四点共圆例题及答案

合集下载

四点共圆精选习题及答案

四点共圆精选习题及答案

四点共圆精选习题及答案作为一种古老而神秘的数学理论,圆形一直是数学家们探究和研究的对象之一。

而在圆形领域中,四点共圆更是一个受到广泛关注和深入研究的问题。

四点共圆是指在平面上给出任意四个点,能否通过一个圆将这四个点完美地围起来。

今天我们精选了几个四点共圆的习题,希望能给大家带来一些启示。

题目一:已知在平面直角坐标系中,四点 A(0,0),B(0,2),C(4,0),D(x,y)。

若四点在同一圆上,则点 D 的坐标为多少?解题思路:根据四点共圆基本知识,可以列出以下方程组:(x-2)²+y²=r²x²+(y-2)²=r²(x-4)²+y²=r²x²+y²=r²将方程组联立,消去 r,最终得到 x²+y²=5²,即点 D 的坐标为(3,4)或(−3,4)。

题目二:在平面直角坐标系中,四个点 A,B,C,D 分别为(7,0),(0,7),(−7,0) 和(0,−7)。

请证明:四点共圆。

解题思路:根据四点共圆定理,四个点共圆当且仅当它们构成的任意三角形的外接圆都存在。

可得三个三角形 ABC、ACD 和ABD 的外接圆都是以原点为圆心的半径为7 的圆,因此四点 A、B、C、D 构成的圆也一定存在。

题目三:在平面直角坐标系中,四点 A,B,C,D 分别为(−3,4),(−4,−3),(4,−3) 和(−1,−2)。

请计算过点 C 的直径的长度。

解题思路:通过计算可以知道,连接点 C 和其他三个点构成的三角形外接圆的圆心坐标分别为(−1,−1)、(−1,0) 和 (0,1),因此过点 C 的直径所在的直线应为直线 y=x-1。

可得直线 y=x-1 与直线x=4、直线x=−3 和直线y=−3 的交点分别为 (4, 3)、(−3,−4) 和(0,−1),因此该直径的长度为√145。

四点共圆(二)

四点共圆(二)

【例2】⑶设圆内接四边形ABCD,AB、DC延长交于E, AD、BC延长交于F,EF中点为G,AG与圆交于 K,求证:C、 E、F、K四点共圆。
有关垂心、外心、内心的基本性质:
1.如图,若H是△ABC的垂心,则 ∠BAC+∠EHF=180°, ∠ABC+∠DHF=180°, ∠ACB+∠DHE=180°。
【例1】⑶在五边形ABCDE中,∠ABC=∠ADE,∠AEC= ∠ADB, 求证:∠BAC=∠DAE。
【例2】⑴如图,锐角△ABC中,BD、CE分别是边AC、AB 上的高线,DG⊥CE于 G,EF⊥BD于F。求证: FG∥BC。
1
【例2】⑵如图,四边形ABCD和A1B1C1D1都是正方形,A与 A1重合。证明:BB1、CC1、DD1共点。
3
【例3】⑷如图,四边形A1A2A3A4内接于一圆,△A1A2A3的 内心是I1,△A2A3A4的内心是I2,△A3A4A1的内 心是I3。
【例3】求证: ①A2、I1、I2、A3四点共圆。
【例3】求证: ②∠I1 I2 I3 =90°。
4
四点共圆(二)
【例1】⑴⊙O、⊙O′相交相交于A、B,过A作两圆间的割线 CAD,若CO、DO′的交点为E,由E作CD的垂线EF 与BA的延长线相交于点F,求证: C、E、B、D、F 四五点共圆。
【例1】⑵C、D是以AB为直径的半圆上的两点,∠AOC=90° ,P在直径AB上,且∠OCP=∠ODP=10°,求 ∠BOD。
2.如图,若O是△ABC的外心,则 ∠BOC=2∠BAC, ∠AOB=2∠ACB, ∠AOC=2∠ABC。
2
3.如图,若I是△ABC的内心,则Leabharlann BIC90

1 2
BAC,

专题3.8 四点共圆(隐圆压轴五)(解析版)

专题3.8 四点共圆(隐圆压轴五)(解析版)

∴DG=CG﹣CD= = ,
在 Rt△ADG 中,由勾股定理得







故答案为:6,

【变式 1-5】如图,AB⊥BC,AB=5,点 E、F 分别是线段 AB、射线 BC 上的动 点,以 EF 为斜边向上作等腰 Rt△DEF,∠D=90°,连接 AD,则 AD 的最 小值为 .
【答案】 . 【解答】解:连接 BD 并延长,如图,
模型解读:
模型 1:对角互补型: 若∠A+∠C=180º或∠B+∠D=180º, 则 A、B、C、D 四点共圆 模型 2:同侧等角型 (1)若∠A=∠C, 则 A、B、C、D 四点共圆
(2)手拉手(双子型)中的四点共圆 条件:△OCD∽△OAB 结论:①△OAC∽△OBD ②AC 与 BD 交于点 E,必有∠AEB=∠AOB; ③点 E 在△OAB 的外接圆上,即 O、A、B、E 四点共圆.同理:ODCE 也四点共圆.
∴S△ABC=

=300 km2.
则当△ADC 的面积最大时,四边形 ABCD 的面积最大.
当 AD=CD 时,DF 最大,此时四边形 ABCD 的面积最大.
在 Rt△ACE 中,AC=
=10 km,AF= AC=5
km,
∵∠ADF=
=30°,
∴DF= AF=5 km,
∴S△ADC=
Hale Waihona Puke ==925 km2.
C.15
【答案】C
【解答】解:∵∠BAC=60°,∠BDC=120°,
∴A、E、D、F 四点共圆,
∵AD 平分∠BAC,
∴∠DAE=∠DAF,
∴DE=DF=6,

24.24专题6:四点共圆问题

24.24专题6:四点共圆问题

24.24专题6:四点共圆一.【知识要点】 四点共圆模型:(1)若四个点到一个定点的距离相等,则这四个点共圆(如图1);(2)共斜边的两个直角三角形,四个顶点共圆(如图2,3);(3)对角互补的四边形四个顶点共圆(如图4);(4)共底边且在同侧的两个三角形顶角相等(如图5)。

二.【经典例题】1.已知OA=OB=OC=2,且∠ACB=45°,则AB 的长为( ) A.2 B.3 C.22 D.322.如图所示,矩形ABCD 的边AB=3,Rt △BEF 的直角顶点E 在对角线AC 上,另一顶点F 在边CD 上,若△BEF 的一个锐角为30°,则BC 的长是( ) A.3 B.33 C.333或 D.63.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,∠BDC=45°,求证:AD⊥BD.4.如图,四边形ABCD是正方形,E是BC上一点,AE⊥EF交∠BCD的外角平分线于F,求证:AE=EF.5.如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限。

其斜边两端点A、B分别落在x轴、y轴上,且AB=12厘米,(1)若OB=6厘米,①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离. (2)点C与点O的距离的最大值是多少厘米?6.(绵阳2015年第25题本题满分14分)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG = AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN = HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.7.如图,菱形ABCD中,两条对角线AC,BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,∠ABC=60°,连接EF.(1)求△OEF是什么特殊的三角形?(2)若AB=2,求CE+CF的长;三.【题库】【A】1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB下方,AD⊥BD,求∠BDC的度数.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,AD⊥BD,求∠BDC的度数.3.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠BDC=45°,求证:AD⊥BD.4.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在AB上方,∠ADC=135°,求证:AD⊥BD.5.在Rt△ABC中,∠ACB=90°,AC=BC,点E为△ABC外一点,且∠CEA=45°.求证:AE⊥BE.6.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【B】1.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M 在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;=a2+b2;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的序号为.【C】1.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.【D】1.如图,C,D是以AB为直径的半圆上的两点,∠AOC=40°,P在直径AB上,且∠OCP=∠ODP=10°,则∠BOD的度数为().A.20°B.30°C.25°D.15°2.正方形ABCD 的中心为O ,面积为1989cm 2.P 为正方形内一点,且∠OPB =45°,P A :PB =5:14.则PB 的长为( ). A.42cm B.40cm C.35cm D.50cm3.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则的最大值为( )A .B .C. D .4.如图,在菱形ABCD 中,点P 是BC 边上一动点,P 和C 不重合,连接AP ,AP 的垂直平分线交BD 于点G ,交AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变5. 如图,ABC ∆中,45B ∠=︒,75C ∠=︒,4AB =,D 为BC 上一动点,过点D 作DE AC ⊥于点E ,DF AB ⊥于点F ,连接EF ,则EF 的最小值为 ( ) A .3B .2C .5D .6。

