考博必备 研究生矩阵理论课后答案矩阵分析所有习题73页PPT
研究生矩阵理论共121页PPT
![研究生矩阵理论共121页PPT](https://img.taocdn.com/s3/m/bf982efc6edb6f1afe001f9d.png)
研Байду номын сангаас生矩阵理论
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
考博必备 研究生矩阵理论课后答案矩阵分析所有习题
![考博必备 研究生矩阵理论课后答案矩阵分析所有习题](https://img.taocdn.com/s3/m/f19aaf0516fc700abb68fcad.png)
①: , A
*
( A )
*
T
( A ) A
* *
*
, ;
( k , ) k A k ( , );
习题3-30
#3-30:若ACnn,则A可唯一地写为 A=B+C,其中BHnn,CSHnn.
证:存在性 取 B=(1/2)(A+A*),C=(1/2)(A-A*), 则显然B,C分别是Hermite矩阵和反Hermite矩阵, 并且满足A=B+C. 唯一性 若 A=B+C,其中BHnn,CSHnn,则 A*=(B+C)*=B*+C*=B-C. 于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕 注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
习题3-14
#3-14:若AHmn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在 前面,则(*)式即给出所需答案.
习题3-20 试证:两个半正定矩阵之和是半正 定;半正定矩阵与正定矩阵之和是正定矩阵
研究生矩阵论课后习题答案(全)习题二
![研究生矩阵论课后习题答案(全)习题二](https://img.taocdn.com/s3/m/c554029aad02de80d4d840ec.png)
习题二1 2 (1)J 1 2 2 20 0 0 0 0 2(2)0 ( 1)2 02 0 03 2 2 3 2 1 (3)4 235 322422343 6(4) 0611 3 3 1 22解:( 1) 对矩阵 作初等 变换1 2c 1 c31 22 21 0 0c 22c 1 0c3 c 10 0(1) 则该矩阵为 Sm ith 标准型为1.化下列矩阵为 Smith 标准型: 20 0 02 2 323 4;11 222 00 00 01212r3r 02 2r11001 0c 3 c2 r 1( 1)0,0 0( 1)( 1)2)矩阵的各阶行列式因子为 D 4( )4( 1)4,D 3( )( 1)2( 1)2,D 2( ) ( 1),D 1( ) 1,从而不变因子为 1)4() D 3() D 2()1),d 4()D 4() D 3()2(1)1 0 0 (1)0 00 0(3)对矩阵作初等变换3 2 2 3 2 1 22 3 4 235 3 2234 242 147 263r 2 r1片(22)「32 1 2247 2 632q ( 2)03 °? ( 2)C3213213q ( 1)°2321 0H ( 25) r 2r 1 ( 1)0 d i ( ) 1阳)D 2^-)( D i () 故该矩阵的Smith 标准型为 故该矩阵的Smith 标准型为0 0 0 0 (1) 02 20 ( 1)3 2 2 21 22 C 1 03“4 2 3 322222 2 12 245 010 2 1 2 245 0 10 0 1 2 245 01 010 10 01 0r 1r 31C 30 1 010 (1)2(111(1)2( 1)(4)对矩阵作初等变换2 3 01143 62 2 C l2 C52 2 062 0 C2 3C 32 01 010 110 3 31223 3 12 20 10 01C 1 3C 2 02 2 「2 2r 10 C 3 2C 220 C 3 C 1211 0 010 00 0110 1 01 0「12C30 0 0 02C1C40 2C 40 0C2C50 01 0 0 0 00 0 01 00 10 0 00 00 1在最后的形式中,可求得行列式因子11;(2);1 01;(32 1 0(1) 0 2 11 0 0 00 1 0 00 0 10 0 0 (1)0 0 0 02•求下列矩阵的不变 :因子:故该矩阵的Smith 标准形为0 0 02( 1)D 5( ) 3( 1)2,D 4()1),D 3() D 2( ) D !( ) 1, D 4()1),d 5() D 5()D 4() 2( 1)于是不变因子为0 0 15 4 3 20 0 1 20 1 2 0(4) 1 2 0 0.2 0 0 0解:1)该矩阵的右上角的 2 阶子式为 1,故(D1( ) D2( ) 1,而D3( ) ( 2)3,所以该矩阵的不变因子为d1( ) d2( ) 1,d3( 2) ( 2)2;(2)当0由于时,D4( ) ( )4,D3( ) () 2,D2( ) D1( ) 1,故不变因子为d1( ) d2( ) 1,d3( )()2,d4( ) ( )2当0 时,由于D4( ) [( )2 2] ,且该矩阵中右上角的 3 阶子式为2( ),且( 2( ),D4( )) 1,则 D 3( ) 1,故 D 2( ) D 1( ) 1 ,所以该 矩阵的不变因子为22 d 1( ) d 2( ) d 3( ) 1, d 4( ) [()22];3)该 矩阵的右上角的 3 阶子式为 1,故D 1( ) D 2( )D 3( ) 1,而D 4 ( ) 4233 245 ,所以该矩阵的不变因子为d 1( ) d 2( ) d 3( )1, d 4( ) 4 2 3 3 2 45;(4)该矩阵的行列式因子为D 1( ) D 2( )D 3()1,D 4( ) ( 2)4,所以该矩阵的不变因子为d 1( ) d 2( )d 3()41, d 4( ) ( 2)4 .3.