山·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =. 72.(2020·内蒙古呼伦贝尔·中考真题)计算:1012cos60-(-1)2π-⎛⎫- ⎪⎝⎭.73.(2020·内蒙古呼伦贝尔·中考真题)先化简,再求值:222442342x x x x x x -+-÷+-+,其中4x =-. 74.(2020·江苏宿迁·中考真题)先化简,再求值:2x x -÷(x ﹣4x),其中x﹣2. 75.(2020·四川眉山·中考真题)先化简,再求值:229222a a a -⎛⎫-÷⎪--⎝⎭,其中3=a . 76.(2020·四川眉山·中考真题)计算:(2122sin 452-⎛⎫+-+︒ ⎪⎝⎭77.(2020·云南昆明·中考真题)计算:12021(π﹣3.14)0﹣(﹣15)-1.78.(2020·江苏南通·中考真题)计算: (1)(2m +3n )2﹣(2m +n )(2m ﹣n );(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 79.(2021·福建·1133-⎛⎫- ⎪⎝⎭.80.(2021·四川达州·中考真题)计算:()02120212sin 601π-+-+︒-.81.(2020·江苏徐州·中考真题)计算:(1)120201(1)2|2-⎛⎫-+- ⎪⎝⎭;(2)2121122a a a a -+⎛⎫-÷⎪-⎝⎭82.(2020·湖南邵阳·中考真题)已知:|1|0m -=, (1)求m ,n 的值;(2)先化简,再求值:22(3)(2)4m m n m n n -++-.83.(2020·湖南怀化·222cos 45|2-︒-+ 84.(2020·湖南张家界·中考真题)阅读下面的材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______;(2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. 85.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ⑴. 发现问题:代数式12x x ++-的最小值是多少?⑵. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.∵12x x ++-的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ∴12x x ++-的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是 ;②.利用上述思想方法解不等式:314x x ++->③.当a 为何值时,代数式++-x a x 3的最小值是2.86.(2021·四川内江·中考真题)计算:0216sin 45|128(2021)()2π-︒----. 87.(2021·青海西宁·中考真题)计算:2(53)(53)(31)-.88.(2021·辽宁盘锦·中考真题)先化简,再求值:2233816164x x xx x x x --÷--+--,其中24x =89.(2021·青海·中考真题)先化简,再求值:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭,其中21a =.90.(2021·江苏南京·中考真题)计算222ab a b b ab a b a ab ab-⎛⎫-+÷⎪+++⎝⎭. 91.(2021·四川成都·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .92.(2021·四川资阳·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 93.(2021·重庆·中考真题)计算(1)()()22x y x x y -++; (2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭. 94.(2021·浙江嘉兴·中考真题)(1)计算:12sin 30-︒; (2)化简并求值:11a a -+,其中12a =-. 95.(2021·四川遂宁·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 96.(2021·四川泸州·中考真题)化简:141()22a a a a a --+÷++.97.(2021·山东枣庄·中考真题)先化简,再求值:21(1)11x x x ÷+--,其中1x =.98.(2020·广西贵港·中考真题)(1()0236cos30π+-︒; (2)先化简再求值:221239m m m ÷--,其中5m =-.99.(2020·内蒙古赤峰·中考真题)先化简,再求值:221121m m m m m m ---÷++,其中m 满足:210m m --=.100.(2021·重庆·中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”.例如6092129=⨯,21和29的十位数字相同,个位数字之和为10, 609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10, 234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .1.74-【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式131142324=-++-+ 111232324=-++- 74=-.【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.2.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21xx =+,解分式方程即可.解:∵点A 、B 到原点的距离相等 ∴A 、B 表示的数值互为相反数 即21xx =+,去分母,得2(1)x x =+, 去括号,得22x x =+, 解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数3【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+︒+11222=-+⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.4.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 5.0【分析】根据绝对值的性质、零指数幂、负整指数幂的性质及45°角的正切值计算解题即可.解:011|2|(2)()4tan 453π----+-︒21341=-+-⨯0=.【点拨】本题考查实数的混合运算,涉及绝对值、零指数幂、负整指数幂、正切等知识,是基础考点,难度较易,掌握相关知识是解题关键.6. 【分析】分别进行负整数指数幂运算、特殊角的三角函数值运算、绝对值运算、二次根式运算即可解答解:222sin 601---︒+=1214--=54-=. 【点拨】本题考查负整数指数幂、特殊角的三角函数值、绝对值、二次根式,熟记特殊角的三角函数值,掌握运算法则是解答的关键.7.1【分析】根据绝对值的定义及算术平方根的定义即可解决. 解:原式331=-+1=【点拨】本题考查了绝对值的定义、算术平方根的定义及实数的运算,关键是掌握绝对值和算术平方根的定义.8.1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.()222sin 451+︒--221= 1=故答案是:1.【点拨】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.9.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.解:1129|12-+-,(112-⨯=31 =2.【点拨】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.10.3【分析】由乘方、负整数指数幂、绝对值的意义进行化简,即可得到答案.解:原式423=+-3=.【点拨】本题考查了乘方、负整数指数幂、绝对值的意义,解题的关键是掌握运算法则,正确的进行化简.11【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.解:原式112=-=【点拨】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.12【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可解:101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=++-3113=+-=【点拨】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.13.(13;(2)221a -,1. 【分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.解:(1)原式4(214=-+-,214=-,3;(2)原式21111(1)1a a a a a -+=-⨯-+-, 1111a a =--+, 11(1)(1)a a a a +-+=-+, 221a =-,当a ==()222213121===--. 【点拨】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.14.5【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.解:原式=3262+-⨯32=+-5.= 【点拨】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.15.52【分析】根据负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用进行计算即可.解:202012020123|45(2)2-⎛⎫++︒--⋅ ⎪⎝⎭202011(3(2)22=++-⨯ 1312=+ 52=. 【点拨】本题考查了负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用,熟知以上运算是解题的关键.16.2【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.解:原式=12212-⨯+ =2.【点拨】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键.17. 1【分析】根据算术平方根定义和绝对值的性质计算,再合并同类二次根式即可.解:原式1.【点拨】本题考查了算术平方根和绝对值以及同类二次根式的合并,解题的关键是正确理解定义.18.(1)2;(2)﹣4﹣a【分析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.解:(1)(2020)0﹣3|=1﹣2+3=2;(2)(a +2)(a ﹣2)﹣a (a +1)=a 2﹣4﹣a 2﹣a=﹣4﹣a .【点拨】本题主要考查了实数的运算,准确运用零指数幂、二次根式的性质和绝对值的性质是解题的关键.19.3【分析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.解:原式=3=故答案为:3.【点拨】本题考查了绝对值的概念、平方根的概念、二次根式的加减运算等,熟练掌握运算公式及法则是解决此类题的关键.20.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+=2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.21.11m -,13【分析】先将除法转化为乘法,因式分解,约分,分式的减法运算,再将字母的值代入求解即可. 解:22611931m m m m m --÷--+- 2(3)31(3)(3)11m m m m m m -+=⋅-+--- 2111m m =--- 11m =-. 当4m =时, 原式11413==-. 【点拨】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.解:(1)013(3-- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点拨】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.23.1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.解:原式()()()313341x x x x x x x -=⨯++--+ 1x x+=, 当2x =时,原式32=. 【点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.24.1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.解:原式=141162+--⨯ =1【点拨】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.25.1-【分析】由题意易得0a <,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限, ∴0a <, ∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭ =()22211a a a a a -+-⨯- =1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.26.1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.解:()()22-++a b b a b=22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点拨】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.27.4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.解:原式=2514-=. 【点拨】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.28.1【分析】结合实数的运算法则即可求解.解:原式=1411+=+. 【点拨】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.29.1a a +【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =即可.解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a +当a =【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.30.3x +;4【分析】先将这两个分式转化为同分母的分式,再将分母不变,分子相加减,最后化简即可. 解:原式29(3)(3)333x x x x x x +-=-=--- 3x =+当1x =时,原式4=.【点拨】本题考查了分式的化简求值问题,涉及到了分式的通分和约分,解决本题的关键是牢记相关概念与法则,并灵活运用,最后的结果记得化简即可.31.2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,,最后算出结果即可. 解:原式13+1322 2=【点拨】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.32.22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可.解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点拨】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.33.3n m n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32n m =-代入求值即可 解:∵22221244m n n m m n m mn n --+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+ =21m n n m --+ =3n m n+, ∵32m n =-, ∴32n m =-, ∴原式=332nn n -+= -6. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键.34.21(2)a - 【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解.解:原式=221(2)(2)4a a a a a a a ⎛⎫+--⋅ ⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭=2224(2)4a a a a a a a --+⋅-- =24(2)4a a a a a -⋅-- =21(2)a - 【点拨】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键. 35.1【分析】利用特殊角的三角函数值、负整数指数幂、绝对值的性质逐项计算,即可求解.解:原式33=- 1=.【点拨】本题考查实数的运算,掌握特殊角的三角函数值、负整数指数幂、绝对值的性质是解题的关键.36.31a a ++【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 解:2593111a a a a a a ++⎛⎫+÷ ⎪---⎝⎭ 222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+ 故答案为:31a a ++. 【点拨】本题考查了分式的化简,分式的通分,因式分解,平方差公式,完全平方公式,分式的混合运算,熟练运用公式和分式的计算法则是解题关键.37.1.【分析】直接利用零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值进行计算即可.解:012021345-+︒3132=+ 111=+-1=故答案是:1.【点拨】本题考查了零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值,解题的关键是:熟练掌握相关运算法则.38 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,最后代入求值,即可.解:原式=2213111a a a a a a --⎛⎫-÷ ⎪+--⎝⎭=131(1)(1)(1)1a a a a a a a ⎛⎫----⋅ ⎪++-⎝⎭=()()2131(1)(1)(1)(1)1a a a aa a a a a a⎛⎫----⋅⎪⎪+-+-⎝⎭=()()2131(1)(1)1a a a aa a a----⋅+-=222131(1)(1)1a a a a aa a a-+-+-⋅+-=11(1)(1)1a aa a a+-⋅+-=1a,原式.【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.39.3【分析】先算零指数幂,绝对值,负整数指数幂以及锐角三角函数,再算加减法,即可求解.解:原式=12+-=3.【点拨】本题主要考查实数的混合运算,熟练掌握零指数幂,绝对值,负整数指数幂以及锐角三角函数,是解题的关键.40.11【分析】根据非零实数0二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.解:原式=191=11-+.【点拨】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.41.0.【分析】先化简绝对值、计算特殊角的正弦值、零指数幂,再计算实数的混合运算即可得.解:原式121-=,==.【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂等知识点,熟练掌握各运算法则是解题关键.42.22x ;25【分析】根据分式混合运算的法则进行化简计算,然后代入条件求值即可.解:原式()()()2221212x x x x x x ⎡⎤+-=+⎢⎥+-+⎢⎥⎣⎦ 21221x x x x x -⎛⎫=+ ⎪++-⎝⎭ 22121x x x -=+- ()21121x x x -=+- 22x =+ 将3x =代入得:原式22325==+. 【点拨】本题考查分式的化简求值问题,掌握分式混合运算法则是解题关键. 43.5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.解:原式21=++14=+, 5=. 【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.44.1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可.解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭ =()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦ =()()()()211111a a a a a a +-+⨯-- =1a由原式可知,a 不能取1,0,-1,∴a =2时,原式=12.【点拨】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.45.0【分析】分别化简各数,再作加减法.解:()03.1414sin 60π-+︒=114-+=11-+=0【点拨】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.46.1;11x --(答案不唯一) 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简,再结合分式有意义的条件和除数不为0,即可代值计算. 解:原式()()()()()()2211111=1111111x x x x x x x x x x x +++-⨯=⨯=++-++-- 代数式有意义,分母和除数不为0∴()()110x x +-≠即1x ≠±∴当0x =时,原式=111101x ==---(答案不唯一). 【点拨】本题考察分式的化简求值、分式有意义的条件、因式分解和分母有理化,属于基础题,难度不大.解题的关键是掌握分式的运算法则和分式有意义的条件.47.3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.解:原式=()132123--+=-+=【点拨】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.48.1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解. 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.49.-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.223--229=+-5=-.【点拨】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键. 50.(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭ =()a b a b ab ++÷=()ab a b a b+⨯+ =ab 【点拨】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.51.﹣1.【分析】根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.解:()020212tan 60π--︒=(12-=12-+=﹣1.【点拨】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.52.42,23x --+ 【分析】小括号内先通分计算,将除法变成乘法并因式分解,根据乘法法则即可化简,再代值计算即可. 解:原式2242(2)()22(2)(2)x x x x x x x --=-⨯--+- 4222x x x --=⨯-+ 42x =-+ 当4x =时,原式42423=-=-+. 【点拨】本题考察分式的化简求值,难度不大,属于基础题型.解题的关键在于熟悉运算法则和因式分解.53.3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 解:011(2021)()2cos 452π--+-︒,122=+-3=【点拨】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.54.6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++-- =6【点拨】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.55.1【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1.【点拨】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.56.1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可解:原式142=-+12=-+ 1=.【点拨】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.57.(1)-6;(2)22625a a -+.【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;(2解:(1)()0438⨯-+- 12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点拨】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.58.1210x -,-22【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解. 解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110⨯--=-22.【点拨】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.59.-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 解:∵2x y -=, ∴1121y x x y xy xy---===, ∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点拨】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.60.12.【分析】根据零指数幂,负整指数幂,去括号法则,特殊角的三角函数值化简,然后再计算即可.解:0120211423cos3043144232144312=.【点拨】本题考查了零指数幂,负整指数幂,去括号法则,特殊角的三角函数值等知识点,熟悉相关知识点是解题的关键61.(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b -22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点拨】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.62.1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解. 解:原式5711=-+=-.【点拨】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.63.2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;解:0|2021|(3)-+-202112=+-,2020=.【点拨】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.64.2.【分析】直接利用零指幂的性质、绝对值的性质、特殊角的三角函数值分别化简得出答案.解:()24π345+-︒--︒313=+-+ 3131=+-+2=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.65.11x - 【分析】先将括号内的项进行通分化简,再分式的除法法则,结合平方差公式因式分解,化简,最后代入数值解题即可.解:原式=2122(1)(1)x x x x x +-+⋅++- 1(1)(1)x x x +=+-。