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型模型1:定点定长共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.DDD【例1】(2021·全国·九年级课时练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C 时,两点同时停止运动,连接AE、DF交于点P,设点E. F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.(2)①由(1)可得AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,DE=CF=t,∴△ADE≌△DCF,∴∠CDF=∠DAE,∵∠CDF+∠PDA=90°,∴∠DAE+∠PDA=90°,∴∠ADP=∠APF=90°,∴∠APF+∠B=180°,由四边形APFB内角和为360°可得:∠PAB+∠PFB=180°,∴点A、B、F、P在同一个圆(⊙O)上;②由题意易得:当⊙O与正方形ABCD的一边相切时,只有两种情况;a、当⊙O与正方形ABCD的边AD相切时,如图所示:由题意可得AB为⊙O的直径,∴t=12;b、当⊙O与正方形ABCD的边DC相切于点G时,连接OG并延长交AB于点M,过点O作OH⊥BC交BC于点H,连接OF,如图所示:∴OG⊥DC,GM⊥AB,HF=HB,∴四边形OMBH、GOHC是矩形,∴OH=BM=GC,OG=HC,∴OP即为圆心的运动轨迹,即故答案为6cm.【点睛】本题主要考查圆的综合,熟练掌握圆的性质及切线定理解题的关键,注意运用分类讨论思想解决问题.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=______°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB≌△AEC ;②请直接写出线段AD,BD,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角∠A的度数;(2)如图1,若⊙O的半径为5,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.∴∠E=∠A=60°由(1)可知:∠BAD=60°,∵CA平分∠BCD,∠BCD=60°∴∠BCA=∠DCA=12∴∠ABD=∠DCA=60°∴AF=AC ,∠F=∠DCA=60°∴∠FAC=180°-∠F -∠ACF=60°∴△ACF 为等边三角形∴CF=AC∴BC +BF=AC∴BC +CD=AC【点睛】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.一、解答题1.(2022·辽宁葫芦岛·一模)射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH ⊥AB 于点H .(1)如图1,点F 和点G 都在射线AB 的同侧时,EG 与GH 的数量关系是______;(2)如图2,点F 和点G 在射线AB 的两侧时,线段EF ,AE ,GH 之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G 都在射线AB的同侧,AE =1,EF =2,请直接写出HG 的长.(2)解:在射线ED上截取EN=AE,连接AN,如图3,∵∠AED=60°,∴△AEN是等边三角形,∴AE=AN,∠EAN=60°∵AF=AG,∠FAG=60°,(3)①当点F和点G都在射线AB的右侧时,在射线ED上取一点M,使得EM=EG,连接MG,如图4,∵线段AF绕点A顺时针旋转60°得到AG,∴∠GAF=60°,AG=AF,∴△GAF是等边三角形,∴∠AGF=∠AFG=∠FAG=60°,AG=AF=GF,∵∠AED=60°,∴∠AGF=∠AED,∴点A、E、G、F四点共圆,∴∠GEH=∠GFA=60°,∠GEF=∠GAF=60°,∵EM=EG,∴△GEM是等边三角形,∴EM=GM=EG,∠EGM=60°,∴∠EGM=∠EGA+∠MGA=60°=∠EGM=∠MGF+∠MGA,∴∠EGA=∠MGF,∴△EGA≌△MGF,∴MF=AE=1,∴GE=EM=EF−MF=2−1=1,∵GH⊥AB,【点睛】本题主要考查了特殊角的三角函数、全等三角形的判定和性质、等边三角形的判定及性质以及旋转图形的性质,熟练掌握这些性质和判定是解题的关键.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF,求n的值.(2)(3)解:∵0<n<90,【点睛】本题考查正方形的判定与性质,相似三角形的判定与性质,以及旋转的性质和解直角三角形等,3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE、AF交于G点.若GF=DF,请直接写出CD AB的值.BE∵将BD绕点D顺时针旋转120°,得到DE∵△ABC是等边三角形AB=1∴∠ABC=60°,AB=AC,AH=12∵点F是CE的中点∴FE 又FK=DF∴四边形CDFK是平行四边形∴ED=KC,ED∥KC∴∠EDA=∠KCA∵将BD绕点D顺时针旋转120°,得到DE,∴B,D,F,G四点共圆由(2)可知AF⊥DF,∠FAD=30°4.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)在平面直角坐标系中,抛物线y=3ax2﹣10ax+c分别交x轴于点A、B(A左B右)、交y轴于点C,且OB=OC=6.(1)如图1,求抛物线的解析式;(2)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设△BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且∠EOC=45°,点N在第一象限内,连接DN,DN∥EC,点G在DE上,连接NG,点M在DN上,NM=EG,在NG上截取NH=NM,连接MH并延长交CD于点F,过点H作HK⊥FM交ED于点K,连接FK,若∠FKG=∠HKD,GK=2MN,求点G的坐标.又FD=FD∴△FDM≌△FDK∴FK=FM,KD=MD∴MD+MR=DK+GK即GD=RD∴△KDM,△GDR是等腰直角三角形在四边形FKDM中,∠KDM=90°,∠FKD=FMD=180°−α∴∠KFM=360°−90°−2(180°−α)=2α−90°=2α−(α+β)=α−β在△FHK与△GDN中∵∠FHK=∠GDN=90°,∠FKH=∠GND=2β∴△FHK∽△GDN∴∠NGD=∠KHF=α−β∵∠HGK=∠HFK,HK=HK∴G,K,H,F四点共圆∵HK⊥FM∴∠FHK=90°∴∠FGK=90°∴∠GFK=90°−∠FKG=90°−α=β在△FRM与△FGK中MR=KG=2a∠FKG=∠FMR=αFM=FK∴△FRM≌△FGK∴∠RFM=∠GFK=β∴∠GFR=2β+∠KFM=2β+α−β=α+β=90°∴∠RFG=∠FGD=∠GDR=90°∴四边形FGDR是矩形又GD=DR∴四边形FGDR是正方形如图,延长DE至W,使EW=EG=a,则WK=2GK=4a5.(2021·广东·珠海市紫荆中学九年级期中)如图,△ABC中,∠BAC=90°,AB=AC=4,直角△ADE的边AE在线段AC上,AE=AD=2,将△ADE绕直角顶点A按顺时针旋转一定角度α,连接CD、BE,直线CD,BE交于点F,连接AF,过BC中点G作GM⊥CD,GN⊥AF.(1)求证:BE=CD;(2)求证:旋转过程中总有∠BFA=∠MGN;(仅对0°<α<90°时加以证明)(3)在AB上取一点Q,使得AQ=1,求FQ的最小值.6.(2021·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直MC的最小值.线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=(2)∵∠BEC=120°,∴∠BED=60°,∵AD∥DE,∴∠ADE=∠BED=60°,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∴A、D、B、C共圆,如图2所示:∴∠ADB=120°,∵∠ADE=∠BED=60°,∴∠BDE=60°,∴△DBE是等边三角形;(3)7.(2022·全国·九年级课时练习)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系:______;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②用等式表示线段DF与FG的数量关系并证明.∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=②DF=2FG;理由如下:如图2,连接BF、BG,8.(2021·四川·成都实外九年级阶段练习)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图2,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.【答案】(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【分析】(1)根据半角旋转模型,把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,即可证明△AME≅△AFE,得到∠AEM=∠AEF,再结合∠AEM=∠EAG,可得∠AEM=∠AEF,可得EG=AG;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ垂直平分EA,可得△ANE是等腰直角三角形,可得A、D、E、N四点共圆,根据圆周角∠NDC=∠EAN=45°【详解】(1)把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(2)结论依然成立,EG=AG把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(3)连接EN由(2)得EG=AG∵GQ⊥AE∴GQ垂直平分AE∴EN=AN∵∠EAF=45°∴∠ANE=90°=∠ADE∴A、D、E、N四点在以AE为直径的同一个圆上,∴∠NDC=∠EAN=45°.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.9.(2021·上海徐汇·九年级期中)如图,已知Rt△ABC和Rt△CDE,∠ACB=∠CDE=90°,∠CAB=∠CED,AC=8,BC=6,点D在边AB上,射线CE交射线BA于点F.(1)如图,当点F在边AB上时,联结AE.①求证:AE∥BC;CF,求BD的长;②若EF=12(2)设直线AE与直线CD交于点P,若△PCE为等腰三角形,求BF的长.10.(2022·全国·九年级专题练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①若∠A=40°,直接写出∠E的度数是;②求∠E与∠A的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若∠BEC是△ABC 中∠BAC的遥望角,求证:DA=DE.11.(2022·全国·九年级课时练习)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,求证:BP=DQ;(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;(3)若点P,Q,C三点共线,且AD=3,求BP的长.【答案】(1)见解析;(2)见解析;(3)BP=3【分析】(1)证明△AQD≌△APB即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180°即可得出结论;(3)证明△PAQ为等腰直角三角形,得出∠APC=45°,然后得出∠ABC=2∠APC,根据圆周角定理可得点P在圆⊙B上,结论可得.【详解】解:(1)根据旋转的性质可得AP=AQ,∠PAQ=90°,∵∠BAD=90°,∴∠DAQ=∠BAP,∵AB=AD,∴△AQD≌△APB(SAS),∴BP=DQ;(2)∵△AQD≌△APB,∴∠Q=∠APB,∵点P,B,D三点共线,∴∠APD+∠APB=180°,∴∠Q+∠APD=180°,∴A,Q,P,D四点共圆;(3)∵AP=AQ,∠PAQ=90°,∴△PAQ为等腰直角三角形,∴∠APC=45°,以点B为圆心,BA为半径作⊙B,∵∠ABC=90°,∠APC=45°,∴∠ABC=2∠APC,∴点P在圆⊙B上,∴BP=BC=3.【点睛】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.12.(2021·江苏·泗阳县实验初级中学九年级阶段练习)如图1,在正方形ABCD中,点E、F分别是BC、CD上的两个动点,且BE=CF,AE和BF相交于点P.(1)探究AE、BF的关系,并说明理由;(2)求证:A、D、F、P在同一个圆上;(3)如图2,若正方形ABCD的边AB在y轴上,点A、B的坐标分别为(0,−1+a)、(0,−1−a),点E、F 分别是BC、CD上的两个点,且BE=CF,AE和BF相交于点P,点M的坐标为(4,−4),当点P落在以M 为圆心1为半径的圆上.求a的取值范围.。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H 四点共圆.(2) 若四边形的两个对角互补( 或一个外角等于它的内对角) ,则四点共圆.例 2 如图,在△ ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵ DE⊥AB,DF⊥AC,∴∠ AED+∠ AFD=180°,即A、E、D、F 四点共圆,∠AEF=∠ADF.又∵ AD⊥BC,∠ ADF+∠ CDF=90°,∠CDF+∠ FCD=90°,∠ADF=∠FCD.∴∠ AEF=∠FCD,∠BEF+∠ FCB=180°,即B、E、F、C 四点共圆.(3) 若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ ABC中,BD、CE是AC、AB边上的高.∴∠ BEC=∠BDC=9°0 ,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△ AED∽△ ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠ A-∠C=12°,且∠ A∶∠ B=2∶3.求∠ A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠ A+∠C=180°.∵∠A-∠C=12°,∴∠ A=96°,∠ C=84°.∵∠ A∶∠ B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图 1 所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD· BE=BC· DC.证明:连结AC.∵CE∥BD,∴∠ 1=∠E.∵∠1和∠2 都是所对的圆周角,∴∠ 1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠ EBC=∠CDA.∴△ ADC∽△ CBE.AD∶BC=D∶C BE.AD· BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠ BAE=∠CAD,AE交BD于E.∵∠ ABD=∠ACD,即AB· CD=A·C BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠ BAC=∠EAD.又∠ ACB=∠ADE,AD· BC=AC·DE.②由①,②得AC·BE+AC·DE=AB· CE+AD· BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy) 定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ ABE∽△ ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5 圆的内接四边形例 1 已知:如图7-90 ,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=M.D证明∠MEC与∠ HEB互余,∠ ABE与∠HEB互余,所以∠ MEC∠= ABE.又∠ ABE= ∠ECM,所以∠ MEC∠= ECM.从而CM=E.M同理MD=E.M所以CM=M.D点评本例的逆命题也成立(即图中若M平分CD,则MH⊥ AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例 2 已知:如图7-91 ,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙ O的需证明GB=C.D 但这在第七章ξ 1.4 圆周角中的例3已经证明了.证明读者自己完成.* 分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥ MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例 1 的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=M,F 而由例 3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+B·C AD=AC·BD.分析在AB·CD+B·CAD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB· CD+B·C AD是否等于AC·BD.而要考虑AB· CD和BC· AD各等于什么,要用到相似三角形.为此,如图7-92 ,作AE,令∠ BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ ABE∽△ACD.由此求得AB·CD=A·C BE.在圆中又出现了△ ABC∽△ AED,由此又求得BC·AD=AC· ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+P.C分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=P,B 剩下的问题是证明MA=P,C 这只要证明△ ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=P,C 剩下的问题是证明PM=P,B 这只要证明△ BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=M,C 这只要证明△ PAB≌△ CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.* 本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=A,B所以有PA=PB+P.C例 2 如图7—116,⊙ O1 和⊙ O2都经过A、B两点,经过点A的直线CD与⊙ O1交于点C,与⊙ O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙ O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF 分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∴∠ BAD=∠E.∵ADFB是圆内接四边形,∴∠ BAD+∠ F=180°,∴∠ E+∠ F=180°.∴CE∥CF.说明:(1) 本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠ DFG=∠BAD,而∠BAD=∠E,所以∠ DFG=∠E.(2) 应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3) 对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例 3 如图7—118,已知在△ ABC中,AB=AC,BD平分∠ B,△ ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ ABD=∠DBE,容易看出.若连结DE,则有AD=D.E 因此只要证DE=EC.由于DE和EC为△ DEC的两边,所以只要证∠ EDC=∠ C.由已知条件可知∠ C=∠ ABC.因此只要证∠ EDC=∠ABC.因为△ EDC是圆内接四边形ABED的一个外角,所以可证∠ EDC=∠ ABC.问题可解决.证明:连结DE.∵ BD平分∠ ABC,∵ABED是圆内接四边形,∴∠ EDC=∠ABC.∵AB=AC,∴∠ ABC=∠C,∴∠ EDC=∠ C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠ BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠ A、∠ B、∠ C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=D.C作业答案或提示:1.∠ABC=∠ADC=9°0 ,∠ BCD=10°9 42′.2.∠A=45°,∠ B=67.5°,∠ C=135°,∠ D=112.5°.3.提示:因为∠ DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠ DBC=∠DCB,因此DB=D.C判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1) 如果四个点与一定点距离相等,那么这四个点共圆.(2) 如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3) 如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4) 如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆( 因为四个顶点与斜边中点距离相等) .3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与AD、BC分别交于E、F.求证:C、D、、提示连结EF.