求下列 矩阵的初等因子:3231(1)2323 2 32;2(2)3222 1 22 1232 2 2 1 222解:(1)该矩阵的行列式因子 为D 1( ) 1 ,D 2()2( 1)( 1)2 ,故初等因子为1,( 1)2;故不变因子为(2) 该矩阵的行列式因子为D 1( )1,D 2(1)( 1)2, d 1( ) 1,d 2( ) ( 1)( 1),解:( 1)设该矩阵为 A ,则1 0 0E A 0 10,0 0(1)2( 3)故 A 的初等因子为(1)2( 3),则 A 的 Jordan 标准形为300 0 1 1 0 0 12)设该矩阵为 A ,则1 0 0EA0 1 0,0 0( 1)3故 A 的初等因子为( 1)3 , 从而 A 的 Jordan 标准形为110 0 1 1 ; 00113 16 16 4 52 3 731)5 76 ;(2) 2 2 1; ( 3) 2 5 26871 1 14 1031 2 3 41 1 10 33 0 1 2 3 4) 3 3 3 ;(5) 18 6 ;(6)0 0 1 22 2 221410 0 0 0 14.求下列矩阵的 Jordan 标准形:1 0 0EA 0 1 00 0 (1)( 2 1) 故A 的初等因子为1i ,i,,从而A 的 Jordan 标准形为1 0 00 i 0 J0 0 i(4)设该矩阵为A ,则1 0 0E A 0 0,0 0 2故A 的初等因子为2从而A 的 Jordan 标准形为0 0 00 0 1 J0 0 0(5)设该矩阵为A,则1 0 0EA 0 1 00 0( 1)2故A 的初等因子为,( 1)2,从而A 的 Jordan 标准形为(6)设该矩阵为A ,则E A该矩阵的各阶行列式因子为D i ( ) D 2( 则不变因子为d i ( ) d 2(故初等因子为0 01 1 ;0 0112 3 41 230 1 21)D 3() 1,D 4()( 1)4,)d 3( ) 1,d 4() ( 1)4,(1)4,110 0 0 110 00 1 1.0 0 0 1故A 的特征值为11, 5.则A 的Jordan 标准形为5•设矩阵属于特征值 1 1的特征向量为 1 (1,0,0) T,求 A 的 Jordan 标准形 J,并求相似变换矩阵P ,使得 1P 1AP J .解 :(1) 求 A 的 Jordan 标准形 J .2111 00IA2 1 20 101120 ( 1)故其初等因子为1,(1)2,故 A 的 Jordan 标准形1 0 0J0 1 1.0 0 1(2)求相似变换矩阵 P . 考虑方程组属于2 35 的特征向量为 设P [ 1, 2, 3] 则 A P P 1.,故A 5 P 5P 16.设矩阵A2(2,1,2)T , 3(1, 2,1)T.12 1 1 0 0 01 2 , 0 5 0 , 02 10 0 5441 4 54 3 54 1440 3 54 4 54440 4 54 3 542 1 1 2 1 2 ,11 1 x1(I A)X 0, 即2 2 2 x2 0,11 1 x3解之 ,得1 0X1 0 ,X2 1.1 1其通解为k1k1X1 k2 X2=k2Jk1 k2其中k i,k2为任意常数考虑方程组1 11 x1 k12 22 x2 k211 11 x3k1 k21 1 1 k1 1 1 1 k12 2 2 k2 0 0 0 2k1 k21 1 1 k1 k2 0 0 0 2k1 k2 故当2k1 k2 0 时,方程组有解 .取k1 1,k2 2 ,解此方程组 ,得X3 01则相似变换矩阵1 0 0P [X1,X2,X3] 0 1 01 1 17•设矩阵试计算2A8 3A5A A2 4I .解:矩阵A的特征多项式为f A() I A 3 2 1, 由于2 83 54 2 4 ( 3 202 1)f( ) (24 3710)其中f( ) 2 5 4 3 5 29 14.且A3 2A I O, 故证明:设矩阵A的特征多项式为f A() I A n na1 1 na22 L an 1a n3 48 262A8 3A5 A4 A2 4I=24A2 37A 10I 0 95 610 61 34 8•证明:任意可逆矩阵A的逆矩阵A 1可以表示为A的多项式则A n a1A n 1a2A n 2 L a n 1A a n I O, 即A(A n1 a1A n 2 區n 3a?A L a n 1I) a n I , 因为A可逆,故a n ( 1)n A 0,则11n 1 n 2 n 3A(A a i A a ?A L a n J)a n9•设矩阵2 1A,1 3试计算(A 45A 36A 26A 8I) 1.解:矩阵A 的特征多项式为f A ( ) | I A 257,则A 2 2A 7I O ,而故143211111 21(A 5A 6A 6A 8I) (A I )-23 1 1解:矩阵A 的特征多项式为f A ( ) I A (1)( 1)( 2),则设由 f (1) 0, f( 1) 0, f (2) 0,得a b c 1, a b c 1,2n4a2b c 2 .解之,得7)( 21)1,10.已知3阶矩阵A 的三个特征值为11,2,试将A 2n表示为A 的二次式.2n2f( )g( ) a bc ,a 3(22n 1),b °,c£(22n 4), 33因此A 2n aA bA cI -(22n 1)A 2 ^(22n 4)I 3 3(3) n 阶单位阵I n 的最小多项式为 m() ⑷因为3 1 14 2 2 (1) 0 2 0 ;( 2)5 7 5 1 1 16 7 4a 。
矩阵分析课后习题解答整理版
![矩阵分析课后习题解答整理版](https://img.taocdn.com/s3/m/ce4961d41711cc7930b71609.png)
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH-==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
2024年度矩阵分析课件精品PPT
![2024年度矩阵分析课件精品PPT](https://img.taocdn.com/s3/m/63b375bb7d1cfad6195f312b3169a4517723e5f8.png)
2024/3/24
6
矩阵性质总结
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
05
2024/3/24
(A+B)+C=A+(B+C),(AB)C=A(BC)。 A+B=B+A,但AB≠BA。 (A+B)C=AC+BC,C(A+B)=CA+CB。 λ(μA)=(λμ)A,(λ+μ)A=λA+μA。 λ(A+B)=λA+λB。
12
03
线性方程组与矩阵解法
2024/3/24
13