2022年初中七年级数学作业100题(数与式)

2022年初中七年级数学作业100题(数与式)
10.化简 的结果是()
A. B. C. D.
11.下列运算正确的是( )
A.x3•x2=x5B.x3+x2=x5C.(x3)3=x6D.x6÷x2=x3
12.下列运算正确的是()
A. B.
C. D.
13.a<0ab<0则|b-a+3|-|a-b-9|的值为()
A.6B.-6C.12D.
14.下列根式中,最简二次根式是()
(1)将最后一位乘客送到目的地,出租车离钟楼多远?在钟楼的什么方向?
(2)若每千米的价格是2.4元,该出租车周日下午的营业额是多少?
2.用科学记数法表示: 是
A. B. C. D.
3.化简 的结果为()
A. B. C. D.
4.在括号内填上适当的单项式,使 成为完全平方式,应填()
A.± B. C. D. a
5.下列四个数中,最大的数是( )
A.﹣2B.﹣1C.0D.|﹣3|
6.如果 ,则 的值为()
A. B. C. D.
7.下列运算正确的是()
A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2
C.(a+m)(b+n)=ab+mnD.(x﹣1)2=x2﹣2x﹣1
8.实数 在数轴上的对应点的位置如图所示,下列结论正确的是()
A. B. C. D. >
9.下列计算正确的是()
A.4x3•2x2=8x6B.a4+a3=a7
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b2
A.(3k2+4k﹣1)﹣(3k2﹣4k+1)
B.2(p3+p2﹣1)﹣2(p3+p﹣1)

数学初中竞赛 数和式 专题训练(含答案)

数学初中竞赛 数和式 专题训练(含答案)

数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( )A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( )A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3B .(a +1)(a 2﹣a +1)=a 3+1C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+275.已知x =﹣,则x 3+12x 的算术平方根是( ) A .0B .2C .D .2 6.如果,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( )A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( )A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( )A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( )A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( )(1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3(2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 . 14.已知互不相等的实数a ,b ,c 满足,则t = . 15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = .18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解: x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7=(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4)=(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解;(2)拓展:把代数式x 2+2xy ﹣3y 2因式分解:当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0,∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc=[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c )=(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ).故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确;故选:D .5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。

初中数学:数与式_整式_整式的混合运算(综合题)

初中数学:数与式_整式_整式的混合运算(综合题)

轩爸辅导初中数学:数与式_整式_整式的混合运算初中七年级下学期数学整式的混合运算综合题真题及答案(54题)阴影部分的面积.化.(泰兴2019七下期中) 已知 ,(1) 求2A-B的值,其中 , ;(2) 试比较代数式A、B的大小.(成都2019七下期中) 为了改善小区环境,搞好绿化管理工作,更好地服务于居民,某小区物业绿化工作人员李师傅,规划在 米, 米的长方形的场地上,修建两横一纵三条宽为 米的小路,其余部分铺上地毯草.(2) 所铺地毯草的面积和是多少平方米?(3) 如果 ,并且每平方米地毯草的价格是20元,那么请你帮李师傅计算一下,买地毯草需要多少元?(深圳2018七下期中) 杨辉三角是一个由数字排列成等腰三角形数表,一般形式如图所示,其中每一横行都表示 (此处 , , , , , , )的展开式中的系数,杨辉三角最本质的特征是,它的两条斜边都是由数字 组成的,而其余的数则是等于它“肩”上的两个数之和.(1) 请你直接写出 .杨辉三角还有另一个特征(2) 从第二行到第五行,每一行数字组成的数(如第三行为 )都是上一行的数与积.(3) 由此你可写出 =.(a+b) (此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1) 请根据上题中的杨辉三角系数集”,仔细观察下列各式中系数的规律,并填空: 各项系数之和各项系数之和各项系数之和⑴ ;⑵ 。

②请写出 各项系数之和:(2) 设 ,求 的值.(3) 你能在(2)的基础上求出 的值吗?若能,请写出过程.(扬州2017七下期中) 对于任何实数,我们规定符号 =ad﹣bc,例如: =1×4﹣2×3=(1) 按照这个规律请你计算 的值;2(2) 按照这个规定请你计算,当a﹣3a+1=0时,求 的值.(4) 用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以为;(5) 已知 , ,利用上面的规律求 的值.要比较代数式A、B的大小,可以作差A-B,比较差的取值,当A-B>0时,有A>B;当A-B=0时,有A=B;当A-B<0时,有A<B.”例如,当a<0时,比较 的大小.可以观察因为当a<0时,-a>0,所以当a<0时,(1) 已知M= ,比较M、N的大小关系.(2) 某种产品的原料提价,因而厂家决定对于产品进行提价,现有三种方案:方案3:第一、二次提价均为(2) 劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d( )根据运算性质,填空: =(a为正数),若d(2)=0.3010,则d(16)=,d(5)=,,其中x=﹣ .①代数式:2x+ 的最小值是;(岱岳2016七下期末) 计算(1) (﹣ ax) •2y(2) (x﹣2)(x+2)﹣(x+1)(x﹣3)+(﹣3)示.根据图中的数据(单位:m),解答下列问题:。

初中数与式测试题及答案

初中数与式测试题及答案

初中数与式测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3yC. 5x^2 - 7x + 1D. 4xy^2 + 3答案:A2. 计算 (2x - 3)^2 的结果是什么?A. 4x^2 - 12x + 9B. 4x^2 + 12x + 9C. 4x^2 - 6x + 9D. 4x^2 + 6x + 9答案:A3. 合并同类项 3x^2 + 5x^2 - 2x^2 的结果是?A. 6x^2B. 2x^2C. 4x^2D. 5x^2答案:C4. 已知 a = 2,b = 3,求代数式 2a + b 的值。

A. 7B. 8C. 9D. 10答案:A5. 以下哪个代数式可以被因式分解为 (x - 2)(x + 3)?A. x^2 + x - 6B. x^2 - 5x + 6C. x^2 + 5x - 6D. x^2 + x + 6答案:B二、填空题(每题3分,共15分)1. 多项式 4x^3 - 7x^2 + 2x - 5 的次数是 _______。