由∠ B+∠ AEF=180 °,∠ B +∠ C=180°,可得∠ AEF= ∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例 1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP 交AB 于E.求证:∠ APC=∠ BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO⋯⋯(1) ;由相交弦定理,得AE·BE=CE·DE⋯⋯(2) ;由(1) 、(2) 得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠ 1=∠2,∠3=∠4,又∠ 2=∠ 4.∴∠ 1=∠3,易证∠ APC=∠ BPD(∠ 4=∠ EDO.)二用于证明两条线段相筹例 2 如图2,从⊙ O外一点P 引切线PA、PB和割线PDC,从 A 点作弦AE 平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠ 1=∠ 2.∵ AE∥ CD,则∠ 2=∠ 4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠ 5=∠ 6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.用于证明两直线平行例 3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥ GC.证明连结EC.在△ ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴ △AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠ 6=∠3.在△ GEB 和△ GEC中,∵ GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠ 4=∠2 =∠ 3,∴∠ 4=∠ 6.∴ EH∥ GC.四用于证明两直线垂直证明在△ ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△ BCE,∴∠ ADB=∠ BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠ OEC=60°,∠ DEO=30°∴∠ DEC=90°,于是∠ DPC=9°0 ,∴ CP⊥AD.五用于判定切线例 5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA 于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠ PDC=∠ PEC=90°,∴ P、D、C、E四点共圆,于是∠ 1=∠3,而∠3+∠ 2=90°,∠ A+∠ 2=90°,则∠ 1=∠ A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例 6 AB、CD为⊙ O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙ O于B,则∠ 1=∠ A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙ O中,由相交弦定理,得CF· FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P 点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图7)求证:PQ2=QF2+PE2.证明 作△ DCQ 的外接圆,交 PQ 于 M ,连结 MC ,∵∠ 1=∠2=∠ 3,则 P 、B 、 C 、M 四点共圆.由圆幂定理得 PE 2=PC ·PD =PM · PQ ,QF 2=QC ·QB = QM ·QP ,两 式相加得 PE 2+ QF 2=PM ·PQ + QM ·QP=PQ (P +MQM )=PQ ·PQ=P 2Q∴PQ 2=PE 2+QF 2.八 用于解计算题例 8 如图 8,△ ABC 的高 AD 的延长线交外接圆于 H ,以 AD 为直径作圆和 AB 、 AC 分别交于 E 、F 点, EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.解 连结 DE 、DF 、BH .∵∠ 1=∠2=∠ C=∠H ,∴B 、E 、G 、H 四点共圆.由圆 幂定理,得 AE ·AB =AG ·AN .在△ ABD 中,∵∠ ADB=90°,DE ⊥AB ,由射影定理, 得 AD 2= AE ·AB ,∴ AD 2=AG ·AH = 16×25= 400,∴ AD=20cm .九 用于证明三点共线例 9 如图 9, D 为△ABC 外接圆上任意一点,垂足,求证: E 、F 、G 三点在一条直线上. 证明 连结 EF 、FG 、BD 、CD .∵∠ BED=∠BFD=90°,则 B 、E 、F 、D 四点共 圆,∴∠ 1=∠ 2,同理∠ 3=∠4.在△DBE 和△DCG 中,∵∠DEB =∠DGC ,∠DBE =∠DCG ,故∠1=∠4,E 、F 、G 为 D 点到三边垂线的易得∠2=∠ 3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10 如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2 关于AF对称,则∠ 1=∠2.∵A、F、D、C四点共圆,则∠ 2=∠ 3,于是∠ 1=∠3,∴A、H2、B、c 四点共圆,即H2在△ ABC的外接圆上.同理可证,H1、H3也在△ ABC的外接圆上.∴ A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996 年第 2 期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例 1 已知正七边形A1A2⋯A7 ,(第21 届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5 中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4 即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988 年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△ CDE∽△ BAE和△ CBE∽△ DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即CE(AE+CE)=16.设CE=x,整理上式,得x +6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例 3 一个内接于圆的六边形,其五个边的边长都为81,AB 是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a,BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF=c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31· 81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a +b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例 4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11) 的圆及圆内接四边形ABCD,使BC=2,CD=11,如图4 ,于是由托勒密定理,得经检验 x=14 是原方程的根.求证: a 2+ b 2=1.易知 0≤a 、b ≤1 且 a 、b 不全为零.当 a 、b 之一为零时,结论显然成立. 当 a 、b 全不为零时,由已知等式联想到托勒密定理,作直径 AC =1 的圆及圆内接四与已知等式比较,得 BD = 1,即 BD 也为圆的直径,故 a 2+b 2=1 例 6 设 a >c ,b >c ,c >0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.这道名题已有多种证法, 再给出一各几何证法.而且被视为用三角换无法解代数问题的典范.在△ BCD 中,由余弦定理,得由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y 是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ ADB,使AC=a,BC=b,BD=x,AD=y.(图1)由勾股定理知a,b,x,y 满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3 】已知:边长为 1 的正七边形ABCDEFG中,对角线AD=a,BG=b (a≠ b).求证:(a+b)2(a -b)=ab2.证连结BD,GE,BE,DG,则BD=EG=GB=b,DG=B=E DA=a,DE=AB=AG=.1( 如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+ b (1)同理在四边形BDEG中,得BE·DG=D·E BG+BD·EG,即a2=b+b2 (2)将(2) 变形为b=a2-b2 (3)(1) ×(3) ,得ab2=(a +b)(a 2-b2).故ab2=(a +b) 2(a -b) .三、构造圆内接四边形,运用定理例4】在△ ABC中,∠ A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3)连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠ 1=∠2,∴ BD=D.C∴AD·BC=AB·CD+AC· BD=BD(A+B AC).即AD·BC=BD· (AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结BD.由∠ A+∠ C=180°,可以推出sinA=sinC ,cosA=-cosC.并且S 四边形ABCD=S△ABD+S△ BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1) 先证四边形四边定长,有唯一的四边形内接于圆,设∠ ABC=α,∠ADC=β,AC=x.令α+β =π,即cosα+cosβ=0x 的解唯一确定,代入(1)(2) 后cosα、cosβ也随之唯一确,在α,β∈(0 ,π )的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2) 当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β =π时( 即为圆内接四边形时 )S 2达到最大值,即 S 最大.一个几何定理的应用江苏省徐州矿务局庞庄职校 张怀林定理:如图 1,在圆接四边形 ABCD 中弦 AD 平分∠ BAC ,则 2ADcos α=AB + AC .证明 连接 BD 、DC 、BC ,设已知圆半径为 R ,则由正弦定理有:BD =DC = 2Rsin α, BC =2Rsin2 α.由托勒密定理有AB ·CD+AC · BD=AD ·DC . ∴(AB+AC) · 2Rsin α=AD ·2Rsin2 α. 则 2AD ·cos α=AB +AC . 下面举例说明它的应用.例 1 如图 2,已知锐角△ ABC 的∠A 平分线交 BC 于 L ,交外接圆于 N ,过 L 分别作 LK ⊥AB , LM ⊥AC ,垂足分别为 K 、M .求证:四边形 AKNM 的面积 等于△ ABC 的面积.(第 28 届 IMO )证明 由已知得 ∠BAN= ∠CAN ,由定理有2ANcos α=AB+AC,=AN·AL·cosα· sinα =AN ·AK ·sinα=AN·AM·sinα=2S △AKN=2S △AMN.∴S△ABC=S 四边形AKNM.(第21 届全苏奥数)证明作正七边形外接圆,如图 3 所示.由定理有2c · cos α=b+c ,又在等腰△ A1A2A3中有2a·cosα=b.例 3 在△ABC 中,∠C=3∠A ,a =27,c =48,则 b 的值是 ____ .(第 36 届 AHSME 试题 )解 如图 4 .作△ ABC 的外接圆,在 取三等分点由已知得: ∠ACD=∠DCE=∠ECB=∠A ,CD=AB=48 , 由定理有2CE · cosA=CB+CD ① 2CD ·cosA =CE+AC ②又 2CB ·cosA=CE ③由②、③得: b=AC=CE ·(CD-CB)/CB=35 .托勒密定理及其应用 河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积 (两对角线所包矩形的面 积 )等于两组对边乘积之和 (一组对边所包矩形的面积与另一组对边所包矩形的 面积之和 ).已知:圆内接四边形 ABCD , 求证: AC ·BD =AB ·CD +AD ·BC .D 、E ,连 CD 、CE .证明:如图1,过C 作CP 交BD 于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△ BCP .又∠ ACB= ∠DCP ,∠ 5=∠6,∴△ ACB ∽△ DCP .①+②得AC(BP +DP)=AB ·CD+AD·BC.即AC·BD=AB ·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.、直接应用托勒密定理例1 如图2,P是正△ABC 外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB +PC .分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB ·AC+PC ·AB,∵AB=BC=AC .∴PA=PB+PC .二、完善图形借助托勒密定理例 2 证明“勾股定理”:在Rt△ABC 中,∠ B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.由托勒密定理,有AC·BD=AB ·CD+AD·BC.① 又∵ ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD .② 把②代人①,得AC2=AB 2+BC2.例 3 如图4,在△ ABC 中,∠ A 的平分证:AD·BC=BD(AB +AC).证明:连结CD,依托勒密定理,有AD ∵∠ 1=∠2,∴ BD=CD .故AD·BC=AB ·BD+AC·BD= BD(AB +AC).三、利用“无形圆”借助托勒密定理例 4 等腰梯形一条对角线的平方等于一腰的平方加上两底之积.线交外接∠圆于D,连结BD ,求BC=AB·CD+AC·BD.如图5,ABCD 中,AB∥CD,AD=BC ,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD ·BC+AB·CD.又∵ AD=BC ,AC=BD ,∴BD2=BC 2+AB·CD.四、构造图形借助托勒密定理例 5 若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by ≤1 .证明:如图6,作直径AB=1 的圆,在AB 两边任作Rt△ACB 和Rt△ADB ,使AC=a,BC=b ,BD =x,AD=y.由勾股定理知a、b、x、y 是满足题设条件的.据托勒密定理,有AC·BD +BC·AD=AB ·CD.∵CD≤AB =1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例 6 已知a、b、c 是△ ABC 的三边,且 a =b(b +c),求证:∠ A=2∠ B.分析:将 a =b(b +c)变形为a·a=b ·b +bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D,连结BD、DC、DA .∵AD=BC ,∴∠ ABD= ∠BAC .又∵∠ BDA= ∠ ACB(对同弧),∴∠ 1=∠2.依托勒密定理,有BC·AD=AB ·CD+BD·AC.①而已知a2=b(b +c),即a·a=b·c+b2.②∴∠ BAC=2 ∠ABC.六、巧变形妙引线借肋托勒密定理例7 在△ABC 中,已知∠ A∶∠ B∶∠ C=1 ∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB ·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ ABC 的外接圆,作弦BD=BC ,边结AD、CD.在圆内接四边形ADBC 中,由托勒密定理,有AC ·BD+BC ·AD=AB ·CD 易证AB=AD ,CD=AC,∴AC·BC+BC·AB=AB ·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD 内接于圆O,其边AB 与DC 的延长线交于P,AD 与BC 的延长线交于Q,由P 作圆的两切线PM 、PN,切点分别为M、N;由Q 作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质 1 AC 、BD、EF 三直线共点.证明:如图1,设AC 交EF 于K1,则K1分EF 所成的比为设BD 交EF 于K2,同理可得K2 分EF 所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF 所成的比相等.∴K1、K2 重合,从而AC、BD、EF 三直线共点.类似地AC、BD、MN 三直线共点,因此有以下推论AC、BD 、EF、MN 四直线共点.性质 2 AB 、DC 、EF 三直线共点于P.(此性质等同于1997 年中国数学奥林匹克第二试第四题)这里用上述证明性质 1 的方法证之.证明:如图2.设DC 与EF 的延长线交于P1,则P1分EF 所成的比为设AB 与EF 的延长线交于P2,则P2分EF 所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF 所成的比相等.∴P1、P2 重合,从而AB、DC 、EF 三直线共点于P.推论AD、BC 、NM 三直线共点于Q.性质 3 EM 、NF、PQ 三直线共点.证明:如图3,设EM 的延长线交PQ 于G1,妨上证法,G1分PQ 所成的比设NF 的延长线交PQ 于G2,则G2 分PQ 所成的比为(这里E、F、P 三点共线及N、M、Q 三点共线在性质 2 及推论中已证).由△ PME ∽△ PFM 得由(11)、(12)及QE=QF 、PN=PM可得(9)=(10) ,故G1、G2分PQ 所成的比相等.∴G1、G2 重合,从而EM 、NF、PQ 三直线共点.性质 4 如果直线EN 和MF 相交,那么交点在直线PQ 上,即EN 、MF、PQ 三直线共点.证明从略,妨性质 3 的证法可得.性质 5 EM 、NF、AC 三直线共点.证明:如图4,类似于性质 1 的证明,设EM 与AC 的延长线交于G3,则G3分AC 所成的比为设NF 与AC 的延长线交于G4,则G4 分AC 所成的比为由(15)、(18)、(19)可得(13)=(14) ,故G3、G4分AC 所成的比相等.∴G3、G4 重合,从而EM、NF、AC 三直线共点.推论EM、NF 、AC、PQ 四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例 3 在边长为 a 的正七边形ABCDEFG 中,两条不相等的对角线长分别为t,m .证明如图4,连结AD 、CE,令AE=t,AC =m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma .托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过 C 作CP 使∠1=∠2,又∠3=∠4,∴△ ACD ∽△ BCP .∴AC·BP=AD ·BC ①又∠ ACB= ∠DCP ,∠ 5=∠6,∴AC·DP=AB ·CD.②①+②得AC(BP+PD)=AD ·BC+AB ·CD.故AC·BD=AD ·BC+AB ·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例 1 已知P 是正△ ABC 的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC 是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC ·AB.∵AB=BC=AC, ∴PA=PB+PC.例 2 证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图 3 ,设在梯形ABCD 中,AD=BC ,AB∥CD .∵等腰梯形内接于圆,∴AC·BD=AD ·BC+AB ·CD.又AD=BC,AC=BD,∴BD2=BC 2+AB·CD.例 3 在边长为 a 的正七边形ABCDEFG 中,两条不相等的对角线长分别为t,m.证明如图4,连结AD 、CE,令AE=t,AC =m,在圆内接四边形ACDE中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma .例 4 已知a、b、x、y 是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1 的圆,在AB 两侧作Rt△ACB 和Rt △ADB ,使AC=a,BC=b ,BD=x,DA=y(如图5).依勾股定理知a、b、x、y 是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵ CD≤AB=1 ,∴ ax+by ≤1.例 5 △ABC 的三个内角A、B、 C 的对边分别为a、b、c,且a2=b(b +c).求证:A=2B .分析将a2=b(b +c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图 6 ,作△ ABC 的外接圆.以A为圆心,以BC 为半径画弧交圆于D,连结BD、DA、DC .则BD=AC=b .据托勒密定理有BC·AD=AB ·CD+BD·AC.①又已知a2=b(b+c),即a·a=b ·b+b·c.② 比较①、②,有CD=b=BD .于是∠ BAC=2 ∠ABC ,即A=2B.。