线性方程组表示形式
80%
一般形式
Ax = b,其中A为系数矩阵,x为 未知数列向量,b为常数列向量 。
100%
增广矩阵形式
[A|b],将系数矩阵A和常数列向 量b合并为一个增广矩阵。
80%
向量形式
x = Ab,表示通过矩阵A的逆求 解未知数列向量x。
04
典型例题解析
10
秩及其求法
2024/3/24
01
矩阵秩的定义与性质
02
利用初等变换求矩阵秩的方法
03
利用向量组的极大无关组求矩阵秩的方法
04
典型例题解析
11
典型例题解析
01 02 03 04
2024/3/24
初等变换与初等矩阵相关例题 矩阵等价性判断相关例题 秩及其求法相关例题 综合应用相关例题
矩阵分析课件精品PPT
2024/3/24
1
目
CONTENCT
录
2024/3/24
• 矩阵基本概念与性质 • 矩阵变换与等价性 • 线性方程组与矩阵解法 • 特征值与特征向量 • 相似对角化与二次型 • 矩阵函数与微分方程求解
研究生矩阵论课后习题答案(全)习题四
![研究生矩阵论课后习题答案(全)习题四](https://img.taocdn.com/s3/m/1d709d13fc4ffe473368ab22.png)
习题四1.求下列微分方程组的通解(1)⎪⎩⎪⎨⎧+=+=;34,2212211x x dt dxx x dt dx (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=+=. ,3233212321,x x dt dx x x x dt dxx x dt dx解:(1)设,3421⎪⎪⎭⎫⎝⎛=A ⎪⎪⎭⎫⎝⎛=21x x x ,则原方程组可写为 Ax dtdx=, 矩阵A 的特征方程为0)1)(5(3421=+-=----=-λλλλλA I ,则矩阵A 的特征值为51=λ,12-=λ,求得矩阵A 的特征向量分别为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛11,21,令⎥⎦⎤⎢⎣⎡-=1211P ,则⎥⎦⎤⎢⎣⎡-=-1211311P ,有 Λ=⎥⎦⎤⎢⎣⎡-=-10051AP P ,1-Λ=P P A , 则⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-==------Λt t tt t t tt t t t Ate e e e e e e e e e PPe e55555122231121100121131. 故该方程组的通解为⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt At e c c e c c e c c e c c c c e e e e e e e e c e x )2()22()2()(31222312152121521215555其中21,c c 为任意常数.(2)设,110111110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=A ⎪⎪⎪⎭⎫⎝⎛=321x x x x ,则原方程可写为Ax dtdx=, 矩阵A 的特征方程为0)1(2=-=-λλλA I ,则矩阵A 的特征值为01=λ,132==λλ.A 的属于特征值01=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=1121η,由方程组⎩⎨⎧+==32322ηηηηηA A 解得A 的属于特征值132==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,10132ηη.令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==111101112,,321ηηηP ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1113121011P ,有11,100110000--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=PJP A J AP P ,由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t tJt e te e e 000001, 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-1113121010000011111011121t t tJt At e te e P Pe e ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-=t t tt t tt tt t t tt te e te te e e e e te e te te e 21111222,故方程组的通解为⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-==32121111222c c c te e te te e e e e te e te te e c e x t t tt t tt tt t t tt At ,其中321,,c c c 为任意常数.2.求微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=33,3421ξA ,(2)⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=001,102111121ξA .