答案:32. 代数式 3x^2 - 2x + 1 可以被因式分解为 _______。

答案:(3x - 1)(x - 1)3. 计算 (x + 1)(x - 1) 的结果是 _______。

答案:x^2 - 14. 代数式 2x^2 + 4x + 2 可以被简化为 _______。

答案:2(x^2 + 2x + 1)5. 已知 a = 5,b = -3,代数式 a^2 - b^2 的值是 _______。

答案:34三、解答题(每题5分,共20分)1. 计算 (x + 2)(x - 3) 的展开式。

答案:x^2 - x - 62. 已知 x = 1,求代数式 3x^2 - 4x + 5 的值。

答案:43. 合并同类项:7x^2 - 2x^2 + 5x - 3x + 6。

答案:5x^2 + 2x + 64. 因式分解:x^2 - 9。

中考数学数与式专题训练50题含答案

中考数学数与式专题训练50题含答案

中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.下列四个数中,是无理数的是( )A B .1π3 C .52 D .3.142.﹣2的相反数为( )A .0B .﹣1C .﹣2D .23a 的取值范围是( )A .1a ≥-B .0a ≠C .1a >-D .0a > 4.下列多项式相乘,能用平方差公式计算的是( )A .()()22x x ++B .()()x y x y -+-C .()()22x y x y -+D .()()x y x y --+ 5.计算(﹣20)+17的结果是( )A .﹣3B .3C .﹣2017D .20176﹣5的结果为( )A .5B .5C .6D .17.下列计算正确的是( )A .336a a a +=B .336a a a ⋅=C .()325a a =D .33()ab ab =8.当 x =-3 )A .3B .-3C .±3 D9.点P (2a +1,4)与P '(1,3b -1)关于原点对称,则2a +b =( )A .3B .-2C .-3D .210.科学家使用某技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.用科学记数法表示数据0.00000000022,其结果是( ) A .90.2210-⨯ B .102.210-⨯ C .112210-⨯ D .80.2210-⨯ 11.下列运算不能运用平方差公式的是( )A .(23)(23)m m +-B .(23)(23)m m -+-C .(23)(23)m m ---D .(23)(23)m m -+-- 12.下面四个数中,最大的数是( )A .4-B .1-C .0D .513.下列计算正确的是( )A .2323()n n x x +=B .233262)((())a a a +=C .23236))((()a b a b +=+D .22[(])n n x x -=14.计算2a 2·3a 3的结果为( )A .6a 5B .-6a 5C .6a 6D .-6a 6 15.下列计算正确的是( )AB .2=C 2D 32 16.在式子“322(1)--中”的“○”内填入下列运算符号,计算后结果最大的是( ) A .+B .-C .×D .÷ 17.计算()()()()()()x c b c b c x a x b a b x b b a x a ---++------所得的结果是( ) A .x c - B .x a - C .1x a - D .1-x b18.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长19.下列各题中的两项是同类项的是( )A .23x y 和-23x y ;B .22a b 和20.2ab ;C .11abc 和9bc ;D .26和2x .二、填空题20.要使式子2x x -有意义,则x 的取值范围______. 21.已知,2253a b ab a b +==+=,,______________.22.比较大小: 1.5-____34-(用<,>,= 填空).23.如果一个数的立方根是6,则它相反数的立方根是______,它倒数的立方根是____.24.苏州公共自行车自2010年起步至今,平均每天用车量都在10万人次以上,在全国公共自行车行业排名前五名.根据测算,日均10万多人骑行公共自行车出行,意味着苏州每年因此减少碳排放6865.65吨,相当于种树近22.7万棵,对数据6865.65吨按精确到0.1吨的要求取近似值可表示为___吨.25.已知:3a b +=,则代数式22(1)(1)484a b a ab b ab ++----=__________. 26.116-的相反数是______,倒数是______,绝对值是______.27.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?3x y z ++,4xy ,1a ,22m n ,x 2+x +1x ,0,212x x -,m ,﹣2.01×105 整式集合:{_______________ …}单项式集合:{__________ …}多项式集合:{_______________…}.28m =_____. 29.若4m n -=,则228m n n --=______.30x 的取值范围是____________.31x 的取值范围为_____.32.若1139273m m ⨯⨯=,则m=__________.33_______4(填“>”“<”或“=”).34.计算:(22=_____.35.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)111113266--+=____________. 36.已知a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2,y 不能作除数,则()201122012010122()a b cd y x+-++的值等于_____. 37.已知关于x 的多式225x x k -+的一个因式是3x +,则k 的值是__.38.()()2312x x n x ax ++=++,则a 的取值____39.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭=_____________.三、解答题40)2 41.解答下列问题.(1)|1(.(2)已知:2(5)49x +=,求x 的值.42.若36xy =,且5x y -=.(1)求()()22x y -+的值;(2)求22x xy y x y -+++的值.43.计算:11021|27(2022)----. 44.如图,点A 、B 、C 、D 分别表示四个高铁车站的位置.(1)用含a 、b 的代数式表示B 、D 两站之间的距离是 ;(最后结果需化简)(2)若已知B 、D 两站之间的距离是80km ,求A 、B 两站之间的距离.45.已知有理数a ,b ,c 在数轴上所对应的点分别为点A ,B ,C ,且a b =-,()2130a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使点A 与点C 重合.数轴上M ,N 两点经过上述折叠后重合,且M ,N 两点之间的距离为2022,则M 表示的数为______,N 表示的数为______.(点M 在点N 的左侧)(3)若点P 为数轴上一动点,其对应的数为x ,当点P 在点B 与点C 之间时,化简式子:31124x x x +--+-(写出化简过程).46.如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.(1)将a ,b ,c ,0由大到小排列(用“>”连接)__________________;(2)a b -______0;b c -______0(填写“>”,“=”,“<”)(3)试化简:a b --47.算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.48.计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)()2721149353⎛⎫÷--⨯- ⎪⎝⎭ . 49.已知有A 、B 两种不同规格的货车共50辆,现计划分两趟把甲种货物306吨和乙种货物230吨运往某地,先用50辆货车共同运输甲种货物,再开回共同运输乙种货物.其中每辆车的最大..装载量如表:(1)装货时按此要求安排A 、B 两种货车的辆数,共有几种方案.(2)使用A 型车每辆费用为600元,使用B 型车每辆费用800元.在上述方案中,哪个方案运费最省最省的运费是多少元?(3)在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A 型车奖金为m 元,每辆B 型车奖金为n 元,38m n <<,且m ,n 均为整数.则m =___________,n =____________.参考答案:1.B【分析】根据无理数的三种形式:①开方开不尽的数,①无限不循环小数,①化简后含有π的数,结合所给数据进行判断即可.【详解】A 3=是整数,不是无理数,故A 不符合题意;B 、1π3是无理数,故B 符合题意; C 、52是分数,不是无理数,故C 不符合题意; D 、3.14是有限小数,不是无理数,故D 不符合题意;故选:B .【点睛】本题考查了无理数的定义,解答本题的关键是熟悉无限不循环小数是无理数. 2.D【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:﹣2的相反数为2故选D【点睛】本题考查了相反数的定义,理解相反数的定义是解题的关键.3.A【分析】根据二次根式有意义:被开方数为非负数可得出x 的取值范围.【详解】解:①①10a +≥ ,解得:1a ≥-.故选:A .【点睛】本题考查了二次根式有意义的条件,要求同学们掌握二次根式有意义则被开方数为非负数.4.C【分析】根据平方差公式:两个数的和乘两个数的差,等于两个数的平方差,字母表示为:(a +b )(a −b )=22a b -,找出整式中的a 和b ,进行判定即可.【详解】解:A 、(x +2)(x +2)=()2+2x ,不符合平方差公式的特点,故选项A 错误; B 、(−x +y )(x −y )=()2x y --,不符合平方差公式的特点,故选项B 错误;C、(2x−y)(2x+y)=224x y,符合平方差公式的特点,故选项C正确;D、(−x−y)(x+y)=()2-不符合平方差公式的特点,故选项D错误.x y+故选:C.【点睛】此题考查了平方差公式,注意抓住整式的特点,灵活变形是解题关键.5.A【分析】原式利用异号两数相加的法则计算即可得到结果.【详解】解:原式=-(20-17)=-3故选A.【点睛】本题考查了有理数的加法,熟练掌握加法法则是解本题关键.6.D【分析】根据二次根式的乘法法则即可得.【详解】解:原式5,65=-,=,1故选:D.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则是解题关键.7.B【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. 333+=,选项计算错误,不符合题意;2a a aB. 336⋅=,选项计算正确,符合题意;a a aC.()326a a=,选项计算错误,不符合题意;D. 333ab a b=,选项计算错误,不符合题意;()故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.8.A【分析】把x=-3代入二次根式进行化简即可求解.【详解】解:当x =-33==.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.9.C【分析】根据平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --可得到a b ,的值,再代入2a b +中可得到答案.【详解】解:点P (2a +1,4)与P '(1,3b -1)关于原点对称,则211a +=-,314b -=-,解得1a =-,1b ,23a b +=-,故选C .【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点,根据关于原点对称点的坐标特点求出a b ,的值是解答本题的关键.10.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:100.00000000022 2.210-=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要确定a 的值以及n 的值.11.B【分析】依据平方差公式的特点进行判断即可.【详解】解:A 、(23)(23)m m +-符合平方差公式;B 、2(23)(23)(23)(23)(23)m m m m m -+-=---=--,不符合平方差公式; C 、(23)(23)(23)(23)m m m m ---=-+-符合平方差公式;D 、(23)(23)m m -+--符合平方差公式.故选B .【点睛】此题考查完全平方公式,平方差公式,解题关键在于掌握计算公式.12.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】①-4<-1<0<5,①最大的数是5,故选D.【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.13.D【分析】根据幂的乘方法则,合并同类项法则依次分析各项即可.【详解】解:A、(x2n)3=x6n,故本选项错误;B.(a2)3+(a3)2=a6+a6=2a6,(a6)2=a12,故本选项错误;C.(a2)3+(b2)3=a6+b6≠(a+b)6,故本选项错误;D.[(-x)2]n=x2n,本选项正确.故选D.【点睛】本题考查了幂的乘方法则,合并同类项法,解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;合并同类项法则:把同类项的系数相加,字母和字母的指数不变.14.A【分析】根据单项式乘单项式的运算法则进行运算即可.【详解】原式=6a5.故选A.【点睛】本题考查了单项式乘单项式的知识,属于基础题.15.D【分析】根据二次根式的运算法则可以对各个选项的正误作出判断.【详解】AB、=C=D3322=÷=,选项正确.故选D.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则是解题关键.16.A【分析】分别按各选项求出结果,然后比较即可.【详解】解:①328-=-,()211-=①-8+1=-7,-8-1=-9,-8×1=-8,-8÷1=-8,①-7>-8=-8>-9,①计算结果最大的是-7.故选:A.【点睛】本题主要考查了有理数的乘方和混合运算,掌握n a表示n个a相乘是解题的关键.17.C【分析】通过分式的加法法则,即可求解.【详解】原式=()()()()()() ()()()()()()()()() x c a b b c x a x b b cx a x b a b x a x b a b x a x b a b ------+----------=2()()()()()()()()() ax bx ac bc bx ab cx ac bx cx b bc x a x b a b x a x b a b x a x b a b --+--+--++----------=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+ ()()() ax ab bx bx a x b a b-----=()() ()()() a x b b x b x a x b a b------=()() ()()()a b x bx a x b a b-----=1 () x a -.故选C.【点睛】本题主要考查分式的加法法则,掌握分式的通分和约分,是解题的关键. 18.A【详解】A选项:面积为3B选项:体积为8,是有理数,此选项正确;C 、两直角边分别为2和3=,是无理数,此选项错误;D 、长为3,宽为2误.故选A.19.A【分析】同类项是指所含字母相同并且相同字母的指数也分别相等的项,根据同类项的定义判断并选出正确答案.【详解】23x y 和-23x y 是同类项,A 正确;22a b 和20.2ab 不是同类项,B 错误;11abc 和9bc 不是同类项,C 错误; 26和2x 不是同类项,D 错误;正确答案选A.