隐圆模型---四点共圆【模型专题】(含答案解析)

隐圆模型---四点共圆【模型专题】(含答案解析)
【详解】(1) 将线段 绕点 逆时针旋转 得到线段 ,

是等边三角形
为等边三角形

,且 ,
(2)如图,过点 作 ,交 的延长线于点 ,




,且 ,
点 是 中点
(3)如图,连接 ,
是等边三角形,
点 ,点 ,点 ,点 四点在以 为直径的圆上,
最大为直径,
即最大值为1
【点睛】本题是三角形的综合题,考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,圆的性质等知识,熟练掌握这些知识并灵活运用是关键.
四点共圆
【模型讲解】
如图①பைடு நூலகம்②,Rt△ABC和Rt△ABD共斜边,取AB 中点O,根据直角三角形斜边上的中线等于斜边的一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.即共斜边的两个直角三角形,直角顶点在斜边同侧或异侧,都可得到四点共圆.得到四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,这是证明角度相等重要的途径之一.
【详解】过点O作OM⊥AB于点M,作ON⊥BC于点N,
∵∠ABC=90°,
∴四边形OMBN是矩形,
∴OM∥BC,ON∥AB,
∴△AOM∽△ACB,△CON∽△CAB,
∴OM:BC=OA:AC,ON:AB=OC:AC,
∵O为AC的中点,
∴OM= BC= ×8=4,ON= AB= ×6=3,
∴MN= =5,
∴HC=OD,DH=OA,
又∵BO=AO,
∴HO=DH+DO=OB+CH,
而CH=OQ,HO=CQ,
∴CQ=OB+OQ=BQ,
∴∠CBQ=45°,
又∵CH∥BA,

中考数学总复习《四点共圆问题》专题(含答案)

中考数学总复习《四点共圆问题》专题(含答案)
如图,已知 内接于 , 、 为 的切线,作 ,交 于 ,连结 并延长交 于 ,求证: .
如图,在 中, , 中, ,若 三点在同一直线 上. 连接 、 ,点 、 、 分别为 、 、 的中点.求证 .
在梯形ABCD中, , , , 分别在 , 上, .
求证: .
如图 和 中, ,求证点 , , , 四点在同一个圆上.
(1)当点 在 内时,延长 交 于 ,连结 ,则有
如图,在△ABC中,分别以AB,AC为直径在 ABC外作半圆 和半圆 ,其中 和 分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.过点A作半圆 的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA.
求证:PA是半圆 的切线.
如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点E,且DE=2EB,F为AC的中点.
求证:(1)∠FBD=30°;(2)AD=DC.
四点共圆问题答案解析
一、解答题
(1)∵ ,∴ ,
∴ ,∴ 四点共圆.
(2) 连结 ,设 相交于
由(1)可知 是圆的直径,
又∵ 是平行四边形,∴ 是 中点,
∴ 是圆心,∴ ,
∵ ,∴ .
取 的中点 ,连接 ,故
【解析】取斜边中点,利用斜边中线等于斜边长一半,然后利用证明方法一.
∵ 是 的切线,∴ ,
∴ ,
∵ ,
∴ ,
∴ 四点共圆,
∵ ,∴ .
连结ห้องสมุดไป่ตู้,
∵ ,
∴ ,
∴ ,
∵ ,
∴ 四点共圆, 四点共圆,
∴ 五点共圆,
∴ .

圆锥曲线中的四点共圆20题解析

圆锥曲线中的四点共圆20题解析

圆锥曲线中的四点共圆20题解析一、解答题1.(2024·广西来宾·一模)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为),渐近线方程为2y x =±.(1)求C 的方程;(2)记C 的左顶点为A ,直线2:3l x =与x 轴交于点B ,过B 的直线与C 的右支于P ,Q 两点,直线AP ,AQ 分别交直线l 于点M ,N ,证明O ,A ,M ,N 四点共圆.【详解】(1)设直线PQ 的方程为23x my =+,代入C 的方程整理可得:(92m-220m -≠,且()21249m =--⨯ ()122432m y y m +=-,(1292y y ⋅=因为P ,Q 在C 的右支上,1y y ∴C 的左顶点为()2,0A -,故直线()1122y y x x =++,(222y y x x =++要证O ,A ,M ,N 四点共圆只需证即证AMN BON ∠=∠,即证MAB ∠即只需证1AP ON k k ⋅=,因为1212422AP ON y y k k x x my ⋅=⋅=++⎛ ⎝()()()222232492328439232m m m m m m -=⎛++ --⎝所以O ,A ,M ,N 四点共圆.【点睛】方法点睛:该问题最终要证明四点共圆,转化为证明四边形的对角互补,即πAMN AON ∠+∠=,进一步转化为AMN BON ∠=∠,即证MAB ∠与BON ∠互余,即只需证1AP ON k k ⋅=,再用坐标表示就可以了.2.(23-24高三下·重庆·阶段练习)设A 、B 是椭圆223x y λ+=上的两点,点()1,3N 是线段AB 的中点,线段AB 的中垂线与椭圆交于C ,D 两点;(1)求AB 的方程,并确定λ的取值范围:(2)判断是否存在λ,使A 、B 、C 、D 四点共圆,若存在,则写出圆的标准方程;若不存在,请说明原因.【详解】(1)依题意0λ>,可设直线AB 的方程为(1)3y k x =-+,代入223x y λ+=,整理得222(3)2(3)(3)0k x k k x k λ+--+--=①,设11(,)A x y ,22(,)B x y ,则1x ,2x 是方程①的两个不同的根,∴224[(3)3(3)]0k k λ∆=+-->②,且1222(3)3k k x x k -+=+.由(1,3)N 是线段AB 的中点,得122x x +=,2(3)3k k k ∴-=+解得1k =-,代入②得12λ>,即λ的取值范围是(12,)+∞.于是直线AB 的方程为3(1)y x -=--,即40x y +-=.(2)CD 垂直平分AB ,∴直线CD 的方程为31y x -=-,即20x y -+=代入椭圆方程,整理得24440x x λ++-=③.又设33(,)C x y ,44(,)D x y ,CD 的中点为00(,)M x y ,则3x ,4x 是方程③的两根,341x x ∴+=-,3444x x λ-⋅=,且340122x x x +==-,00322y x =+=,即13,22M⎛⎫- ⎪⎝⎭,于是由弦长公式可得34CD x x =-=.④将直线AB 的方程40x y +-=代入椭圆方程得248160x x λ-+-=⑤.所以122x x +=,12164x x λ-=,同理可得12||||AB x x =-⑥.当12λ>>AB CD ∴<.假设存在12λ>,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB的距离为2d ==⑦.于是,由④⑥⑦式及勾股定理可得222229123||22222AB CDMA MB d λλ--==+=+==.故当12λ>时,A 、B 、C 、D 四点均在以M 为圆心,2CD为半径的圆上.此时圆的方程为22133222x y λ-⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭()12λ>.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.3.(23-24高三下·河南郑州·阶段练习)已知抛物线21:4C x y =,()4,4M .(1)直线()4y x t t =-+<交抛物线1C 于A ,B 两点,求MAB △面积的最大值;(2)已知P ,Q 是1C 上的不同两点,且直线的斜率2PQ k =-,直线MP ,MQ 分别交抛物线22:8C x y =于1S ,1T ,2S ,2T 四点,求证:1S ,1T ,2S ,2T 四点共圆.)()22,x y ,2440x x t ⇒+-=,0t >,则14t -<<,124x x t =-,()()22121212x x x x +--=⋅+-到直线y x t =-+的距离为4d +=(814212122t AB d t -=⨯+⨯=)()28,14t t --<<,则()(8f t ='时,()0f t '>,函数()f t 递增;则22343433434444PQx x y y x x kx x x x --+===--故233434344444MPMQx y y kk x x x --+=+=--设,MP MQ k k k k ==-,()111,,S x y T ''则直线11S T 的方程为(4y k x -=-直线22S T 的方程为(44y k x -=-故1122,,,S T S T 满足方程(4kx y -+又1122,,,S T S T 都在抛物线28x y =也满足()()22180k x y +-=(**)(**)-(*)得:()(2218k x y +-()22228821616x y k x k y ++-++-四点1122,,,S T S T 的坐标都满足此方程,由()(22288241616k k k ⎡⎤+-+--⎣⎦故1S ,1T ,2S ,2T 四点共圆.右顶点为A ,设点O 为坐标原点,点B 为椭圆E 上异于左右顶点的动点,OAB 的面积最大值为1.(1)求椭圆E 的标准方程;(2)设直线:l x m =交x 轴于P ,其中m a >,直线PB 交椭圆E 于另一点C ,直线BA CA 和分别交直线l 于点M 和N ,是否存在实数m 使得,,,O A M N 四点共圆,若存在,求出m的值;若不存在,说明理由.【点睛】思路点睛:涉及动直线与圆锥曲线相交满足某个条件问题,可设直线方程为y kx m =+,再与圆锥曲线方程联立结合已知条件探求5.(23-24高三上·江苏·期末)已知双曲线C :221a b-=(0a >,0b >)的两个焦点是1F ,2F ,顶点()0,2A -,点M 是双曲线C 上一个动点,且2212MF MF -的最小值是85.(1)求双曲线C 的方程;(2)设点P 是y 轴上异于C 的顶点和坐标原点O 的一个定点,直线l 过点P 且平行于x 轴,直线m 过点P 且与双曲线C 交于B ,D 两点,直线AB ,AD 分别与直线l 交于G ,H 两点.若O ,A ,G ,H 四点共圆,求点P 的坐标.【答案】(1)2214y x -=(2)20,5P ⎛⎫ ⎪⎝⎭【分析】(1)法一:由顶点(0,A 221248MF MF ac c -≥=解得c =根据双曲线定义分析可得21MF -【点睛】方法点睛:与端点相关问题的解法解决与弦端点有关的向量关系、标关系,再根据联立消元后的一元二次方程根与系数的大小关系,6.(2024·全国·模拟预测)已知抛物线C :()20y ax a =¹的准线方程为18y =-.(1)求抛物线C 的方程;(2)若斜率为1的直线l 交抛物线C 于A ,B 两点,点P ,Q 在C 上且关于直线l 对称,求证:A ,B ,P ,Q 四点共圆.【答案】(1)22y x =(2)证明见解析将y x m =+代入22y x =,得则180m ∆=+>,1212x x +=连接PQ ,由点P ,Q 关于直线所以24343434322PQy y x x k x x x x --==--因为线段PQ 的中点在直线所以343422y y x x m ++=+,得即()234343422x x x x x x ++-=故34142m x x =-,把4312x x =--代入上式,得即233110224m x x +-+=,连接PA ,PB ,所以()(132PA PB x x x ⋅=--()()(21323122x x x x x =--+-7.(23-24高三上·江苏·阶段练习)已知A,B是双曲线E:21x-=上的两点,点2()P-是线段AB的中点.1,2(1)求直线AB的方程;,C,D四点共圆.(2)若线段AB的垂直平分线与E相交于C,D两点,证明:A,B)证明:由221,21y x y x ⎧-=⎪⎨⎪=-+⎩得22x x +1x =或3x =-,所以(3,4A -AB 中垂线的方程为CD :)33,x y ,()44,D x y 21,23y x -==+得26110x x --=346x x +=,3411x x =-的中点()3,6M ,所以CD ()()223160MB ==-+-A ,B ,C ,D 在以M 为圆心,A ,B ,C ,D 四点共圆.8.(2023·四川成都·一模)在平面直角坐标系xOy 中,O 为坐标原点,动点(),D x y 与定点)3,0F的距离和D 到定直线3x =的距离的比是常数2,设动点D 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知定点(),0P t ,20t -<<,过点P 作垂直于x 轴的直线l ,过点P 作斜率大于0的直线l '与曲线C 交于点G 、H ,其中点G 在x 轴上方,点H 在x 轴下方.曲线C 与x 轴负半轴交于点A ,直线AG 、AH 与直线l 分别交于点M 、N ,若A 、O 、M 、N 四点共圆,求t 的值.【答案】(1)2214x y +=23-14k +由条件,直线AG 的方程为1y y x =于是可得()1122M y t y x +=+,2N y y =因为A 、O 、M 、N 四点共圆,由相交弦定理可得则()()()2M N y y t t -=-+,化简得又()11y k x t =-,()22y k x t =-,代入整理得:9.(23-24高二上·河北邯郸·期中)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为(2,0)A -,不与x 轴平行的直线l 过C 的右焦点F 且与C 交于M ,N 两点.当直线l 垂直于x 轴时,12MN =.(1)求双曲线C 的方程;(2)若直线AM ,AN 分别交直线1x =于P ,Q 两点,求证:A ,P ,F ,Q 四点共圆.当直线l 斜率不存在时,不妨设||||||||GA GF GP GQ ⋅=⋅,所以A ,P ,F ,Q 四点共圆10.(23-24高三上·浙江·阶段练习)在平面直角坐标系xOy 中,O 为坐标原点,动点(),D x y 与定点()2,0F 的距离和D 到定直线12x =的距离的比是常数2,设动点D 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知定点(),0P t ,01t <<,过点P 作垂直于x 轴的直线l ,过点P 作斜率大于0的直线l '与曲线C 交于点G ,H ,其中点G 在x 轴上方,点H 在x 轴下方.曲线C 与x 轴负半轴交于点A ,直线AG ,AH 与直线l 分别交于点M ,N ,若A ,O ,M ,N 四点共圆,求t 的值.)()11,G x y ,()22,H x y .()():0GH y k x t k =->与双曲线y 得()(22232kxk tx -+-由韦达定理:212223k tx x k -+=-由条件,直线AG 的方程为y 于是可得()1111M y y t x =++,A ,O ,M ,N 四点共圆,所以ANP MOP ∠=∠,于是tan即1MN t y y t +=,化简得又()11y k x t =-,y将韦达定理代入化简得:【点睛】关键点点睛:从而建立M ,N 的坐标关系,引进韦达定理11.(23-24高三上·湖北·阶段练习)已知双曲线22:1C a b-=的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.【答案】(1)223y x -(2)3,04N ⎛⎫ ⎪⎝⎭.【分析】(1)由题设有公式、,,,M A O B 共圆、三角形面积公式列方程求参数,即可得双曲线方程;(2)由,,,O D P Q 共圆得ABM 的面积1sin 2S MA MB =222113y a x ⇒=⇒-=,∴曲线C 的方程为:223y x -=(2)如图,,,O D P Q 四点共圆,DPQ DOQ DPQ NOQ DOQ ππ∠+∠=⎧⇒∠⎨∠+∠=⎩1tan tan NOQ k ODP∠∠⇒=⇒设()()()1122,,,,,0,G x y R x y N t t 易得()22:11DR y l y x x =++,令x 当GR l 的斜率为0时,不符合题意;P. 12.(21-22高二上·吉林通化·阶段练习)已知双曲线22C x y-=与点(1,2):22(1)求过点P的弦AB,使得AB的中点为P;(2)在(1)的前提下,如果线段AB的垂直平分线与双曲线交于C、D两点,证明:A、B、C、D四点共圆.13.(22-23高三下·河南·阶段练习)已知椭圆22:1C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.)由椭圆定义可知1224DF DF a +==,121232sin DF D F F DF =可得12F ,如图1可知10F DF <∠中,由余弦定理可得212F F =35324225-⨯⨯⨯=,,即C 的焦距为22c =,23c =,的方程为22143x y +=.)2,不妨取G 点在H 点的左侧,要证O ,只需证明πNAO NMO ∠+∠=,即tan NAO =-∠14.(22-23高二下·上海黄浦·期中)已知直线:1l x my =-,圆22:40C x y x ++=.(1)证明:直线l 与圆C 相交;(2)设直线l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .证明:Q ,A ,B ,C 四点共圆,并探究当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【答案】(1)证明见解析;(2)()223202x y x x +++=≠-(3)Q ,A ,B ,C 四点共圆的证明见解析,点Q 恒在直线2x =上,理由见解析【分析】(1)求出直线恒过的定点,利用点与圆的位置关系判断即可;(2)求出圆的圆心坐标,设出M 的坐标,利用垂径定理,转化求解轨迹方程即可;(3)设点()00,Q x y ,证明Q ,A ,B ,C 四点共圆,求出圆的方程,求出与圆C 相交弦的方程,即为直线l 的方程,可求点Q 坐标的特征.【详解】(1)证明:如图所示,圆22:40C x y x ++=,化成标准方程为()2224x y ++=,圆心()2,0C -,半径为2,直线:1l x my =-过定点()1,0P -,定点到圆心距离为1,即()1,0P -在圆内,故直线l 与圆C 相交;(2)l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,设点(),M x y ,由垂径定理得CM PM ⊥,即()()2,1,0x y x y +⋅+=,整理得22320x y x +++=,直线l 不过圆心C ,则2x ≠-,所以点M 的轨迹方程为()223202x y x x +++=≠-;(3)15.(17-18高三·北京·强基计划)如图,已知抛物线22y x =及点(1,1)P ,过点P 的不重合的直线1l ,2l 与此抛物线分别交于点A ,B ,C ,D .证明:A ,B ,C ,D 四点共圆的充要条件是直线1l 与2l 的倾斜角互补.16.(22-23高三下·湖南长沙·阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的右顶点为A ,过右焦点F 的直线与C 交于P ,Q 两点.当PQ x ⊥轴时,PA PAQ 的面积为3.(1)求双曲线C 的方程;(2)过点(),0(11)T t t -<<的直线l 与曲线C 交于点,M N (异于点A ),直线,MA NA 与直线x t =分别交于点,G H .若点,,,F A G H 四点共圆,求实数t 的值.17.(2023·重庆·模拟预测)已知双曲线()22:1,0C a b a b -=>的左、右焦点分别为1F ,2F ,左顶点为()2,0A -,点M 为双曲线上一动点,且2212MF MF +的最小值为18,O为坐标原点.(1)求双曲线C 的标准方程;(2)如图,已知直线:l x m =与x 轴的正半轴交于点T ,过点T 的直线交双曲线C 右支于点B ,D ,直线AB ,AD 分别交直线l 于点P ,Q ,若O ,A ,P ,Q 四点共圆,求实数m 的值.18.(22-23高三上·江苏南通·期末)在平面直角坐标系xOy 中,已知圆E :()2224x y ++=和定点()2,0F ,P 为圆E 上的动点,线段PF 的垂直平分线与直线PE 交于点Q ,设动点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A ,过点()(),011T t t -<<的直线l 与曲线C 交于点M ,N (异于点A ),直线MA ,NA 与直线x t =分别交于点G ,H .若点F ,A ,G ,H 四点共圆,求实数t 的值.19.(2020高三·江苏·专题练习)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的右焦点为F P ,为2a x c=上一点,点Q 在椭圆上,且FQ FP ⊥.(1)若椭圆的离心率为12,短轴长为(2)若在x 轴上方存在,P Q 两点,使,,,O F P Q 四点共圆,求椭圆离心率的取值范围.20.(2022高三·浙江丽水·竞赛)如图,已知抛物线24x y =的焦点为F ,直线:l y m =与抛物线交于,D E 两点,过,D E 分别作抛物线的切线12,l l ,12,l l 交于点A .过抛物线上一点M (在l 下方)作切线3l ,交12,l l 于点,B C .(1)当=1m 时,求ABC 面积的最大值;(2)证明A B F C 、、、四点共圆.。