解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t tt Ate e e e e e e e e555522231,故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt Ate e e e e e e e e e e e e x 555555423322231ξ. (2)矩阵A 的特征方程为0)1)(3(2=+-=-λλλA I ,故矩阵A 的特征值为31=λ,132-==λλ.A 的属于特征值31=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=2121η,由方程组⎩⎨⎧-=-=32322ηηηηηA A 解得A 的属于特征值132-==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=021,21232ηη,令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==022211122,,321ηηηP ,则⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-24025122312811P,有 11,100110003--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t t Jt e te e e e 000003, 故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ξξ1-==P Pe e x Jt At ⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=---00124025*******000022211122813t t t te te e e⎪⎪⎪⎭⎫⎝⎛--+=---t t tt t t e e e e e e 44224481333. 3.求)(t Bu Ax dtdx+=满足条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=-21,)(,41,3421c c e t u B A tξ (2)⎪⎪⎪⎭⎫⎝⎛-==⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101,1)(,262,0061011016ξt u B A解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t t t Ate e e e e e e e e555522231, 则⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+=------t t t t t t ttt t tt Ate c c e c c e c c e c c c c e e e e e e e e e )2()22()2()(31222312152121521215555ξ,⎪⎪⎭⎫⎝⎛++-=⎪⎪⎭⎫⎝⎛-⎥⎦⎤⎢⎣⎡+--+=------------------v t t v t t v v v t v t v t v t v t v t v t v t v t A e e e e e e e e e e e e e e v Bu e6565)()(5)()(5)()(5)()(5)(6636314222231)(故 ⎥⎥⎦⎤⎢⎢⎣⎡+-+--=-----⎰t t t t t ttv t A e e te e e te dv v Bu e 550)(62121631)( 则该方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛++--++---+++=+=-----⎰t t t t t t tv t A At te e c c e c c te e c c e c c dv v Bu e e t x 2])12()122[(312])212()21[(31)()(21521215210)(ξ(2)矩阵A 的特征方程为0)3)(2)(1(=+++=-λλλλA I ,则A 的特征值为11-=λ,3,232-=-=λλ,求得其特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=231,341,651321ηηη.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-139********,2363451111P P ,有 11,300020001--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t Jt e e e e 32000000, 则ξξ1-=P Pe e Jt At ⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---101139248111000002363451112132t t te e e ⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=------t t tt t t e e e e e e 32323289121243 , ⎪⎪⎪⎭⎫ ⎝⎛++-++-++-=⎪⎪⎪⎭⎫ ⎝⎛=---------------------)(3)(2)()(3)(2)()(3)(2)(1)()(2663852262)(v t v t v t v t v t v t v t v t v t v t J v t A e e e e e e e e eP Pe v Bu e故 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--=----------⎰373236453131)(3232320)(t t t tt t t tt tv t A e e e e e e e e e dv v Bu e则该方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--+⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=+=----------------⎰37323645313189121243)()(3232323232320)(t tt tt t t tt t t t t tttv t A At e e e e e e e e e e e e e e e dv v Bu e e t x ξ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-++-=---------3732212611165313114323232t t t tt t t tt e e e e e e e e e .4.求方程te y y y y -=+'+''+'''6116满足0)0()0()0(=''='=y y y 的解.