【点睛】本题主要考查学生对同类项的定义的掌握,能够熟练的判断出两个式子是否是同类项是解答本题的关键.20.2x ≠【分析】根据分式的分母不为零,即20x -≠即可解答. 【详解】2x x -有意义, ∴20x -≠ 2x ∴≠【点睛】本题考查了分式有意义的条件,熟练掌握方式有意义的条件即“当分母不为零时,分式有意义”是解本题的关键.21.19【分析】根据完全平方公式将5a b +=两边平方,已知3ab =,由此即可求解.【详解】解:5a b +=两边平方得,22()5a b +=,即22225a ab b ++=,①3ab =,①22252252319a b ab +=-=-⨯=,故答案是:19.【点睛】本题主要考查的完全平方公式的应用,理解和掌握完全平方公式及其配方法是解题的关键.22.<【分析】直接根据有理数大小比较方法:正数大于0,负数小于0,正数大于负数,两个负数绝对值大的反而小,判断即可.【详解】解: 1.5-<34-, 故答案为:<.【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较方法是解本题的关键.23. -6 16【分析】根据立方根的概念求解.【详解】如果一个数的立方根是6,则这个数为216∴6=-16=. 故答案为:6-,16. 【点睛】本题考查了求一个数的立方根,熟练掌握概念是解题的关键.24.6865.7.【详解】试题分析:求近似值,在一般情况下,无特殊要求就用“四舍五入”, 对数据6865.65吨按精确到0.1吨的要求取近似值可表示为 6865.7吨.考点:近似值.25.-32【分析】先根据多项式乘以多项式展开,根据完全平方公式凑完全平方公式,再将3a b +=整体代入求解即可.【详解】解:22(1)(1)484a b a ab b ab ++----=()214ab a b a b ab +++-+- ()241a b a b =+-++当3a b +=时,原式23431=-⨯+43632=-=-故答案为:32-【点睛】本题考查了多项式的乘法,完全平方公式,整体代入是解题的关键.26. 116##76 67- 116##76 【分析】依据相反数、倒数、绝对值的定义求解,要区分清楚这三个容易混淆的概念,求带分数的倒数时,应先把带分数化成假分数后再求倒数. 【详解】-=-17166, ①116-的相反数是116,倒数是67-,绝对值是116. 故答案为:①116,①67-,①116. 【点睛】此题考查了相反数、绝对值和倒数的性质,要求掌握相反数、绝对值和倒数的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.27. 3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105… 4xy ,22m n ,0,m ,﹣2.01×105 (3)x y z ++ 【分析】根据整式、单项式、多项式的定义判断后选出即可.【详解】解:整式集合:{3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105 …}; 单项式集合:{ 4xy ,22m n ,0,m ,﹣2.01×105 …}; 多项式集合:{3x y z ++ …}. 故答案为:3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105…;4xy ,22m n ,0,m ,﹣2.01×105 …;3x y z ++ 【点睛】本题考查了对单项式,多项式,整式的定义的理解和运用,注意:整式包括多项式和单项式,数与字母的积是单项式,单个的数与单个的字母也是单项式,若干个单项式的和组成的代数式叫做多项式.28.1【分析】根据同类二次根式的被开方数相同可得出关于m 的方程,解出即可.【详解】解:①①13m m +=-,解得:1m =.故答案为:1【点睛】本题考查了同类二次根式的知识,一元一次方程,注意掌握同类二次根式化为最简二次根式后被开方数相同且根指数均为2.29.16【分析】将原式化简然后整体代入即可解决问题.【详解】解:①4m n -=,①228m n n --=)8()m m n n n -+-(=)8m n n +-4(=4()m n -=4×4=16.故答案为:16.【点睛】本题考查了因式分解的应用,解决本题的关键是掌握提公因式法分解因式. 30.x≥0且x≠2.【详解】试题分析:根据题意得:x≥0且x ﹣2≠0,解得:x≥0且x≠2.考点: 二次根式有意义的条件;分式有意义的条件.31.x≥﹣4【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解. 详解:根据题意得x+4≥0解得x≥-4.故答案为x≥-4.点睛:此题主要考查了二次根式有意义的条件,关键是明确二次根式的被开方数为非负数,比较简单,是常考题型.32.2【分析】把左边先逆用幂的乘方法则变形,再根据同底数幂的乘法计算,然胡两边比较即可求出m 的值.【详解】解:①1139273m m ⨯⨯=,①23113333m m ⨯⨯=,①511133m +=,①5m+1=11,①m=2.故答案为:2.【点睛】本题考查了同底数幂的乘法、以及幂的乘方法则,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘. 33.<【分析】先求出328=,3464=,根据2864<即可得出答案.【详解】解:①328=,3464=, 又①2864<,4<.故答案为:<.【点睛】本题主要考查了立方根,以及实数的大小比较,关键是掌握实数的大小比较方法.34.6-【分析】直接利用完全平方公式以及二次根式的混合运算法则化简得出答案.【详解】解:原式=4+2﹣=6﹣.故答案为:6﹣.【点睛】本题主要考查完全平方公式以及二次根式的混合运算,掌握相关知识和运算法则是解题的关键.35. -15 -7.6 56 【详解】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.(1)-5+7-15-4+2=-5+7+(-15)+(-4)+2=-5+(-15)+[7+(-4)+2]=-15; (2)-0.5+4.3-9.6-1.8=(-0.5-1.8+4.3)-9.6=-7.6;(3)111113266--+=11115132666⎛⎫-+-+= ⎪⎝⎭ 36. 2.5-或 1.5-【分析】根据相反数、倒数、绝对值的定义得到a+b=0,cd=1,x=±2,y=0,再分别代入所求的代数式中,然后先算乘方,再算加减运算.【详解】解:①a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,①a+b=0,cd=1,x=±2,y=0①当a+b=0,cd=1,x=2,y=0时,原式=2011201020121202102⨯-⨯++ =2×0-2×1+12+0=0-2+2-0= 1.5-;当a+b=0,cd=1,x=-2,y=0时,原式=20112010201212021-02⨯-⨯+ =2×0-2×1-12+0 =0-2-12-0= 2.5-;故答案为 2.5-或 1.5-【点睛】本题考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.掌握互为相反数的两个数和为0,互为倒数的两数的积为1是解题的关键. 37.33-【分析】设另一个因式为(2)x n -,根据多项式乘以多项式展开,左右两边对比得到等量关系求解即可;【详解】设另一个因式为(2)x n -,则2(2)(3)2(6)3x n x x n x n -+=+--,即()2225263x x k x n x n -+=+--, ∴653n k n -=-⎧⎨=-⎩, 解得1133n k =⎧⎨=-⎩, 故答案为:33-.【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键. 38.7【分析】将原式左侧进行展开后,先根据3n 求出n 的值,然后利用a=n+3即可求解.【详解】将原式左端进行展开,()223312x n x n x ax +++=++①3n=12①n=4①a=3+4=7故答案为7.【点睛】本题考查了因式分解,本题的关键是将等式的左端展开,然后进行比对. 39.-8x 2y【分析】根据幂的乘方与积的乘方计算即可【详解】原式=232(8)x y y ⨯-=-8x 2y【点睛】此题考查幂的乘方与积的乘方,掌握运算法则是解题关键40.85--【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【详解】解:7125=-+--735=-+-85=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.41.(1)7(2)122,12x x ==-【分析】(1)先逐项化简,再算加减即可;(2)利用平方根化简,再进行计算即可.【详解】(1)解:原式=(61)(2)+--+,=612+=7;(2)解:由原式得5757x x +=+=-,12212x x ==-,.【点睛】本题考查了实数的混合运算和平方根的运算,解决此题的关键是熟练的运用运算法则进行求解.42.(1)42(2)74或48【分析】(1)将原式变形为()24xy x y +--,再代入求解即可;(2)利用()()224x y x x y y +=-+先求出x y +的值,再将原式变形为()()2x y xy x y -+++,代入即可求解.(1) ()()22x y -+224xy x y =+--()24xy x y =+--,①36xy =,5x y -=,①原式()243625442xy x y =+--=+⨯-=,即结果为42;(2)①()()224x y x x y y +=-+,36xy =,5x y -=,①()222543616913x y +=+⨯==,①x y +的值为13±,22x xy y x y -+++ 222x xy y x y xy =-++++()()2x y xy x y =-+++,当13x y +=时,原式()()225361374x y xy x y =-+++=++=;当13x y +=-时,原式()()225361348x y xy x y =-+++=+-=;即结果为74或者48.【点睛】本题主要考查了多项式乘多项式及完全平方公式,掌握多项式乘多项式的运算法则及完全平方公式是解题的关键.43.0【分析】先根据绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则进行化简,然后再根据实数混合运算法则进行运算即可.【详解】解:原式11121-0=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则,是解题的关键.44.(1)2a-3b (2)90km【详解】试题分析: (1)根据两点间的距离列出代数式即可;(2)根据两点间的距离列出AB 的代数式进行解答即可.试题解析:(1)用含a 、b 的代数式表示B. D 两站之间的距离是a −2b +a −b =2a −3b ;故答案为2a −3b ;(2)由题意可知:2a −3b =80kmAB =(5a −8b −70)−(a −2b )=4a −6b −70=160−70=90,①A 、B 两站之间的距离是90km.45.(1)1a =-,1b =,3c =.(2)-1010,1012.(3)12【分析】(1)根据偶次方的非负性,绝对值的非负性由非负数和为0可得方程,进而求出a 、c 、b ,(2)先找到对折点,再根据M ,N 两点之间的距离为2022,可得它们到对折点的距离为1011以及点M 在点N 的左侧可得答案;(3)根据点P 的位置得出13x <<,再化简绝对值,进行整式运算即可解答.【详解】(1)解:根据题意得:10a +=,30c -=,解得:①1a =-,3c =,又①a b =-,①1b =,综上所述:1a =-,1b =,3c =.(2)解:①1a =-,3c =,将数轴折叠,使点A 与点C 重合. 故对折点所表示的数为-1+3=12, ①M ,N 对折点所表示的数也是1,①M ,N 两点之间的距离为2022,点M 在点N 的左侧,故点M 表示的数为1-1011=-1010,点M 表示的数为1+1011=1012,故答案为:-1010,1012.(3)解:①当点P 在点B 与点C 之间时,1b =,3c =.①13x <<,①10x ->,10x +>,40x -<, ①31124x x x +--+-=3(1)(1)2(4)x x x +----=33+12+8x x x +--,=12.【点睛】本题考查了偶次方的非负性,绝对值的非负性,数轴上的点之间的距离、绝对值的化简、整式加减等知识,数形结合是解题的关键.46.(1)0c a b >>>(2)>,<(3)2b【分析】(1)数轴上,越往左数字越小,越往右数字越大,据此即可作答;(2)根据(1)中的结果,结合不等式的性质即可作答;(3)根据(2)中的结果去绝对值和根号,即可得解.【详解】(1)根据数轴上各数的位置,有:0c a b >>>,故答案为:0c a b >>>;(2)在(1)中有0c a b >>>,①a b >,c b >,①0a b ->,0c b ->,①0b c -<,故答案为:>,<;(3)①0a b ->,0c b ->,①a b --()()()a b a c c b =--++--a b a c c b =-+++-+2b =,故答案为:2b .【点睛】本题考查了利用数轴比较实数的大小,不等式的性质,求一个数的立方根以及二次根式的性质等知识,根据数据得到0c a b >>>,再根据不等式的性质得到0a b ->,0c b ->,是解答本题的关键.不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a b >,那么a m b m ±±>;①不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a b >,且0m >,那么am bm >或a b m m>;①不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a b >,且0m <,那么am bm <或a b m m<. 47.(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可. (1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)①24m n a a ==,,①()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)①2328162x ⨯⨯=,即()34232222x⨯⨯=, ①352322x +=,①3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.48.(1)3;(2)﹣113. 【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=79×157﹣163=﹣113. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(1)三种方案(2)A 种货车30辆,B 种货车20辆时费用最省,费用为34000(元)(3)40 45【分析】(1)设安排A 种货车x 辆,则安排B 种货车()50x -辆,列出不等式组,求整数解即可;(2)根据三种方案判断即可;(3)根据二元一次方程,求整数解即可.【详解】(1)解:设安排A 种货车x 辆,则安排B 种货车()50x -辆,()()75503063750230x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:28x 30≤≤,因为x 为整数,所以可以取28,29,30,共三种方案.(2)使用A 种货车费用600元,B 种货车800元,600800<,∴在上述方案中,安排A 种货车最多时最省费用,即当A 种货车30辆,B 种货车20辆时费用最省,费用为:306002080034000⨯+⨯=(元);(3)在(2)的方案下,由题意得:30202100m n +=,210020270303n n m -∴==-, 38m n <<,303820210030202100n n n ⨯+<⎧∴⎨+>⎩, 解得:4248n <<,经验算,只有当45n =时,m =27045403-⨯=为整数,其余n 的取值不符合要求, 此次奖金发放的具体方案为:每辆A 种货车奖金为40元,每辆B 种货车奖金为45元.【点睛】本题考查一元一次不等式(组)的应用,二元一次方程的整数解问题,解题的关键是理解题意,学会利用参数根据不等式(组)解决问题.。