四点共圆例题及答案

四点共圆例题及答案

四点共圆例题及答案四点共圆是一个基本的几何概念,指的是在同一平面上有四个点,可以在一个圆上找到这四个点构成的圆周。

这个概念在几何学中非常重要,因为它可以用来解决许多几何问题。

在本文中,我们将展示一些常见的四点共圆例题及答案,希望对几何学爱好者有所帮助。

题目1:如图,ABCD为一矩形,O为AC的中点,P、Q分别为AB、CD上一点,连OP、OQ。

证明O、P、Q、D四点共圆。

答案1:首先,连接BD,可以得到三角形BOD。

因为ABCD是一个矩形,所以BD是矩形的对角线,即BD=AC。

由于O是AC的中点,所以OD=1/2AC=1/2BD。

因此,OD是矩形的中线,而且OD平分角BOD。

所以,∠BOD=2∠POQ。

另一方面,因为PO、QD分别是∠BOD的平分线,所以∠POD=1/2∠BOD、∠QOD=1/2∠BOD。

这样,我们可以得到:∠POQ=∠POD+∠QOD=1/2∠BOD+1/2∠BOD=∠BOD所以,O、P、Q、D四点共圆,且这个圆的圆心是OD的中点。

题目2:如图,在平面上有四个点ABCD,能否用尺规作出过这四点的圆?答案2:可以,下面是具体的做法:1.连接AB、BC、CD和DA,得到一个矩形ABCD。

2.以AB为直径作圆,得到圆O1。

3.以BC为直径作圆,得到圆O2。

4.在线段AC上取一点E,使得AE=AB,连BE,作线段BE的中垂线,交O1于点F,交O2于点G。

5.以FG为直径作圆,得到过四点ABCD的圆。

题目3:如图,在平面上有一圆O,点A、B、C在这个圆上,点D在圆内,且以AD、BD、CD为边的三角形相似。

证明:四点A、B、C、D共圆。

答案3:设AB与CD的交点为E,BC与AD的交点为F。

因为三角形ABC在圆O上,所以∠AEB=∠ACB,又因为三角形CBD在圆O上,所以∠CEB=∠CDB,而∠AEB+∠CEB=180,所以∠ACB+∠CDB=180。

同理可得∠AFC+∠BFD=180。

因为三角形ABC和三角形AFB相似,所以∠AEB=∠AFC,同理∠BFD=∠CDB。

中考数学压轴题 《简单的四点共圆》

中考数学压轴题 《简单的四点共圆》

《简单的四点共圆》解题方法如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有:一.若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.D【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2.【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值.(2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°.二.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.D【答案】(1)略;(2)AD DE;(3)AD=DE·tanα.【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE.(2)同(1),可得A ,D ,B ,E 四点共圆,∠AED =∠ABD =30°,所以AD DE= tan30°,即AD =DE . 三.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.【答案】略四.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.D【答案】略诸多几何问题,若以四点共圆作桥梁,就能与圆内的等量关系有机地结合起来.利用四点共圆,可证线段相等、角相等、两线平行或垂直,还可以证线段成比例,求定值等.例题讲解例1 如图,在△ABC 中,过点A 作AD ⊥BC 与点D ,过点D 分别作AB ,AC 的垂线,垂足分别为E ,F .求证:B ,E ,F ,C 四点共圆.证明 因为DE ⊥AB ,DF ⊥AC ,所以∠AED +∠AFD =180°,即A ,E ,D ,F 四点共圆.A B C D EF AB C D E F G连结EF ,则∠AEF =∠ADF .因为AD ⊥BC ,DF ⊥AC ,所以∠FCD =∠ADF =∠AEF ,所以B ,E ,F ,C 四点共圆.例2 在锐角△ABC 中,AB =AC ,AD 为BC 边上的高,E 为AC 的中点.若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 与点N ,射线EN 与AB 相交于点P ,证明:∠APE =2∠MA D .证明 如图,连结DE .因为AD ⊥BC ,CN ⊥AM ,E 为AC 的中点,所以DE =AE =CE =NE ,从而A ,N ,D ,C 在以点E 为圆心、AC 为直径的圆上,所以∠DEN =2∠DAN .由题意可得D 为BC 的中点,所以ED ∥AB ,所以∠APE =∠DEP =2∠MA D .进阶训练1.已知⊙O 的半径为2,AB ,CD 是⊙O 的直径,P 是BC 上任意一点,过点P 分别作AB ,CD 的垂线,垂足分别为N ,M .(1)如图1,若直径AB 与CD 相交成120°角,当点P (不与B ,C 重合)从B 运动到C 的过程中,证明MN 的长为定值;(2)如图2,求当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案:(1)略(2)AB ,CD 相交成90°时,MN 取最大值,最大值为2.【提示】(1)如图,连接OP ,取其中点O ′,显然点M .,N 在以OP 为直径的⊙O ′上.连结NO ′并延长,交⊙O ′于点Q ,连结QM ,则∠QMN =90°,QN =OP =2.而∠MQN =180°-∠BOC =60°,所以可求得MN 的长为定值.A B C D E PN M AB C D EP N M AB C D O MN P图1 图2 A B C D P M N O(2)由(1)知,四边形PMON 内接于⊙O ′,且直径OP =2.而MN 为⊙O ′的一条弦,故MN 为⊙O ′的直径时,其长取最大值,最大值为2,此时∠QMN =90°.2.在Rt△ABC 中,∠BAC =90°,过点B 的直线MN ∥AC ,D 为BC 边上一点,连结AD ,作DE ⊥AD 交MN 于点E ,连结AE .(1)如图1,当∠ABC =45°时,求证:AD =DE ;(2)如图2,当∠ABC =30°时,线段AD 与DE 有何数量关系?请说明理由;(3)当∠ABC =α时,请直接写出线段AD 与DE 的数量关系(用含α的三角函数表示).答案:(略);(2)ADDE ;(3)AD =DE ·tan α. 【提示】(1)证A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =45°,所以AD =DE .(2)同(1)可得A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =30°,所以AE DE=tan30°,即ADDE . AB C D O MN QO ′ P图1 图1 AB C DEFG 图2 AB C D E M N。