解:令y x y x y x ''='==321,,,则⎪⎩⎪⎨⎧+---='''='='='-,6116 , ,32133221t e x x x y x x x x x 写成向量方程组为t Be Ax x -+=',其中⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100,6116100010B A .对于矩阵A ,有J PAP=-1,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-321,132********,9413211111J P P于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t tt Jt e e e e 32, 1-=P Pe e Jt At⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+--+--+--+-+-+-+-=---------------------------t t t tt t t t t t t t t t t t t t t t t t t t tt t e e e e e e e e e e e e e e e e e e e e e e e e e e e 3232323232323232329827325182463491656126238526621由于⎪⎪⎪⎭⎫ ⎝⎛=000)0(x ,则⎰⎰----=+=tv v t A t v v t A At dv Be e dv Be e x e t x 0)(0)()0()(⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-----+--+--=---------)1(29)1(8)1(23)1(4)1(21)1(221232232232t t tt t t t t t t t t tt t e e e e te e e e e te e e e e te故原方程的解为t t t t t t t t t e e e te e e e e te x y 322321414321)]1(21)1(2[21--------+-=-+--==5.试证明:若A 为2阶方阵,其特征值为21,λλ,特征向量为21,P P ,则方程Ax dtdx= 的解一定能表示成221121P e c P e c x t t λλ+=,其中21,c c 由下式确定:2211)0(P c P c x +=,然后利用这一结论求解定解问题:⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--=11)0(,651021x x x dt dx 的解,并将这一结论推广到n 阶方阵情形.(1)证明:令],[21P P P =,则,,121211--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=P P A AP P λλλλ于是x P P dt dx121-⎥⎦⎤⎢⎣⎡=λλ, x P dt dx P 1211--⎥⎦⎤⎢⎣⎡=λλ 令,1x P y -=则dtdxP dt dy 1-=,微分方程化为 y dt dy ⎥⎦⎤⎢⎣⎡=21λλ 其解为⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=2121c c e e y t tλλ, 故方程Ax dtdx=的解一定能表示成 221121212121],[c e c P e c c c e e P P Py x t t t tλλλλ+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡== 若是定解问题,则21,c c 由2211)0(P c P c x +=确定.(2)解:矩阵⎥⎦⎤⎢⎣⎡--6510的特征值为5,121-=-=λλ,特征向量分别为⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=51,1121P P , 则方程组⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--=216510x x dt dx 的通解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-------t t t t t te c e c e c e c e c e c 52152152155111,由于⎪⎪⎭⎫⎝⎛=11)0(x ,则⎩⎨⎧=--=+1512121c c c c , 解之,得⎪⎩⎪⎨⎧-==212321c c , 故原方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛+--=⎪⎪⎭⎫ ⎝⎛----t t t t e e ee x x 552125232123. (3) n 阶方阵的情形:设微分方程组Ax dtdx=, 其中系数矩阵A 为n 阶可对角化矩阵,其特征值为n λλλ,,,21 ,特征向量分别为n P P P ,,,21 ,则该方程组的通解为n t n t P e c P e c P e c x n t λλλ+++= 221121,其中n c c c ,,,21 为任意常数.若为定解问题,则常数n c c c ,,,21 可由初始条件确定.6.已知),(0t t Φ是方程组)()()(t x t A dtt dx = 的转移矩阵,试证)(),(),(0000t A t t t t dt d ΦΦ-=. 证明:由于I t t t t =ΦΦ),(),(00,两边对0t 求导得,0),(),(),(),(000000=ΦΦ+ΦΦdt t t d t t t t dt t t d , 由于),(0t t Φ是方程组)()()(t x t A dtt dx =的转移矩阵,则 ),()(),(00t t t A dtt t d Φ=Φ, ),()(),(0000t t t A dt t t d Φ=Φ, 故0),()(),(),(),(000000=ΦΦ+ΦΦt t t A t t t t dt t t d , 两边右乘),(),(001t t t t Φ=Φ-,得 0)(),(),(0000=Φ+Φt A t t dt t t d , 即)(),(),(0000t A t t t t dt d ΦΦ-=. 7.