初一数学数与式试题答案及解析

初一数学数与式试题答案及解析

初一数学数与式试题答案及解析1.绝对值小于3.9的整数有个.【答案】7【解析】设绝对值小于3.9的数为x,则|x|<3.9,即﹣3.9<x<3.9,∵x为整数,∴x可以为﹣3,﹣2,﹣1,0,1,2,3共7个.2.若表示整数,则奇数用的代数式表示为_________。

【答案】2n+1【解析】【考点】列代数式.分析:根据奇数的定义,奇数就是被2整除余1的数,即可得到.解:n表示整数,则奇数用n的代数式表示为:2n+1.故答案是:2n+1.3.(8分)计算:【答案】解:=1-4…………………………4分=-3…………………………8分【解析】略4.单项式的系数是__________,次数是_________【答案】【解析】本题考查了单项式的定义:由数字与字母或字母与字母相乘所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;所有字母的指数的和叫做这个单项式的次数.故单项式的系数为5.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,计算n32+1得a3;……,以此类推,则a2008=【答案】26【解析】略6.若,,且,则=【答案】5或1【解析】先根据a|=2,b2=9求出a、b的值,再|a-b|=b-a判断出b>a及a、b的符号,得出符合条件的值进行计算即可.解:∵|a|=2,b2=9,∴a=±2,b=±3,∵|a-b|=b-a,∴b>a,b-a>0,当a=2,b=3时,a+b=5;当a=-2,b=3时,-2+3=1;当a=2,b=-3时,a>b不合题意;当a=-2,b=-3时,a>b不合题意.故答案为:5或1.7.(5分)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,,4【答案】略【解析】(图略)准确标出原点、正方向、-3、、4,各得1分,共5分8.(本题满分16分,每小题8分)(1)计算:(2)先计算,再把计算所得的多项式分解因式:【答案】(1)(2)【解析】(1)计算:解:=……………6分(各3分)=……………8分(2)先计算,再把计算所得的多项式分解因式:.解:=……4分(计算对一个给1分,全对给4分)=………8分9.若,则为( )A.正数B.负数C.零D.无法确定【答案】B【解析】根据题意知,;又;所以.10.先化简再求值:当时,求代数式的值.【答案】【解析】原式===当时,原式=11.的相反数是()A.B.C.3D.﹣3【答案】B.【解析】根据相反数的定义可得的相反数是﹣,故答案选B.【考点】相反数的定义.12.(本题满分12分)【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上点、点表示的数为、,则,两点之间的距离,若,则可简化为;线段的中点表示的数为.【问题情境】已知数轴上有、两点,分别表示的数为,,点以每秒个单位的速度沿数轴向右匀速运动,点以每秒个单位向左匀速运动.设运动时间为秒().【综合运用】(1)运动开始前,、两点的距离为;线段的中点所表示的数.(2)点运动秒后所在位置的点表示的数为;点运动秒后所在位置的点表示的数为;(用含的代数式表示)(3)它们按上述方式运动,、两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若,按上述方式继续运动下去,线段的中点能否与原点重合,若能,求出运动时间,并直接写出中点的运动方向和运动速度;若不能,请说明理由.(当,两点重合,则中点也与,两点重合)【答案】(1)18,-1;(2)-10+3t,8-2t;(3),;(4)能,运动时间为2秒.M点的运动方向向右,运动速度为每秒个单位长度.【解析】(1)运用所给公式,把A,B所表示的数值代入即可求出;(2)根据A,B两点的速度分别写出运动t秒后表示的数,A向右运动为正,原数加,B向左运动为负方向,原数减;(3)此问属于相遇问题,列A,B所运动的路程和是18的方程求解,或者因为相遇时A,B表示同一个点,所以列A,B所表示的数相同的方程求解,然后把这个t值代入-10+3t或8-2t求出相遇点所表示的数;(4)运动前AB中点M为-1,运动t秒后线段AB的中点若能与原点重合,则运动后的中点是0,即,解出t值是2,所以能与原点重合,中点M由-1运动到原点0,方向是向右,2秒运动了1个单位,则速度就是.试题解析:(1)根据所给公式,AB两点的距离==18,线段AB的中点M表示的数==-1;(2)A的速度是一秒3个单位,t秒就是3t个单位,因为向右运动,所以t秒后表示的数是-10+3t;B的速度是一秒2个单位,t秒就是2t个单位,因为向左运动,所以t秒后表示的数是8-2t;(3)设t秒A,B点相遇,则3t+2t=18,解得t=,或者列:,解t=,把t=代入-10+3t得-10+3×=,∴两点经过秒会相遇,相遇点所表示的数是;(4)运动t秒后A点是-10+3t,B点是8-2t,线段AB的中点若能与原点重合,则运动后的中点是0,运用线段中点公式,即,解出t值是2,所以能与原点重合.第一个问中已求出运动前AB中点M为-1,现在中点M是0,中点M由-1运动到原点0,方向当然是向右,2秒运动了1个单位,则速度就是每秒个单位长度.【考点】1.运用数轴求两点的距离及线段的中点;2.数轴上的动点问题;3.一元一次方程的应用.13.)已知:4x﹣3y﹣6z=0,x+2y﹣7z=0,且x,y,z都不为零.求的值.【答案】.【解析】已知4x﹣3y﹣6z=0,x+2y﹣7z=0,将这两个方程联立组成方程组,解得,把x=3z,y=2z代入即可得的值.试题解析:解:解关于x、y的二元一次方程组得,把x=3z,y=2z代入得原式=.【考点】二元一次方程组的解法.14.如图,对于大于或等于2的自然数n的平方进行如下“分裂”,分裂成n个连续奇数的和,则自然数92的分裂数中最大的数是.【答案】17.【解析】根据题意得:92分裂成9个连续奇数,分别为:1,3,5,7,9,11,13,15,17所以最大的数是17.【考点】找规律:数字的变化类.15. 16的平方根是;若=a,则a的值为.已知=1.01,则-= ;=10.1,则-= .【答案】±4;0或1;-10.1;-1.01.【解析】16的平方根是±4;0或1的算术平方根是它本身,故若=a,则a的值为0或1;=1.01,则-=-10.1;=10.1,则-=-1.01,【考点】1.算术平方根;2.立方根.16.我们定义一种新运算:. (6分)(1)求的值. (2)求的值.【答案】1;1【解析】根据新定义的原式法则和实数的计算法则进行计算.试题解析:(1)、原式=-(-3)+2×(-3)=4+3+(-6)=1(2)、原式=-1+(-2)×1=4-1-2=1【考点】实数的计算,新定义型17.(本题满分3分)把下列各数:-2.5 ,-1,-|-2|,-(-3),0 在数轴上表示出来,并用“<”把它们连接起来:【答案】图见解析,-2.5<-|-2|<-1<0<-(-3).【解析】先把各数在数轴上表示出来,再按数轴上右边的数总比左边的数大比较即可试题解析:-2.5<-|-2|<-1<0<-(-3)【考点】数轴;有理数的大小比较.18.已知8.62=73.96,若x2=0.7396,则x的值等于()A.86B.86C.±0.86D.±86【答案】C【解析】根据有理数的乘方,底数的小数点移动一位,则幂的小数点向相应的方向移动两位,∵8.62=73.96,x2=0.7396,∴x=±0.86 ;故选C.【考点】有理数的乘方.19.吐鲁番盆地低于海平面155米,记作—155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高 m.【答案】2055【解析】1900-(-155)=1900+155=2055;【考点】有理数的减法.20.把5克盐溶解在100克水中,盐和盐水重量的比是().A、 1:20B、20:21C、1:21【答案】C.【解析】根据“5克盐溶解在100克水中,”知道盐水的重量是5+100克,可得盐和盐水重量的比是5:105=1:21,故答案选C.【考点】比的意义.21.如图所示是计算机某计算程序,若开始输入,则最后输出的结果是。