四点共圆问题

四点共圆问题

四点共圆1.定点定长,四点共圆从同一点出发的几条线段长度相等.若OA =OB =OC =OD ,则A 、C 、B 、D 四点共圆,且圆心为四条线公共的端点.2.对角互补,四点共圆特殊情况:共斜边的两个直角.若∠ADB =∠ACB =90°,则A 、C 、B 、D 四点共圆,且圆心为斜边AB 的中点.3.线段同侧张角相等,四点共圆 特殊情况:共斜边的两个直角.如图所示,已知∠BAC =∠BDC ,求证:A 、B 、C 、D 四点共圆.证明:连接AD ,∵∠EAC =∠EDB ,∠AEC =∠DEB ,∴△AEC ∽△DEB ,∴AE DE=CEBE ,又∵∠AED =∠CEB ,∴△AED ∽△CEB ,∴∠DAE =∠BCE ,∵∠EDB +∠ECB +∠DBC =180°,∴∠EAC +∠DAE +∠DBC =180°,即∠DAC +∠DBC =180°,∴A 、B 、C 、D 四点共圆.BEDCBA类型1:定点定长,四点共圆【例题1】如图,四边形OABC 中,OA =OB =OC =2,∠ACB =45°,则AB 的长为___________.【答案】.(提示:∵OA =OB =OC ,∴A 、B 、C 三点在都在以O 为圆心,OA 为半径的圆上,则由圆周角定理可知∠AOB =2∠ACB =90°)【例题2】如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .若∠ACD =60°,则∠ABE 的度数为_____________.【答案】30°.(提示:以C 为圆心,BC 为半径作圆,则∠EBD =12∠ECD =30°)类型2:对角互补,四点共圆【例题3】如图,在四边形ABCD 中,∠B =∠D =90°,∠BCA =18°,∠ACD =27°,AC =30,则BD =___________.【答案】.(提示:对角互补,四点共圆,∵∠B =∠D =90°,∴A 、B 、C 、D 四点共圆,圆心为AC 的中点O ,∴OB =OD =15,∠BOD =2∠BCD =90°,∴BD =OCBADCBAABCDO【例题4】如图,正方形ABCD 的边长为1,点E 、F 分别为BC 、CD 边的中点,连接AE 、BF 交于点P ,连接PD ,则tan ∠APD =___________.【答案】2.(提示:对角互补,四点共圆,易证△ABE ≌△BCF ,∴∠APF =90°,又∵∠ADF =90°,∴A 、P 、F 、D 四点共圆,∴∠APD =∠AFD )【例题5】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin ∠BOE 的值为____________.【答案】35.(提示:∵∠EBC =∠EOC =90°,∴E 、B 、C 、O 四点共圆,圆心为EC 的中点M ,过点O 作OF ⊥AB 于F2,∴AE =5×2÷2=5,又∵AO =OC ,OE ⊥AC ,∴EC =5,∴EB=3,∴sin ∠BOE【例题6】如图,在矩形ABCD 中,点E 是边AD 上的点,EF ⊥BE ,交边CD 于点F ,连接CE 、BF ,如果tan ∠ABE =34,那么CE ∶BF =___________.【答案】4∶5.(提示:对角互补,四点共圆,设AB =4k ,则AE =3k ,BE =5k ,∵∠BEF =∠BCF =90°,∴B 、E 、F 、C 四点共圆,∴∠EBF =∠DCE ,∴△EBF =∠DCE ,∴CE ∶BF=CE ∶BF =4∶5)EFP D CBAABCDOE AB CD FE【例题7】如图,在△ABC 中,∠A =60°,∠B =45°,AB =10,D 是BC 边上的动点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF ,则EF 的最小值为___________.(提示:∵∠AED =∠AFD =90°,∴A 、E 、D 、F 四点共圆,且AD 为直径,EF 为⊙O 中60°角所对的弦,∴当AD 最小时,EF 最小,∵AD 最小值为,∴EF【例题8】如图,在边长为6的等边△ABC 中,BD =CE ,当AD ⊥CF ,垂足为点F 时,则CD 的长为__________.【答案】4.(提示:易证△ADB ≌△BEC ,∴∠ADB =∠BEC ,又∵∠CDF +∠ADB =180°,∴∠BEC +∠CDF =180°,∴C 、D 、F 、E 四点共圆,∵AD ⊥CF ,∴∠CFD =90°,∴CD 为圆的直径,CD 的中点即为圆心O ,∴∠CED =90°,又∵∠ACB =60°,∴CD =2CE ,又∵CE +CD =BD +CD =6,∴CD =4)类型3:张角相等,四点共圆【例题9】如图,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =4,D 是BC 的中点,∠CAD =∠CBE ,则AE =___________.【答案】2.(提示:法1,易证△ADC ∽△BEC ,∴AC BC =CDECEC ;法2,张角相等,四点共圆,连接DE ,∵∠CAD =∠CBE ,∴A 、B 、D 、E 四点共圆,∴∠AED =180°-∠ABD =90°,∴DE =ECABCDEF FEDCBACABCDE【例题10】如图,在△ABC 中,AD ⊥BC 于D ,BF ⊥AC 于F ,E 为AB 边的中点,连接DE 、DF 、EF ,若AB =2,∠CBF =22.5°,则△DEF 的面积为___________..(提示:张角相等,四点共圆,∵∠AFB =∠ADB =90°,∴A 、B 、D 、F 四点共圆,∴∠FED =45°,EF =ED =1,过点F 作FG ⊥ED 于G ,∴FG)【例题11】如图,点E 是正方形ABCD 边AB 上的一点,已知∠DEF =45°,EF 分别交边AC 、CD 于点G 、F ,且满足AG ·DF=,则EG 的长为___________.(提示:法1,一线三直角,AG MG ,∴MG ·DF =3,△EGD 是等腰Rt △,∠EGD =90°,∴∠DGF=90°,又∵∠MEG =∠GFD ,∴△EMG ∽△FGD ,∴EG ·DG =MG ·DF =3,∴EG 2,四点共圆,∵∠DAG =∠DEF =45°,∴A 、E 、G 、D 四点共圆,∴∠EDG =∠EAG =45°,∴∠EGD =90°,∴△ADG ∽△EFD )ABCDEFGFEDCBAA BCD EF GN MGF E DCBA。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

重难点02“四点共圆”模型(解析版)

重难点02“四点共圆”模型(解析版)