求时变系统⎪⎩⎪⎨⎧===00)()()(x t x t x t A dtdx t t 的解,其中0),(x t A 分别如下:(1)⎪⎪⎭⎫ ⎝⎛=-101)(t e t A ,0,1100=⎪⎪⎭⎫ ⎝⎛=t x (2)⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,000)1(100110)(022x t t t A [该题有误: )()()()(1221t A t A t A t A ≠](3)0,11,21)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=t x t t t A 解:(1)对任意的21,t t ,有)()(101)()(122121t A t A e e t A t A t t =⎥⎦⎤⎢⎣⎡+=--, 故方程组的转移矩阵为+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=⎰=Φ⎰⎰⎰30200)()(!31)(!21)()0,(0t t t dv v A dv v A dv v A dv v A I e t t由于⎥⎦⎤⎢⎣⎡-=-⎰t e t dv v A t t01)(0, ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰22200)1(2!21)(!21t e t t dv v A t t ,⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰323300)1(3!31)(!31t e t t dv v A t t , ……… ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛--⎰n t n n n t t e nt t n dv v A n 0)1(!1)(!110 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-++++++++=- 323232!31!2110)1)(!31!211(!31!211)0,(t t t e t t t t t t t t Φ ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=-t t t t t t te e e e e e e 010)1(. 故该方程组的解为 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-=Φ=t t t t t e e e e e x t t x 121101)0,()(0 (3) 由于)(t A 各元素在区间],0[t 上有界,则该方程组的转移矩阵为⎰⎰⎰++=t v t dv v A dv v A dv v A I t 00221101)()()()0,(Φ ⎰⎰⎰++21033002211)()()(v t v dv v A dv v A dv v A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++= 4233428123122181231t t t t t t t t 故该方程组的解为⎪⎪⎪⎪⎭⎫ ⎝⎛+-+-+-++-+-=Φ= 43243208123218121231)0,()(t t t t t t t t x t t x 8.求下列定解问题的解:⎪⎩⎪⎨⎧=+=,00)(),()()()(x t x t u t B t x t A dt dx 其中(1)0,11,1)()(,101)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=-t x t t u t B e t A t (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,01)()(,000)1(100110)(022x t t u t B t t t A 解:(1)由于系统所对应的齐次系统的转移矩阵为 ⎥⎦⎤⎢⎣⎡-=Φ----00000),(20t t t t t t t e e e e t t , 则该系统的解为⎰Φ+Φ=t dv v Bu v t x t t x 00)(),()0,()( dv v e e e e e e e t v t v v t v t t t t⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡-=⎰----10110102 ⎰⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=----t v t v v t v t t dv e e e ve e 021 ⎪⎪⎪⎭⎫ ⎝⎛---++⎪⎪⎭⎫ ⎝⎛-=-1223211t t t t e t e e e ⎪⎪⎭⎫ ⎝⎛---+=-112321t e e t t。
研究生 矩阵论 课后答案
![研究生 矩阵论 课后答案](https://img.taocdn.com/s3/m/afd1afd83169a4517623a387.png)
|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
矩阵理论复习总结 PPT课件
![矩阵理论复习总结 PPT课件](https://img.taocdn.com/s3/m/f8f5b351dd36a32d737581bf.png)
1.几种常用的矩阵范数
A (aij ) Cnn ,
n
A
1
max
1 jn
i1
|
aij
|;
nn
1
n
A
max
1in
| aij
j 1
|;
1
A ( F
| aij2 |)2 (tr( AH A))2 .
i1 j1
UA A AU .
F
F
F
三、向量与矩阵的极限
2.线性空间v中有限个向量的线性相关性.
3.线性空间的基与维数.
dim(V ) n.
4. 基变换公式.
(1,2, ,n ) (1,2, ,n )P.
X PY.
5.子空间:对加法封闭,对数乘封闭.
L(1,2, ,s ) span1,2, ,s;
A (aij ) Rmn,
1,2, ,n ,
(1)
A Pdiag(1,2 , ,n )P1
(1,2 ,
,n )diag(1,2,
,n )
1T
T 2
T n
111T
2
2
T 2
n
n
T n
1G 12G 2 nGn
k
(2) A i Ai i 1