中考数学数与式真题训练50题含答案

中考数学数与式真题训练50题含答案

中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)一、单选题1.一条河的水流速度是2.5km /h ,某船在静水中的速度是km /h v ,则该船在这条河中逆流行驶的速度是( )A .()2.5km /h v +B .()2.5km /h v -C .()2.5km /h v -D .()5km /h v - 2.-24的相反数是( )A .-24B .24C .124-D .124 3.当2x =时,代数式234(2)(8)x x x x x -+的值是( )A .-4B .-2C . 2D . 44.有理数a ,b ,c 在数轴上对应的点的位置如图所示,有下列式子:①c -a >b -a ;②a +b >a +c ;③bc >ac ;④b a >c a.其中正确的有( )A .1个B .2个C .3个D .4个5.—0.25的相反数是:( )A .14B .4C .-4D .-56.把式子()()()()()2482562121212121++++⋅⋅⋅+化简的结果为()A .102421-B .102421+C .51221-D .51221+ 7.下列各式从左到右的变形,是因式分解的是( )A .()ab ac d a b c d ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .222(2)a a a a --=- 8.下列各式的结果为3-的是( )A .()()()2933---++--B .012345-+-+-C .4.5 2.3 2.5 3.72-+-+D .()()()27603---+-+++ 9.已知a 2+ab=5,ab+b 2=﹣2,那么a 2﹣b 2的值为( )A .3B .7C .10D .﹣1010.实数4的平方根是()A .2B .-2C .2±D .16±11.下面的说法正确的是( )A .正有理数和负有理数统称有理数B .整数和分数统称有理数C .正整数和负整数统称整数D .有理数包括整数、自然数、零、负数和分数12.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为( )A .3697.810⨯B .469.7810⨯C .56.97810⨯D .60.697810⨯二、填空题13.下面给出的五个结论中:①最大的负整数是-1;②数轴上表示数3和-3的点到原点的距离相等;③当a≤0时,|a|=-a 成立;④若a 2=9,则a 一定等于3; ⑤2110a +一定是正数.说法正确的有_________________ 14.现有一列数a 1,a 2,a 3,…,其中a 1=1,a 2=111+a ,a 3=211+a ,…,a n =111+n a -,则a 17的值为________.15.计算21()2-____.16.已知132n xy +-与34y x 是同类项,则n 的值是__________. 17.计算:23÷25=______.18.三个连续奇数,中间一个为2n ﹣1,则这三个连续奇数之和为_____.19.有一列数a 1,a 2,a 3,…,a n ,已知a 1=1,a 2=2,从第三个数开始,每个数都等于它前面的两个数中第二个数除以第一个数所得的商,例a 3=a 2÷a 1=2……,那么a 2018=_____.20.用正负数表示具有相反意义的量:(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.三、解答题21.计算:(1)﹣13+10﹣7 (2)21—41??59÷()()22.计算:(1;(2.23.已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.24.先化简,再求值:2211111a a a a a --÷+--+,其中a=4.25.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx 的平方根.26.已知在纸面上画一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数 对应的点重合;②若数轴上A 、B 两点之间的距离为2020(点A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?(3)点C 在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C 原来表示的数是多少?请列式计算,说明理由.27.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.28.在解决数学问题时,我们一般先仔细读题干,找出有用信息作为已知条件,然后用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件,而有的信息不太明显需要结合图形,特殊式子成立的条件,实际问题等发现隐含信息作为条件,这样的条件称为隐含条件,所以我们在做题时更注意发现题目中的隐含条件(阅读理解)读下面的解题过程,体会加何发现隐含条件,并回答. 化简:2(13x)1x ---.解:隐含条件1-3x≥0,解得:x 13≤,∴原式=(1-3x )-(1-x )=1-3x-1+x=-2x(启发应用)已知△ABC 22x 1(5x)4(4x)+---,,,记△ABC 的周长为C △ABC(1)当x=2时,△ABC 的最长边的长度是______(请直接写出答案).(2)请求出C △ABC (用含x 的代数式表示,结果要求化简).29.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下:(单位:km )+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问,收工时检修小组距离A地多远?在A地的那一边?(2)若检修小组所乘汽车的平均油耗是7.5升/100km,则汽车在路上行走大约耗油多少升?(精确到0.1升)参考答案1.B2.B3.A4.C5.A6.C7.B8.B9.B10.C11.B12.C13.①②③⑤14.1597 258415.4 16.317.1 418.6n﹣319.2.20.低于海平面20米, -13吨21.⑴ -10 ⑵ -322.(1)0;(2)423.44,24.24.1 525.(1)4;b=(2−4;3(3)±826.(1)2;(2)①-5;②点A表示的数是-1009、点B表示的数是1011;(3)-1.27.(1)a2−b2;(2)a−b,a+b,(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)①99.96;②4m2−n2+2np−p2.28.(1)3;(229.(1)所以检修小组最后在A地东面36km处;(2)汽车在路上行走大约耗油5.6升.。

中考数学数与式专题知识训练50题含答案

中考数学数与式专题知识训练50题含答案

中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

全国初中数学竞赛考题数与式

全国初中数学竞赛考题数与式

全国初中数学竞赛考题分类汇编(一)数与式例题2、设a,b 是不相等的任意正数,又21b x a +=,21a y b +=,则有x,y 这两个数一定( )A.都不大于2 B .都小于2C.至少有一个大于2D.至少有一个小于2 例题4、a 、b 、c 为正整数,且432c b a =+,求c 的最小值。

例题5、已知333124++=a ,那么32133aa a ++=_______ 解:∵112)12(3=-=-a ,即1213-=a∴32133a a a ++=11)11(1)1(11331333332332=-+=-+=-+++=++a a a aa a a a a a 例题6、已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a <b ,则a +b +c 的最大值为 .例题7、设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ①542--=a a bc ②求a 的取值范围.解法一:由①-2×②得01242>+=-)()(a c b ,所以a >-1. 当a >-1时, 14162222++=+a a c b =0712>++))((a a . 又当b a =时,由①,②得 141622++=a a c , ③542--=a a ac ④ 将④两边平方,结合③得2222541416)()(--=++a a a a a化简得 025*******=--+a a a , 故 0524562=--+))((a a a , 解得65-=a ,或4211±=a .所以,a 的取值范围为a >-1且65-≠a ,4211±≠a .解法二:因为14162222++=+a a c b ,542--=a a bc ,所以222221448454214162)()()(+=++=--+++=+a a a a a a a c b ,所以 )(12+±=+a c b . 又542--=a a bc ,所以b ,c 为一元二次方程0541222=--++±a a x a x )( ⑤的两个不相等实数根,故05441422>---+=∆)()(a a a ,所以a >-1.当a >-1时, 14162222++=+a a c b =0712>++))((a a .另外,当b a =时,由⑤式有 0541222=--++±a a a a a )(, 即 05242=--a a 或 056=--a ,解得,4211±=a 或65-=a .当c a =时,同理可得65-=a 或4211±=a .所以,a 的取值范围为a >-1且65-≠a ,4211±≠a .例题8、已知abc ≠0,且a+b+c =0, 则代数式222a b c bc ca ab ++的值是( )(A) 3 (B) 2 (C) 1 (D) 0例题9、设22211148()34441004A =⨯++--- ,则与A 最接近的正整数是() A.18 B.20 C.24 D.25练习题1、实数a,b 满足1333=++ab b a ,则a+b= .2、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定3、已知______0))(()412=+≠--=-a cb a ac b a c b ,则且(4、a ,b ,c 均为正数,且a (b+c )=152,b (c+a )=162,c (a+b )=170,那么abc 的值是( ).(A )672 (B )688 (C )720 (D )7505若实数x ,y ,z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 .6、知实数a ,b ,c 满足:a +b +c =2,abc =4.(1)求a ,b ,c 中的最大者的最小值;(2)求c b a ++的最小值.。