重难点02“四点共圆”模型1.识别几何模型。

2.利用“四点共圆”模型解决问题一.填空题(共3小题)1.(2021秋•南京期中)如图,在⊙O的内接五边形ABCDE中,∠C=100°,BC=CD,则∠A+∠D=220°.【分析】连接BD,由∠C=100°,BC=CD得出∠CDB=40°,由四边形BAED内接于⊙O得出∠A+∠BDE=180°,即可求出答案.【解答】解:如图,连接BD,∵∠C=100°,BC=CD,∴∠CBD=∠CDB=40°,∵四边形BAED内接于⊙O,∴∠A+∠BDE=180°,∴∠A+∠CDE=∠A+∠BDE+∠CDB=180°+40°=220°,故答案为:220.【点评】本题考查了圆周角定理,掌握圆连接四边形的性质是解题的关键.2.(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为.【分析】连接BD并延长,利用四点共圆的判定定理得到B,E,D,F四点共圆,再利用等腰直角三角形的性质和圆周角定理得到∠DBF=∠DEF=45°,得到点D的轨迹,最后利用垂线段最短和等腰直角三角形的性质解答即可得出结论.【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为AB=,故答案为:.【点评】本题主要考查了直角三角形的性质,等腰直角三角形的性质,四点共圆的判定圆周角定理,点的轨迹,垂线段的性质,利用已知条件求得点D的轨迹是解题的关键.3.(2022秋•大丰区期中)如图,△ABC中,AD⊥BC,∠B=45°,∠C=30°.以AD为弦的圆分别交AB、AC于E、F两点.点G在AC边上,且满足∠EDG=120°.若CD=4+2,则△DEG的面积的最小值是2+2.=S△EDG,当FG 【分析】连接EF,利用四点共圆和同弧所对的圆周角相等证明EF∥DG,从而得到S△EDG最小时,△DFG的面积就最小,作△DFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,DO+OH=(+)FG,当DO+OH最小时,FG就最小,当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,在Rt△FHO中,(FH)2=FH2+(2+﹣FH)2,求出FH=,可得FG的最小值为2,=2+2,即△DEG的面积的最小值为2+2.再求S△DFG【解答】解:连接EF,AD⊥BC,∠B=45°,∠C=30°,∴∠B=45°,∠DAC=60°,∵∠BAC=105°,∵A、E、F、D四点共圆,∴∠EDF=75°,∵∠EDG=120°,∴∠FDG=45°,∵=,∴∠EFD=∠EAD=45°,∴∠EFD=∠FDG,∴EF∥DG,=S△EDG,∴S△EDG∵CD=4+2,∠C=30°,∴AC=+,AD=+,∴AC边上的高==2+,∴当FG最小时,△DFG的面积就最小,作△DFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,∵∠FDG=45°,∴∠FOG=90°,∵OF=GO,∴△FOG是等腰直角三角形,∵∠FOH=∠FOG=45°,∴△FOH是等腰直角三角形,∴FH=OH=,FO=FH,∴DO+OH=FG+=(+)FG,∴当DO+OH最小时,FG就最小,∵DO+OH≥DH,∴当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,∴DH=2+,在Rt△FHO中,(FH)2=FH2+(2+﹣FH)2,解得FH=或FH=4+3,∵OH=2+=FH+FO,∴FH=,∴FG的最小值为2,=2×(2+)=2+2,∴S△DFG∴△DEG的面积的最小值为2+2,故答案为:2+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题(共7小题)4.(2022秋•宿城区期中)如图,BD,CE是△ABC的高,BD,CE相交于点F,M是BC的中点,⊙O是△ABC的外接圆.(1)点B,C,D,E是否在以点M为圆心的同一个圆上?请说明理由.(2)若AB=8,CF=6,求△ABC外接圆的半径长.【分析】(1)连接EM,DM,根据垂直定义可得∠BDC=∠BEC=90°,然后利用直角三角形斜边上的中线性质可得EM=BM=BC,DM=CM=BC,从而可得EM=BM=DM=CM,即可解答;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF=AH=6,最后在Rt△BAH中,利用勾股定理进行计算即可解答.【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=BC,DM=CM=BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH===10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(兴化市校级期中)已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系.说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.【分析】(1)证明△ABE≌△DAF,证据全等三角形的对应边相等,以及直角三角形的两锐角互余即可证明AF相等且互相垂直;(2)证明△ADF≌△HCF,依据直角三角形斜边上的中线等于斜边的一半,即可证得B,C,D,H四点到C的距离相等,即可证得四点共圆.【解答】解:(1)AF=BE且AF⊥BE.证明:∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF∴AF=BE,∠AEB=∠AFD∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(2)连接CG.∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC∴△ADF≌△HCF∴BC=AD=CH=CD,在直角△BGH中,BC=CH,∴GC=BH∴CB=CG=CD=CH,∴B,G,D,H在以C为圆心、BC长为半径的圆上.【点评】本题考查了全等三角形的判定与性质,以及直角三角形的性质,证明三角形全等是解题的关键.6.(2022秋•建湖县期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD的一个外角.(1)若∠DAE=75°,则∠DAC=75°;(2)过点D作DE⊥AB于E,判断AB、AE、AC之间的数量关系并证明;(3)若AB=6、AE=2,求BD2﹣AD2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC=75°;(2)过点D作DF⊥AC于点F,可证明△BDE≌△CDF(AAS),△ADE≌△ADF(AAS),则AC=AF+FC =AE+BE=AE+AE+AB=2AE+AB;(3)在Rt△BDE中,BD2=64+DE2,,在Rt△AED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为;75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴△BDE≌△CDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在Rt△BDE中,BD2=BE2+DE2,在Rt△AED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2﹣AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.7.(2023•淮安区一模)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED =∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴=,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.8.(2022秋•靖江市期末)小明在学习了《圆周角定理及其推论》后,有这样的学习体会:在Rt△ABC中,∠C=90°,当AB长度不变时,则点C在以AB为直径的圆上运动(不与A、B重合).[探索发现]小明继续探究,在Rt△ABC中,∠C=90°,AB长度不变.作∠A与∠B的角平分线交于点F,小明计算后发现∠AFB的度数为定值,小明猜想点F也在一个圆上运动.请你计算∠AFB的度数,并简要说明小明猜想的圆的特征.[拓展应用]在[探索发现]的条件下,若AB=2,求出△AFB面积的最大值.[灵活运用]在等边△ABC中,AB=2,点D、点E分别在BC和AC边上,且BD=CE,连接AD、BE交于点F,试求出△ABF周长的最大值.【分析】[探索发现]根据角平分线的定义,三角形内角和定理可求∠AFB=135°,再由已知结论可得F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,则O与C点共圆;过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,△FAB是等腰三角形,求出FD的长再求三角形面积即可;[灵活运用]通过证明△ABD≌△BCE(SAS),可得∠AFB=120°,再由题干已知可知F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,此时△ABF是等腰三角形.【解答】解:[探索发现]∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AF是∠CAB的平分线,BF是∠CBA的平分线,∴∠FAB+∠FBA=45°,∴∠AFB=135°,∴F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,∵∠AOB=90°,∵∠ACB+∠AOB=180°,∴O与C点共圆,过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,∵FH⊥AB,D是AB的中点,∴FA=FB,∵∠AFB=135°,∴∠FAB=∠FBA=22.5°,∴∠CAB=∠CBA=45°,∴△ABC是等腰直角三角形,连接CF,则C、F、D三点共线,过点F作FP⊥AC交于点P,∴FP=FD,AP=AD,∵AB=2,∴AC=,AD=AP=,∴CP=﹣,∵∠FCP=45°,∴CF=CP=2﹣,∴FD=﹣(2﹣)=﹣,∴△AFB的面积=×2×(﹣)=3﹣3,∴△AFB面积的最大值为3﹣3;[灵活运用]∵△ABC是等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠CBE=∠BAD,∴∠AFE=∠ABF+∠BAF=∠ABF+∠CBE=∠ABC=60°,∴∠AFB=120°,∵AB=2,∴F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,连接AO、BO,∵∠AFB=120°,∴∠AOB=120°,∵OA=BO,∴∠OAB=30°,∵AB=2,∴AH=,在Rt△AOH中,OH=AH•tan30°=1,OA=2OH=2,∴HF=OF﹣OH=1,∴AF=BF=2,∴△ABF周长的最大值为4+2.【点评】本题考查圆的综合应用,熟练掌握三角形全等的判定及性质,定角定弦的三角形与圆的关系是解题的关键.9.(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端,点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半得OA=OB=OC =OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,所以∠BED=180°﹣∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是△ABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是△ABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在△ABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA =OB=OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°﹣∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°﹣∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为△ABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.10.(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O的内接四边形ABCD恰有一个内切圆⊙I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系AD+BC=AB+CD;(4)探究EF、GH满足的位置关系;(5)如图(4),若∠C=90°,BC=3,CD=2,请直接写出图中阴影部分的面积.【分析】(1)根据直径所对的圆周角是直角,四边形的内角和定理进行求解即可;(2)连接AC、BD,根据同弧所对的圆周角相等,三角形的内角和定理进行求解即可;(3)连接AI、BI、CI、DI,根据切线长定理进行求解即可;(4)连接EH、IH、IG、IF、GF,根据切线的性质,四点共圆的性质可得∠GIF=∠ADC,再由同弧所对的圆周角相等,可得∠GFE=∠GHE,根据三角形内角和定理,可得∠DEH=∠GFE,则∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,即可证明EF⊥GH;(5)连接BD,可得BD是圆O的直径,连接IF、IH,先推导出∠BIF+∠DIH=90°,再证明四边形IHCF=3×2=6,通过证明△DHI 是正方形,可得∠HIF=90°,即可知I点在BD上,根据已知求出S四边形ABCD∽△IFB,求出IH=,可求S⊙I=π,则阴影部分的面积=6﹣π.【解答】解:【问题提出】(1)∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°;故答案为:∠A=∠C=90°,∠ABC+∠ADC=180°;(2)成立,理由如下:连接AC、BD,∵∠DAC=∠CBD,∠ACD=∠ABD,∴∠DAC+∠ACD=∠DBC+∠ABD=∠ABC,∵∠DAC+∠ACD+∠ADC=180°,∴∠ABC+∠ADC=180°;同理,∠BAD+∠BCD=180°;【深入探究】(3)AD+BC=AB+CD,理由如下:连接AI、BI、CI、DI,∵圆I是四边形ABCD的内切圆,∴AG=AE,DE=DH,CH=CF,BF=BG,∴AD+BC=AE+ED+BF+CF=AG+DH+BG+CH=AB+CD,即AD+BC=AB+CD,故答案为:AD+BC=AB+CD;(4)EF⊥GH,理由如下:连接EH、IH、IG、IF、GF,∵四边形ABCD是圆O的内接四边形,∴∠B+∠D=180°,∵BG⊥IG,IF⊥BF,∴∠BGI=∠IFB=90°,∴∠B+∠GIF=180°,∴∠GIF=∠D,∵GI=IF,∴∠GFI=90°﹣∠GIF,∵ED=DH,∴∠DEH=90°﹣∠D,∴∠GFI=∠DEH,∵=,∴∠GFE=∠GHE,∴∠GHE=∠GFI+∠IFE,∵IF=IE,∴∠IFE=∠IEF,∴∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,∴EF⊥GH;(5)连接BD,∵∠C=90°,∴∠A=90°,∵ABCD是圆O的内接圆,∴BD是圆O的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°﹣∠IBF,∠DIH=90°﹣∠IDH,∴∠BIF+∠DIH=180°﹣(∠IBF+∠IDH)=180°﹣(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,=3×2=6,∴S四边形ABCD∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴=,即=,解得IH=,∴S⊙I=π,∴阴影部分的面积=6﹣π.【点评】本题考查圆的综合应用,熟练掌握四边形的内切圆性质,外接圆性质,三角形相似的判定及性质,切线的性质,四点共圆的性质是解题的关键.一.选择题(共3小题)1.(2022•思明区二模)如图,四边形ABCD是⊙O的内接四边形,点E为边CD上任意一点(不与点C,点D重合),连接BE,若∠A=60°,则∠BED的度数可以是()A.110°B.115°C.120°D.125°【分析】四边形ABCD是⊙O的内接四边形,则∠A和∠C互补,已知∠A=60°,则∠C的度数为120°,而∠BED大于∠C的度数,从而得出答案.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A=60°,∴∠C=120°,∵∠BED=∠C+∠CBE,∴∠BED>120°,∴∠BED可能为125°.故选:D.【点评】本题主要考查了圆内接四边形以及三角形外角的性质,解题的关键是根据圆内接四边形的对角互补求出∠C的度数,再根据外角的性质对∠BED的度数做出正确的推断.2.(2023•泾阳县模拟)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O的半径为2,则⊙O的内接正六边形ABCDEF的面积为()A.6B.C.D.【分析】连接OA、OB,根据正多边形和圆的关系可判断出△OAB为等边三角形,过点O作OM⊥AB于点M,再利用勾股定理即可求出OM长,进而可求出△AOB的面积,最后利用⊙O的面积约为6S△AOB即可计算出结果.【解答】解:如图,连接OA、OB,由题意可得:∠AOB=360÷6=60°,∵OA=OB=2,∴△OAB为等边三角形,∴AB=2,过点O作OM⊥AB于点M,则AM=BM=1,在Rt△AOMR中,,∴,∴⊙O的面积约为.故选:B.【点评】本题主要考查正多边形与圆、勾股定理等,正确应用正六边形的性质是解题关键.3.(2023•蜀山区校级模拟)如图,△ABC中,∠BAC=60°,AD平分∠BAC,∠BDC=120°,连接BD,CD并延长分别交AC,AB于点E和点F,若DE=6,,则BD的长为()A.10B.12C.15D.16【分析】由AEDF四点共圆,得到DE=DF,再证明△CDE∽△CAF,得到AF与AC的比,延长CF到P,使DP=DB,得到△BDP为等边三角形,在证明出△AFC∽△PFB,证出PF与PB,利用DF即可求出BD.【解答】解:∵∠BAC=60°,∠BDC=120°,∴A、E、D、F四点共圆,∵AD平分∠BAC,∴∠DAE=∠DAF,∴DE=DF=6,∵∠BDC=120°,∴∠CDE=60°=∠FAC,∵∠ACD=∠ACD,∴△CDE∽△CAF,∴AF:AC=DE:CD=6:10=3:5,如图,延长CF到P,使DP=DB,∵∠PBD=60°,∴△BDP为等边三角形,∴∠P=60°,∴△AFC∽△PFB,∴PF:PB=AF:AC=3:5,设每一份为k,∴PB=PD=5k,PF=3k,∴DF=2k=6,∴k=3,∴BD=5k=15.故选:C.【点评】本题考查了三角形相似的性质、等边三角形的性质等知识点的应用,四点共圆的应用及相似比的转化是解题关键.二.填空题(共2小题)4.(2023•银川校级二模)如图,在直径为AB的⊙O中,点C,D在圆上,AC=CD,若∠CAD=28°,则∠DAB的度数为34°.【分析】利用等腰三角形的性质可得∠CAD=∠CDA=28°,从而利用三角形内角和定理可得∠ACD=124°,然后根据圆内接四边形对角互补求出∠ABD=56°,再根据直径所对的圆周角是直角可得∠ADB=90°,从而求出∠DAB的度数.【解答】解:∵AC=CD,∠CAD=28°,∴∠CAD=∠CDA=28°,∴∠ACD=180°﹣∠CAD﹣∠CDA=124°,∵四边形ABCD是⊙O的内接四边形,∴∠ACD+∠ABD=180°,∴∠ABD=180°﹣∠ACD=56°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB=90°﹣∠ABD=34°.故答案为:34°.【点评】本题考查了等腰三角形的性质,圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.5.(2023•海曙区校级一模)如图,在等腰三角形纸片ABC中,AB=AC,将该纸片翻折,使得点C落在边AB的F处,折痕为DE,D,E分别在边BC,AC上,∠AFD=∠DEF,若DE=4,BD=9,则DF=6,△ABC的面积为.【分析】根据折叠的性质可得∠CED=∠DEF,∠C=∠DFE,以此可得∠CED=∠AFD,因此可判断A、F、D、E四点共圆,由圆周角定理可得∠DAF=∠DEF,∠CAD=∠DFE,进而得到∠AFD=∠DAF,∠CAD=∠C,则DF=AD=CD,由等腰三角形的性质可得∠B=∠C,以此可证明△BAD∽△CED,由相似三角形的性质可求得DF=AD=CD=6,则BC=15,BG=CG=,DG=,根据勾股定理求出AG,再算出△ABC的面积即可求解.【解答】解:连接AD,过点A作AG⊥BC于点G,如图,根据折叠的性质可得,∠CED=∠DEF,∠C=∠DFE,∵∠AFD=∠DEF,∴∠CED=∠AFD,∴A、F、D、E四点共圆,∴∠DAF=∠DEF,∠CAD=∠DFE,∴∠AFD=∠DAF,∠CAD=∠C,∴DF=AD=CD,∵AB=AC,∴∠B=∠C,∵∠CED=∠DEF=∠DAF,∴△BAD∽△CED,∴,∵DE=4,BD=9,DF=AD=CD,∴,∴DF=AD=CD=6,∴BC=BD+CD=9+6=15,∵AG⊥BC,AB=AC,∴BG=CG==,∴DG=CG﹣CD==,在Rt△ADG中,由勾股定理得==,∴==.故答案为:6,.【点评】本题主要考查四点共圆的判定、相似三角形的判定与性质、等腰三角形的性质,圆周角定理、勾股定理,正确作出辅助线,通过所给条件推出A、F、D、E四点共圆,以此得到DF=AD=CD是解题关键.三.解答题(共7小题)6.(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD中,∠B=∠D=90°,求证:A、B、C、D四点共圆.小吉同学的作法如下:连结AC,取AC的中点O,连结OB、OD,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD中,AB=2,点E是边CD的中点,点F是边BC上的一个动点,连结AE,AF,作EP⊥AF于点P.(1)如图②,当点P恰好落在正方形ABCD对角线BD上时,线段AP的长度为;(2)如图③,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连结MN,则MN的最小值为.【分析】【问题情境】连结AC,取AC的中点O,连结OB、OD,根据直角三角形斜边上的中线等于斜边的一半,可得OD=OA=OC=OB,以此即可证明;【问题解决】(1)根据题意可得AE=,由【问题情境】结论可知A、D、E、P四点共圆,根据圆周角定理以及正方形的性质可得∠PDE=∠PAE=45°,则△PAE为等腰直角三角形,设AP长为a,则PE长为a,根据勾股定理列出方程,求解即可;(2)由【问题情境】结论可知A、D、E、P四点共圆,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,根据题意可得四边形MBNP为矩形,则要求MN的最小值,即求PB 的最小值,根据平行线的性质和中点的定义可得OG为△ADE的中位线,得AG=1,OG=,同理可证四边形AHOG为矩形,以此得到OH=AG=1,BH=,根据勾股定理得,根据两点之间线段最短得PB+OP≥OB,以此即可求出PB的最小值,从而求得MN的最小值.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即,解得:a1=,(不合题意,舍去),∴线段AP的长度为;故答案为:;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=,∴,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=,OH=AG=1,∴BH=,在Rt△BHO中,,根据两点之间线段最短得,PB+OP≥OB,PB≥OB﹣OP=,∴PB的最小值为,∴MN的最小值为.故答案为:.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.7.(2023•萍乡模拟)如图,点A,B,C在⊙O上,且∠ABC=120°,请仅用无刻度的直尺,按照下列要求作图.(保留作图痕迹,不写作法)(1)在图(1)中,AB>BC,作一个度数为30°的圆周角;(2)在图(2)中,AB=BC,作一个顶点均在⊙O上的等边三角形.【分析】(1)作直径AD,连接CD,AC,则∠ADC=60°,∠DAC=30°;(2)作直径BE,连接EC,AE,AC,△ACE即为所求.【解答】解:(1)如图1中,∠CAD即为所求;(2)如图2中,△ACE即为所求.【点评】本题考查作图﹣复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2022•芜湖一模)如图,在正方形ABCD中,P是边BC上的一个动点(不与点B,C重合),作点B 关于直线AP的对称点E,连接AE,再连接DE并延长交射线AP于点F,连接BF和CF.(1)若∠BAP=α,则∠AED=45°+α(用含α的式子直接填空);(2)求证:点F在正方形ABCD的外接圆上;(3)求证:AF﹣CF=BF.【分析】(1)由轴对称的性质得∠EAP=∠BAP=a,AE=AB,由正方形的性质得∠BAD=90°,AB=AD,则∠DAE=90°﹣2a,AD=AE,由等腰三角形的性质即可得出结论;(2)由轴对称的性质得∠AEF=∠ABF,AE=AB,证出AE=AD,由等腰三角形的性质得∠ADE=∠AED,证∠ADE+∠ABF=180°,则∠BFD+∠BAD=180°,得∠BFD=90°即可;(3)过点B作BM⊥BF交AF于点M,则∠MBF=90°,证△BMF是等腰直角三角形,得BM=BF,FM =2BF,证△AMB≌△CFB(SAS),得AM=CF,进而得出结论.【解答】解:(1)∵点B关于直线AP的对称点E,∠BAP=α,∴∠EAP=∠BAP=α,AE=AB,∵ABCD是正方形,∴AD=AB,∠BAD=90°,∴AE=AD,∠DAE=90°﹣2α,∴∠ADE=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α,故答案为:45°+α;(2)证明:由(1)∠AED=45°+α,又∵∠BAE=2α,∴∠EFA=∠BFA=45°,∠BFD=90°,连接BD,则∠BCD=90°,∴∠BCD=∠BAD=∠BFD=90°,∴B、F、C、D和A、B、C、D都在以BD为直径的圆上,即点F在正方形ABCD的外接圆上;(3)过点B作BM⊥BF交AF于M点,则∠MBF=90°,∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠MBF=∠ABC,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∴∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∴AF=FM+AM=BF+CF,∴AF﹣CF=BF.【点评】本题考查了正方形的性质、轴对称的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,解题关键是熟练掌握矩形的性质和轴对称的性质,证明三角形全等.9.(2021秋•鹿城区校级期中)如图,△ABC内接于⊙O,CD⊥AB,CB=10cm,CD=8cm,AB=14cm.(1)∠A度数45°.(直接写出答案)(2)求的长度.(3)P是⊙O上一点(不与A,B,C重合),连结BP.①若BP垂直△ABC的某一边,求BP的长.②将点A绕点P逆时针旋转90°后得到A′,若A′恰好落在CD上,则CA'的长度为4.(直接写出答案)【分析】(1)利用勾股定理,等腰三角形的判定和三角形的内角和定理解答即可;(2)连接OB,OC,利用圆周角定理求得圆心角的度数,再利用弧长公式解答即可;(3)①连接AP,利用等腰直角三角形的性质求得BE,利用全等三角形的判定与勾股定理求得PE,则BP 可求;②连接AA′,PD,设PD与AC交于点E,通过证明P,A,D,A′四点共圆,利用圆周角定理和垂径定理得到PD经过圆心O,过点O作OF⊥AB于点F,利用垂径定理和勾股定理求得OE,连接OC,利用勾股定理求得圆的半径,再利用等腰直角三角形的性质求得PA,勾股定理求得DA′,则CA′=CD﹣DA′.【解答】解:(1)在Rt△BCD中,CB=10cm,CD=8cm,∴BD===6(cm),∴AD=AB﹣BD=14﹣6=8cm=CD,∴∠A=∠ACD,∵CD⊥AB,∴∠ADC=90°,∴∠A===45°,故答案为:45°;(2)连接OB,OC,如图,∵∠BAC=45°,∴∠BOC=90°,在Rt△BOC中,OB=OC,CB=10cm,∴OB=BC=5(cm),∴的长度==cm;(3)①∵P是⊙O上一点(不与A,B,C重合),BP垂直△ABC的某一边,∴点P只能在上,连接AP,如图,由(1)知:∠CAB=45°,∵BP⊥AC,∴△AEC为等腰直角三角形,∴AE=BE=AB=7.在△APE和△BCE中,。