3.正交补空间
V1 V2 , V1 V2 V
4.内积空间的同构.
(x y) (x) ( y); (x) (x); ( (x), ( y)) (x, y).
考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页
![考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页](https://img.taocdn.com/s3/m/467a9155e53a580217fcfe39.png)
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走
研究生矩阵理论课后答案第5章
![研究生矩阵理论课后答案第5章](https://img.taocdn.com/s3/m/c8e1e95d3b3567ec102d8aa9.png)
按范数收敛
定义:赋范空间V的序列{x(n)|n=1,2,…}按范数 ‖‖α收敛于aV,如果 limn‖x(n)-a‖α=0 命题:对赋范空间V的任意两个等价向量范数 ‖‖α, ‖‖β, 都有 limn‖x(n)-a‖α=0 limn‖x(n)-a‖β=0 (即按任意两个向量范数的收敛实质上等价) 因 0 limn‖x(n)-a‖α d limn‖x(n)-a‖β 0 limn‖x(n)-a‖β(1/c)limn‖x(n)-a‖α
1=|yk|(i=1n|yi|p)1/p =‖y‖p n1/p (*) (i|yi|=|xi|/|xk|1) 1=limp1limp‖y‖p limpn1/p=n0=1 1=limp‖y‖p=limp‖x‖p/‖x‖ ‖x‖=limp‖x‖p
同一向量的三种范数之间的大小关系
Frobenius 矩阵范数
例5.2.2:矩阵的Frobenius范数定义为 ‖A‖F=(i=1mj=1n|aij|2)1/2. (ACmn的向量2-范数蕴含前3条公理)不难证明4 条范数公理全部满足.因非负性和齐次性是显 然的;③的证明见课本.我们只讲④的证明. ‖AB‖F2=i=1mj=1n|k=1paikbkj|2 i=1mj=1n((k=1p|aik|2)(k=1p|bkj|2))(C-S不等
则
n
1 ak 1 bk a k bk a b p q q b p a
1 a k bk a b k 1 pa
p
n k 1
ak
p
1 qb
q
b k 1 k
n q
1 1 ab ab q xn|}=|k‖x‖; ‖x+y‖= max{|x1+y1|,…,|xn+yn|} max{|x1|+|y1|,…,|xn|+|yn|} max{|x1|,…,|xn|}+max{|y1|,…,|yn|} =‖x‖+‖y‖
《矩阵分析》课件
![《矩阵分析》课件](https://img.taocdn.com/s3/m/962f4ee2d0f34693daef5ef7ba0d4a7303766c5b.png)
Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
研究生课程-《矩阵分析》试题及答案
![研究生课程-《矩阵分析》试题及答案](https://img.taocdn.com/s3/m/c15930e681c758f5f61f679d.png)
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
研究生矩阵论课后习题答案(全)习题一
![研究生矩阵论课后习题答案(全)习题一](https://img.taocdn.com/s3/m/86a29e5331b765ce050814d8.png)
解
(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1 −1 −1
= aa −1 = 1
⑥ k o (l o a ) = k o a = (a ) = a
l l k
lk
= (lk ) o a
⑦ (k +;l
= a k a l = a k ⊕ a l = (k o a) ⊕ (l o a )
k k k
⑧ k o ( a ⊕ b) = k o ( ab) = ( ab) = a b = ( k o a ) ⊕ (k o b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否.设 V2 = y ( x ) y ′′ + a1 y ′ + a 0 y = f ( x ), f ( x ) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭.例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 .故不构成线性空间. (6)是.集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意
矩阵论课后参考答案(第一二三四
![矩阵论课后参考答案(第一二三四](https://img.taocdn.com/s3/m/4b21cf1f168884868762d69a.png)
;
则 TE 11 E 11ca
b d
a11E 11
a21E 12
a31E 21
a41E 22
即
a0
b 0
a11 a 31
a a
21 41
所以
a 11
a ,a 21
b,a31
0,a 41
0
同理可得: a12 c,a22 d ,a32 0,a42 0
x k11 k22 l11 l22
则
k1 k2 2l1 l2 0
kk212k1kl12k273lll221
l2 0
0
0
,故有
kk12
l2 4l2
l1 3l2
即 x k11 k22 l2 (42 1) l2 (5,2,3,4)
1 1 3 C 1 2 5
1 3 6
17.证明:秩为 1 的 n(n>1)阶阵 A 的最小多项式是 2 (trA) 。
证明:由题知 n 阶矩阵 A 的秩为 1,则说明 A 有 n-1 重 0 特征根
与一个特征根 0 。又因存在 特征多项式可写为
n
i tr(A) ,故可知 0 tr( A) ,故 A 的
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
矩阵理论参考答案
![矩阵理论参考答案](https://img.taocdn.com/s3/m/1a20e7a8846a561252d380eb6294dd88d0d23d19.png)