数学初中竞赛数与式专题训练

数学初中竞赛数与式专题训练
数学初中竞赛数与式专题训练
1. 已知 100 个整数 a1,a2,a3,· · · ,a100 满足下列条件:a1 = 1,a2 = −|a1 + 1|, a3 = −|a2 + 1|,· · · a100 = −|a99 + 1|,则 a1 + a2 + a3 + · · · + a100 =( B )
A .0
B .-50
C .100
D .-100
2. a 为绝对值小于 2019 的所有整数的和,则 2a 的值为( D )
A .4036
B .4038
C .2
D .0
3. 多项式 a3 − b3 + c3 + 3abc 有因式( B )
A .a + b + c
B .a − b + c
C .a2 + b2 + c2 − bc + ca − ab
第1页
A .0
B .2
C .4
D .6
9. 如果实数 a 满足:−2014 < a < 0,则 |x − a| + |x + 2014| + |x − a + 2014| 的最小值 是( A )
A .2014
B .a + 2014
C .4028
D .a + 4028
10. 现有一列数 a1,a2,a3,· · · ,a2008,a2009,a2010,其中 a2 = −1,a31 = −7,a2010 = 9,且满足任意相邻三个数的和为相等的常数,则 a1 + a2 + a3 + · · · + a98 + a99 + a100 的值为( D )

初三数学数与式试题

初三数学数与式试题

初三数学数与式试题1.计算下列各题(每小题6分,共12分)⑴化简:(2)如图,化简【答案】(1)(2)【解析】(1)首先分别利用二次根式的性质、0指数幂的定义、幂的定义及绝对值的性质化简,然后利用实数的运算法则计算即可;(2)首先利用数轴确定a、b、c之间的大小关系,然后分别利用二次根式的性质及绝对值的性质化简,然后利用实数的运算法则计算即可求解.【考点】实数的运算.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.2.计算:;【解析】解:原式=="0" …………………………(6分)3.下列运算正确的是().;.;.;..【答案】C【解析】.a+a =2a,故错误;.,故错误;.,故正确;.,故错误;故选C4.先化简,再求值:,其中.【答案】,【解析】解:原式=当时,原式5.计算:(6分)【答案】原式=(××)÷3+(×××)÷=+=10【解析】先将二次根式化简,然后合并同类项。

6.计算:.【答案】原式= 1+=+1【解析】利用二次根式及幂的性质化简。

7.计算的值为(▲ ).A.±4B.±2C.4D.2【答案】C【解析】表示求16的算术平方根,因为(4)2=16,所以16的算术平方根是4故选C8.(1)计算:;(2)先化简,再求值: ,其中·【答案】解:(1)原式=-2×+1(算对一项或两项给1分,全对2分) ……2分="1" …………………………3分(2)原式= = =1-x…2分把代入得原式=1-=·……………3分【解析】略9.计算(5分×2=10分)【1】(1)20--︱1-︱+2sin450【答案】【2】(2)分解因式:X4-2X2+1【答案】10.从实数-,-,0,π,2009中,挑选出的两个数都是无理数的为A.-,0B.-,πC.-,2009D.-,π【答案】D【解析】分析:由于无理数是无限不循环小数,比如π、开方开不尽的数等,据此即可判定选择项.解答:解:所给的5个实数中,-,π是无理数;-是分数,0、2009是整数,都属于有理数,所以符合题意的是D选项,故选D.11.下列哪一个数与方程的根最接近()A.2B.3C.4D.5【答案】B【解析】先求出x的三次方,然后估算大小.解:∵x3-9=15∴x3=25.23=833=27.所以最接近的数是3.故选B.12.计算:.【答案】解:原式=┄┄4′=1+2┄┄5′=3┄┄6′【解析】此题考查学生的计算思路:将式子中的每项分别算出解:原式==1+2=3点评:此题属于低档题,但计算要小心。

初中数学:数与式_整式_整式的混合运算(计算题)

初中数学:数与式_整式_整式的混合运算(计算题)
轩爸辅导
初中数学:数与式_整式_整式的混合运算
初中七年级下学期数学整式的混合运算计算题真题及答案(132题)
(西湖2019七下期末) 化简:
(1)

(2)
考点:完全平方式;整式的混合运算;
2019 初中七年级下学期 数学 计算题 真题答案
(东阳2019七下期末) 计算 (1) (1+2a)(1-2a)+4a(a+1)-1 (2) (-1)2019+(-2)-2+(3.14-2π)0-|-1|
.
考点:实数的运算;整式的混合运算;0指数幂的运算性质;负整数指数幂的运算性质; 2019 初中七年级下学期 数学 计算题 真题答案
(阜阳2019七下期中) 化简
考点:整式的混合运算;
.
2019 初中七年级下学期 数学 计算题 真题答案
(苏州2019七下期末) 计算 (1)
(2)
.
考点:实数的运算;整式的混合运算;
考点:绝对值的非负性;整式的混合运算;0指数幂的运算性质;负整数指数幂的运算性质;
2019 初中七年级下学期 数学 计算题 真题答案
(苍南2019七下期末) 计算: (1) (x+y)(x-y)-x(x+y)+2xy (2)
考点:整式的混合运算;分式的混合运算;
2019 初中七年级下学期 数学 计算题 真题答案
(福田2019七下期末) (1) 计算: (2) 计算:
考点:实数的运算;整式的混合运算;

2019 初中七年级下学期 数学 计算题 真题答案
(大埔2019七下期末) 先化简,再求值: .
,其中:
考点:多项式乘多项式;多项式除以单项式;完全平方公式及运用;整式的混合运算; 2019 初中七年级下学期 数学 计算题 真题答案

初中数学 数与式问题练习(含答案)

初中数学  数与式问题练习(含答案)