矩阵理论参考答案矩阵理论参考答案矩阵理论是现代数学中的一个重要分支,广泛应用于各个领域,如物理学、工程学、经济学等。
矩阵理论的研究对象是矩阵,矩阵是由一定数量的数按照一定的规律排列成的矩形阵列。
在矩阵理论中,有许多重要的概念和定理,下面将对其中一些进行简要介绍。
首先,矩阵的基本运算是矩阵加法和矩阵乘法。
矩阵加法是指对应位置的元素相加,矩阵乘法是指按照一定的规则将两个矩阵相乘得到一个新的矩阵。
矩阵乘法是矩阵理论中的一个核心概念,它不仅可以用于解决线性方程组,还可以用于描述线性变换和矩阵的特征。
其次,矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
转置矩阵在矩阵理论中有着重要的应用,它可以用于求解线性方程组的解和描述矩阵的性质。
例如,对于一个方阵,如果它的转置矩阵与原矩阵相等,那么这个矩阵就是对称矩阵。
此外,矩阵的逆是指存在一个矩阵,使得它与原矩阵相乘得到单位矩阵。
逆矩阵在矩阵理论中是一个非常重要的概念,它可以用于求解线性方程组的唯一解和描述矩阵的可逆性。
一个矩阵是否可逆与它的行列式有关,如果一个矩阵的行列式不为零,则它是可逆的。
此外,矩阵的特征值和特征向量也是矩阵理论中的重要概念。
特征值是一个数,特征向量是一个非零向量,它们满足一个方程:矩阵乘以特征向量等于特征值乘以特征向量。
特征值和特征向量可以用于描述矩阵的性质和求解线性方程组的解。
最后,矩阵理论还有一些重要的定理,如克莱因-高尔登定理、谱定理等。
克莱因-高尔登定理是矩阵理论中的一个基本定理,它描述了一个方阵的特征值和特征向量的性质。
谱定理是矩阵理论中的另一个重要定理,它描述了一个对称矩阵的特征值和特征向量的性质。
总之,矩阵理论是现代数学中的一个重要分支,它在各个领域都有广泛的应用。
矩阵的基本运算、转置、逆、特征值和特征向量等概念和定理都是矩阵理论中的重要内容。
通过对矩阵理论的研究,我们可以更好地理解和应用数学知识,推动科学技术的发展。
矩阵分析课后习题答案
![矩阵分析课后习题答案](https://img.taocdn.com/s3/m/66f4dfa96394dd88d0d233d4b14e852458fb3938.png)
矩阵分析课后习题答案矩阵分析是一门重要的数学学科,广泛应用于各个领域,如物理学、工程学和经济学等。
通过矩阵分析,我们可以更好地理解和解决实际问题。
然而,学习矩阵分析过程中,经常会遇到各种复杂的习题,给学生带来困扰。
在这篇文章中,我将为大家提供一些常见矩阵分析课后习题的答案,希望能够帮助大家更好地掌握这门学科。
1. 矩阵乘法的性质矩阵乘法是矩阵分析中的基础概念,了解其性质对于解决复杂的习题非常重要。
下面是几个常见的矩阵乘法性质的答案:- 乘法结合律:对于三个矩阵A、B和C,满足(A*B)*C = A*(B*C)。
- 乘法分配律:对于三个矩阵A、B和C,满足A*(B+C) = A*B + A*C。
- 乘法单位元:对于任意矩阵A,满足A*I = I*A = A,其中I为单位矩阵。
2. 矩阵的转置和逆矩阵矩阵的转置和逆矩阵是矩阵分析中常见的概念,它们在解决线性方程组和求解特征值等问题中起到重要作用。
以下是一些常见的矩阵转置和逆矩阵的答案:- 矩阵的转置:矩阵A的转置记作A^T,即将A的行变为列,列变为行。
- 逆矩阵的存在性:如果一个n阶矩阵A存在逆矩阵A^-1,那么AA^-1 =A^-1A = I,其中I为单位矩阵。
- 逆矩阵的计算:对于2阶矩阵A = [a b; c d],如果ad-bc≠0,则A的逆矩阵为A^-1 = 1/(ad-bc) * [d -b; -c a]。
3. 矩阵的特征值和特征向量特征值和特征向量是矩阵分析中的重要概念,它们在解决线性方程组和矩阵对角化等问题中起到关键作用。
以下是一些常见的特征值和特征向量的答案:- 特征值和特征向量的定义:对于一个n阶矩阵A,如果存在一个非零向量x和一个标量λ,使得Ax = λx,那么λ称为A的特征值,x称为对应于λ的特征向量。
- 特征值的计算:特征值可以通过解方程|A-λI|=0来计算,其中I为单位矩阵。
- 特征向量的计算:对于给定的特征值λ,可以通过求解(A-λI)x=0来计算对应的特征向量。
《矩阵分析》课件
![《矩阵分析》课件](https://img.taocdn.com/s3/m/2d47f52bcbaedd3383c4bb4cf7ec4afe05a1b15a.png)
行列式的计算方法
代数余子式法
01
利用代数余子式展开行列式,将行列式化为三角形或对角线形
式,从而简化计算。
递推法
02
根据行列式的性质和展开定理,利用递推关系式计算行列式的
值。
公式法
03
对于一些特殊的行列式,可以利用已知的公式直接计算其值。
如三阶行列式公式、范德蒙德公式等。
03
矩阵的秩与线性方程组
矩阵的秩
逆矩阵的求法
高斯-约当消元法是求逆矩阵的一种常用方法,通过一系列行 变换将矩阵变为单位矩阵,其伴随矩阵即为所求的逆矩阵。
行列式的定义与性质
行列式的定义
n阶方阵A的行列式记为det(A)或|A|, 是一个标量,其值是所有n阶排列的 代数和,每个排列对应一个二项式系 数。
行列式的性质
行列式具有一些重要的性质,如交换 律、结合律、分配律等。此外,行列 式的值也可以通过对角线元素、主子 式、余子式等计算得到。
04
矩阵的特征值与特征向量
特征值与特征向量的定义与性质
特征值
对于给定的矩阵A,如果存在一个标量λ和相应的非零向量v,使得A×v=λ×v成立,则称λ为矩阵A的特征值,v为 矩阵A的对应于特征值λ的特征向量。
特征向量的性质
特征向量与特征值是对应的,不同的特征值对应的特征向量是线性无关的,特征向量与特征值之间满足特定的关 系式。
高斯消元法
通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
迭代法
通过迭代的方式逼近方程组的解,常 用的方法有雅可比迭代法和SOR方法 等。
共轭梯度法
一种用于求解大规模稀疏线性方程组 的方法,通过迭代寻找方程组的解。
最小二乘法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
考博必备 研究生矩阵理论课后答案矩 阵分析所有习题
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
ห้องสมุดไป่ตู้
36、自己的鞋子,自己知道紧在哪里。——西班牙