一、选择题1.已知x m=3 ,x n=5,则x m+n的值为()A.8 B.15 C.53D.35【答案】B2.无论x取任何实数,代数式都有意义,则m的取值范围是()A.B.C.D.【答案】C【解析】由题意得,∴,∴,∵无论x取任何实数,代数式都有意义,∴,∴.故选C.学科*网【关键点拔】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.3.中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为44亿人,数据44亿用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.44×1010【答案】B4.计算()2+的结果是( )A.1B.-1C.2x-5D.5-2x【答案】D【解析】由题意要求()2+的值,∵2-x≥0,∴x≤2,∴x-3<0,学科*网∴=3-x,∴()2+=2-x+3-x=5-2x,故选D.【关键点拔】本题考查了二次根式的性质与化简,解题的关键是要注意二次根式根号里面要为非负数. 5.化简(-2)2018·(+2)2019的结果为( )A.-1 B.-2 C.+2 D.--2【答案】C【解析】原式=[(-2)(+2)]2018•(+2)=(-1)]2018•(+2)=+2,故选C.【关键点拔】本题考查了指数幂的运算性质,考查了运算能力和转化能力,属于基础题6.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【答案】A【关键点拔】考查了二次根式的化简,需要正确理解二次根式的算术平方根等概念.7.某人将2008看成了一个填数游戏式:2□□8.于是,他在每个框中各填写了一个两位数与,结果发现,所得到的六位数恰是一个完全立方数.则+=()A.40 B.50 C.60 D.70【答案】D【解析】设,则据末位数字特征得y=2,∵603=216000,703=343000,∴,学*科网∴,∵623=238328,∴,∴.故选D.【关键点拔】本题考查的知识点是完全平方数,解题关键是根据末位数字特征得y=2.8.求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,计算出1+5+52+53+…52017的值为()A.52018﹣1 B.52019﹣1 C.D.【答案】C【关键点拔】本题考查了有理数的混合运算,利用错位相减法,消掉相同值,是解题的关键.9.设S=,则不大于S的最大整数[S]等于()A.98 B.99 C.100 D.101【答案】B【解析】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为99.故选B.学&科网【关键点拔】本题主要考查了二次根式的化简求值,知道是解答本题的基础.10.如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是()A.270 B.271 C.272 D.273【答案】B【关键点拔】本题考查图形的变化规律,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.二、填空题11.若+=+|2c-6|,则b c+a的值为____.【答案】-3【关键点拔】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.学科*网12.若规定一种运算=ad-bc,则化简=________【答案】-5x【解析】根据题目的新规定知,=(x-1)x-(x+4)x=x2-x-x2-4x=-5x.故答案:-5x.【关键点拔】本题考查了多项式的化简,解题的关键是根据题目信息列出算式.13.已知a,b,c是△ ABC的三边,化简=_________.【答案】2c【关键点拔】本题考查了二次根式的性质,三角形三边关系,熟练掌握三角形三边关系是解题的关键.14.若0<a<1,则-的值为_______.【答案】-2a【解析】∵0<a<1,∴>1>a>0,∴原式====-2a,故答案为:-2a.【关键点拔】本题考查了二次根式的性质与化简,正确分析出>1>a>0是解题的关键. 15.一个正数的平方根为2﹣m与3m﹣8,则m的值为_____.【答案】3【关键点拔】本题考查平方根,注意一个正数的两个平方根的和为0.16.当|x-2|+|x-3|的值最小时,|x-2|+|x-3|-|x-1|的值最大是______,最小是______.【答案】0 1【解析】当|x-2|+|x-3|的值最小时,2≤x≤3,又因为1不在2和3之间,所以可令x=2,则|x-2|+|x-3|-|x-1|=0,令x=3,则|x-2|+|x-3|-|x-1|=-1,所以,所求最大值为0,最小值为-1.【关键点拔】本题考查了代数式的最值问题,正确地分区间讨论是解题的关键. 17.已知x、y为正偶数,且,则__________.【答案】40【解析】∵,∴xy(x+y)=96,∵x、y为正偶数,xy≥4,x+y≥4,∴96=222223=616=812=424当xy(x+y)= 424时,无解,当xy(x+y)= 616时,无解,当xy(x+y)=812时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x2+y2=22+62=40.故答案为:40【关键点拔】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.18.下列结论:①不论为何值时都有意义;②时,分式的值为0;③若的值为负,则的取值范围是;④若有意义,则x的取值范围是x≠﹣2且x≠0.其中正确的是________【答案】①③④错误,根据分式成立的意义及除数不能为0的条件可知,若有意义,则x的取值范围是即,x≠﹣2,x≠0且x≠﹣1,故此结论错误.故答案为:①③.【关键点拔】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.19.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=.给出下列关于F()的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若是一个完全平方数,则F()= 1.上述4个说法正确的有_______个.【答案】2【解析】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;学科*网∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为:2.【关键点拔】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).20.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是347,则m的值是_____.【答案】19;【关键点拔】考查了有理数的乘方,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.三、解答题21.利用因式分解计算或说理:(1)523-521能被120整除吗?(2)817-279-913能被45整除吗?【答案】(1)523-521能被120整除;(2)817-279-913能被45整除.【关键点拔】本题考查了因式分解的实际运用,掌握提取公因式法的方法和同底数幂的乘法是解决问题的关键.22.某能源研究所做了一个统计:1km2的土地上,一年内从太阳得到的能量相当于燃烧1.2×108kg煤所产生的能量.那么5×105km2的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【答案】6×1013kg.【解析】由题意可得:1.2×108×5×105=6×1013(千克),学科*网答:一年内从太阳得到的能量相当于燃烧6×1013千克煤.【关键点拔】此题主要考查了整式的混合运算,熟练应用运算法则是解题关键.23.阅读材料,解答下列问题.例:当a>0时,如a=6,则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=-6,则|a|=|-6|=6=―(―6),故此时a的绝对值是它的相反数.因此综合起来一个数的绝对值要分三种情况,即这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照上面的分类讨论的方法,分析实数的各种展开的情况;(2)猜想与|a|的大小关系.【答案】(1)详见解析;(2)【关键点拔】本题考查二次根式的化简求值,正确化简二次根式利用分类讨论得出是解题关键.24.我国现行的二代身份证号码是18位数字,由前17位数字本体码...组成.校验码通过前.....和最后1位校验码17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码.现将前17位数字..本体码..分别给...记为,其中表示第位置上的身份证号码数字值,按下表中的规定出每个位置上的一个对应的值.2现以号码为例,先将该号码的前17位数字本体码.....填入表中(现已填好),依照以下操作步骤计算相应的校验码...进行校验:(1)对前17位数字本体码.....,按下列方式求和,并将和记为:.现经计算,已得出,继续求得____;(2)计算,所得的余数记为,那么____;(3)查阅下表得到对应的校验码(其中为罗马数字,用来代替10):值所得到的校验码为____,与号码中的最后一位进行对比,由此判断号码是____(填“真”或“假”)身份证号.【答案】196;9;3,假.【关键点拔】此题考查用数字表示事件,关键是理解掌握阅读知识中规定的运算.25.已知a=,求的值.【答案】1-.【解析】∵a==2-,∴a-1<0,学科*网∴原式=,=a-1+,=a-1,=2--1,=1-.【关键点拔】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.26.对于三位正整数:121、253、374、495、583、671、880、…,它们都能11整除.若设百位数字是十位数字是个位数字是(1)观察这些三位数,根据你的观察、总结,应满足的关系式是__________;(2)为了说明满足上述关系式的三位正整数都能被11整除,请利用代数式的运算证明你得出的结论的正确性;(3)除此之外,还有一类三位正整数,例:429、506、528、638、517、759、…,它们也能被11整除.请观察这组数字的特点,发现有什么规律?再自选一个异于上面3个数字且满足“规律”的三位数,来验证你所发现的“规律”的正确性.【答案】(1)a+c=b;(2)见解析;(3)a+c-11=b.∴满足上述关系式的三位正整数都能被11整除;(3)∵429:4+9-11=2、506:5+6-11=0、528:5+8-11=2、638:6+8-11=3、517:5+7-11=1、759:7+9-11=5、…,∴a+c-11=b,如a=3,c=9,则b=3+9-11=1,该三位数是319,∵319÷11=29,∴满足该特点的三位数能被11整除.【关键点拔】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题,此题注意多位数的表示法.27.一点从数轴上表示的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第次移动后这个点在数轴上表示的数;(3)如果第次移动后这个点在数轴上表示的数为56,求的值.【答案】(1)3;(2);(3)54.(3)根据(2)得:m+2=56,解得m=54.【关键点拔】本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,从一些特殊的数字变化中找出变化的规律是解题关键.学科*网28.计算:.【答案】【解析】原式===.【关键点拔】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.29.已知,.(1)化简:;(2)当与互为相反数时,求(1)中化简后的式子值.【答案】(1);(2).(2)因为与互为相反数,所以,又因为,,所以且,即且.当,时,2(A+B)-3(2A-B)=6×+3×02-10××0+11=6×+11=12.【关键点拔】本题考查整式的加减、相反数的性质及平方和绝对值的非负数性质,熟练掌握运算法则是解题关键.30.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:=|1+|=1+解决问题:①模仿上例的过程填空:=_________________=________________=_________________②根据上述思路,试将下列各式化简:(1); (2).【答案】①,,3+;②(1)5-;(2) .(2)=====.【关键点拔】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学数与式练习题
一、 填空题
1、计算=9 。

36的算术平方根是 。

2、计算=-|21| 。

251
+的结果是 。

=-+-02)3(3 。

3、a 的3倍与b 的一半用代数式表示为 。

4、太阳的半径大约为696000千米,用科学计数法表示为 。

5、若x <2
6、若分式2
42--x x 的值为零,那么=x 。

7、填上适当的数,使等式成立,+-x x 212 =2)4
1(-x 8、分解因式=-2ab a 。

分解因式=--1422x x 。

分解因式=+-x x x 8623 .
9、若实数b a ,满足032)2(2=+-+-+a b b a ,则=+-12a b 。

10、计算=-⋅-32)2(2 。

=--00
0)21()30(cot 60cos 2o 。

=++0030tan 160sin 160cos o 11、观察下面一列数的规律并填空:0,3,8,15,24……则它的第2003个数是 。

12、观察下列等式: 734,523,312,10122220222=-=-=-=-,用含n 的等式表示这种规律为 。

13、已知242+-ax x 在整数范围内可以分解因式,则整数a 的值是 (只需填一个)
14、已知321
+=a ,则代数式a a a a a a a a 112121222--+-+-+-化简求值的结果是 。

15、2001年我国第五次人口普查结果表明,接受高中(含中专)教育的人数约为14109万人,该数据用科学计数法记为 人。

(保留两个有效数字)
16、若b a ,互为相反数,d c ,互为倒数,12=-x ,,2||=y 则式子22003)(y cd x b a --++的值是
17、已知a 为实数,化简a
a
a 13--的结果为 。

二、 选择题 1、若0≠a ,则下列运算下确的是( )
A 、824a a a =⋅
B 、422a a a =+
C 、6249)3(a a =-
D 、224)()(a a a =-÷-
2、下列计算正确的是( )
A 、864±=
B 、2828+=+
C 、633a a a =+
D 、232)2(10=
+- 3、下列计算正确的是( )
A 、5236)3()2(=-⋅-
B 、326x x x =÷
C 、2523)3(0=+
-π D 、32321-=+ 4、下列各式中,正确的是( )
A 、632a a a =⋅
B 、523)(a a =
C 、428a a a
=÷ D 、3632)(b a b a = 5、如果04
32≠==z y x ,那么z y x z y x -+++的值是( ) A 、7 B 、8 C 、9 D 、10
6、下列各式中,正确的是( )
A 、0=++y x y x
B 、22x y x y =
C 、1-=--+-y x y x
D 、 y
x y x --=+-11 7、如果
23=y x ,则=+x y x ( ) A 、21 B 、23 C 、25 D 、5
2 8、化简:=⋅÷
x y x x 1( ) A 、1 B 、 xy C 、x
y D 、y x 9、下列二次根式中与a 不是同类二次根式的是( )
A 、a 9
B 、3a
C 、4
a D 、a 2 10、某学校礼堂第一排有35个座位,往后每排比前一排多2个座位,第n 排的座位数用含n 的代数式表示为( )
A 、n 225+
B 、n 233+
C 、n +34
D 、n +35
11、将二次三项式142+-x x 配方后得( )
A 、3)2(2+-x
B 、3)2(2--x
C 、3)2(2++x
D 、3)2(2-+x
12、若分式0)1)(4(1
2=++-x x x ,则x 的值为( )
A 、1±=x
B 、1-=x
C 、0=x
D 、1=x
13、下列二次根式中,最简二次根式是( )
A 、8
B 、b a +
C 、23n m
D 、23
14、若二次根式13+x 和二次根式5x
是同类二次根式,则x 的值是(

A 、145
- B 、145
C 、21
D 、21
±
三、化简求值题
1、已知:)12(21-=x ,求代数式24
26
22--++--x x x x x 的值。

2、计算341
21311222+++-⋅-+-+x x x
x x x x
3、计算:x x x x x x x --+⋅-÷+--36)3(446
222
4、已知:151
5-+=x ,151
5+-=y ,求22y xy x +-的值
5、已知:32,23-=+=y x ,求12323
2222+--+÷-++x x y
xy y x x x x xy 的值
6、先化简,再求值:)232(2
12++-÷-++x x x x x ,其中2=x 7、判断下列各式是否正确,你认为成立的,请在括号号内打“ ”,不成立的打“ ” a 、322322=+ b 、8
33833=+ c 、15441544=+
d 、24552455=+ 问题:判断完以上各题之后,请你猜测你发现的规律,用含n 的数学式子将其规律表示出来,并注明n 的取值范围。

相关文档
最新文档