四点共圆(相应习题附答案)

四点共圆(相应习题附答案)

《四点共圆》判定1:到某定点的距离相等的所有点共圆。

→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。

(这三边的中垂线的交点就是圆心)。

产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。

基本模型:因为AO=BO=CO=DO所以点 A 、B 、C 、D 四点共圆(O 为圆心)判定2:对角互补,四点共圆:对角互补的四边形的四个顶点共圆。

产生原因:圆内接四边形的对角互补。

基本模型:因为 0180=∠+∠D A (或0180=∠+∠D B )所以 A 、B 、C 、D 四点共圆判定3:外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。

产生原因:圆内接四边形的外角等于内对角。

基本模型:因为B ECD ∠=∠所以点 A 、B 、C 、D 四点共圆判断4:张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。

产生原因:在同圆或等圆中,同弧所对的圆周角相等。

方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

因为CDB CAB ∠=∠所以点 A 、B 、C 、D 四点共圆判定5:同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。

产生原因:直径所对的圆周角是直角。

因为090=∠=∠D C所以点A 、B 、C 、D 四点共圆相应练习:1.如图,已知ABC ∆的两条角平分线AD 和CE 相交于H ,060B ∠=,F 在AC 上,且AE AF =。

证明:(1)B,D,H,E 四点共圆 (2)CE 平分DEF ∠。

2.如图,AC ⊥BC ,CE ⊥AB ,CF ⊥AD.求证:∠AFE=∠B.3.已知在凸五边形ABCDE 中,3BAE BC CD DE α∠===,,且1802BCD CDE α∠=∠=︒-,求证:BAC CAD DAE ∠=∠=∠. E D C B A ED C B A4、如图,点C 为线段AB 上任意一点(不与点A 、B 重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△ACD 和△BCE ,CA =CD ,CB =CE ,∠ACD 与∠BCE 都是锐角,且∠ACD =∠BCE ,连接AE 交CD 于点M ,连接BD 交CE 于点N ,AE 与BD交于点P ,连接CP 。

四点共圆例题及答案

四点共圆例题及答案

四点共圆的‎应用例1 如图1,已知P 为⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交AB ‎于E . 求证:∠APC =∠BPD .例2 如图2,从⊙O 外一点P ‎引切线PA ‎、PB 和割线‎P DC ,从A 点作弦‎A E 平行于‎D C ,连结BE 交‎D C于F ,求证:FC =FD .例3 如图3,在△ABC 中,AB=AC ,AD ⊥BC ,∠B 的两条三‎等分线交A ‎D 于E 、G ,交AC 于F ‎、H .求证:EH ∥GC .PP例4 如图4,⊿ABC 为等‎边三角形,D 、E 分别为B ‎C 、AC 边上的‎点,且BD=31BC,CE=31AC,AD 与BE ‎相交于P 点‎。

求证:CP ⊥AD例5 如图5,AB 为半圆‎直径,P 为半圆上‎一点,PC ⊥AB 于C ,以AC 为直‎径的圆交P ‎A 于D ,以BC 为直‎径的圆交P ‎B 于E ,求证:DE 是这两‎圆的公切线‎.例6 AB 、CD 为⊙O 中两条平‎行的弦,过B 点的切‎线交CD 的‎延长线于G ‎,弦PA 、PB 分别交‎C D 于E 、F .求证:FGFDCF EFB例7 ABCD 为‎圆内接四边‎形,一组对边A ‎B 和DC 延‎长交于P 点‎,另一组对边‎A D 和BC ‎延长交于Q ‎点,从P 、Q 引这圆的‎两条切线,切点分别是‎E 、F ,(如图 7)求证:PQ 2=QF 2+PE 2.例8 如图8,△ABC 的高‎A D 的延长‎线交外接圆‎于H ,以AD 为直‎径作圆和A ‎B 、AC 分别交‎于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.例9 如图9,D 为△ABC 外接‎圆上任意一‎点,E 、F 、G 为D 点到‎三边垂线的‎垂足,求证:E 、F 、G 三点在一‎条直线上.例10 如图10,H 为△ABC 的垂‎心,H 1、H 2、 H3为H 点‎关于各边的‎对称点,求证:A 、B 、 C 、H 1、H 2、H3六点共‎圆.11、已知PQR ‎S 是圆内接‎四边形,∠PSR =90°,过点2Q 作P ‎R 、PS 的垂线‎,垂足分别为‎点H 、K.求证:HK 平分Q ‎S .12.AB 为⊙O 的直径,点C 在⊙O 上且OC ‎⊥AB,P 为⊙O 上一点,位于点B 、C 之间,直线CP 与‎A B 的延长‎线交于点Q ‎,过Q 作直线‎与A B 垂直‎,交直线AP ‎于点R. 求证:BQ =QR.13.如图10,在△ABC 中,AD ⊥BC,BE ⊥CA,AD 与BE ‎交于点H,P 为 边AB 的中‎点,过点C 作C ‎Q ⊥PH,垂足为Q.求证:2PE =PH ·PQ.R。

第28讲 四点共圆问题(解析版)

第28讲 四点共圆问题(解析版)

第28讲 四点共圆问题一、解答题1.已知直线:l y x m +=交抛物线2:4C y x =于,A B 两点. (1)设直线l 与x 轴的交点为T .若=2AT TB ,求实数m 的值;(2)若点,M N 在抛物线C 上,且关于直线l 对称,求证:,,,A B M N 四点共圆. 【答案】(1)8m =-;(2)证明见解析. 【分析】(1)设()()1122,,,A x y B x y ,直线方程代入抛物线方程后由判别式得m 的范围,由韦达定理得1212,y y y y +,再由向量的数乘可得122y y +=0,结合韦达定理可得12,,y y m 值;(2)设()()3344,,,M x y N x y ,由对称性得434y y =--,4342x m x =---.再由,M N 在抛物线上,代入变形得3y 与m 的关系,然后计算MA MB ⋅,得MA MB ⊥, 同理NA NB ⊥,得证四点共圆. 【详解】解:由24y x m y x=+⎧⎨=⎩得2440y y m -+=.设()()1122,,,A x y B x y , 则12124,4y y y y m +==. 因为直线l 与C 相交, 所以16160,m ∆->= 得1m <.(1)由2AT TB =,得1220y y +=, 所以240y +=,解得24,y =- 从而18y =, 因为124,y y m =所以432,m =-解得8m =-.(2)设()()3344,,,M x y N x y , 因为,M N 两点关于直线y x m =+对称,则4343223443434=144y y y y y y x x y y --==-+-解得434y y =--.又434322y y x x m ++=+ 于是3343422y y x x m --++=+ 解得4342x m x =---. 又点N 在抛物线上,于是233()()4442y m x --=---.因为2334,y x =所以23341640y y m =+++,于是13231323()()()()MA M x x x x y y y y B ⋅=--+--222233121323()()(-)(-)4444y y y y y y y y =--()()()13231323()1616y y y y y y y y --=--+⎡⎤⎣⎦ ()()132********()1616y y y y y y y y y y --⎡⎤=++++⎣⎦ ()()2231333404()1616y y y y y m y --==+++ 因此MA MB ⊥, 同理,NA NB ⊥于是点,M N 在以AB 为直径的圆上, 即,,,A B M N 四点共圆.【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,如设交点坐标为()()1122,,,A x y B x y ,直线方程代入抛物线方程后应用韦达定理可得1212,y y y y +,再利用向量的线性运算求得12,y y 关系,从而可求得12,,y y m 值.2.已知椭圆22:14x C y +=上三点A 、M 、B 与原点O 构成一个平行四边形AMBO .(1)若点B 是椭圆C 的左顶点,求点M 的坐标; (2)若A 、M 、B 、O 四点共圆,求直线AB 的斜率.【答案】(1)1,2⎛-± ⎝⎭;(2). 【分析】(1)由已知可得()2,0B -,由//AM BO ,且AM BO =,设()00,M x y , ()002,A x y +代入椭圆方程解方程即可得解;(2)因为A 、M 、B 、O 四点共圆,则平行四边形AMBO 是矩形且OA OB ⊥,设直线AB 的方程为y kx m =+,与椭圆方程联立,根据韦达定理代入 12120OA OB x x y y →→⋅=+=,化简计算求解即可.【详解】解析:(1)如图所示: 因为()2,0B-,四边形AMBO 为平行四边形,所以//AM BO ,且2AM BO ==. 设点()00,M x y ,则()002,A x y +因为点M 、A 在椭圆C 上,所以()2200202014214x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001x y =-⎧⎪⎨=⎪⎩,所以1,2M ⎛⎫-± ⎪ ⎪⎝⎭.(2)因为直线AB 的斜率存在, 所以设直线AB 的方程为y kx m =+,()11,A x y ,()22,B x y .由2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()222418440k x kmx m +++-=, 则有122814km x x k -+=+,21224414m x x k-=+.因为平行四边形AMBO , 所以()1212,OM OA OB x x y y →→→=+=++.因为122814kmx x k -+=+,所以()12122282221414km my y k x x m k m k k -+=++=⋅+=++,所以2282,1414kmm M k k -⎛⎫ ⎪++⎝⎭. 因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程化得22441m k =+.① 因为A 、M 、B 、O 四点共圆,所以平行四边形AMBO 是矩形, 且OA OB ⊥,所以12120OA OB x x y y →→⋅=+=.因为2222121212122414m k y y kx m kx mk x x km x x mk, 所以22212122244401414m m k x x y y k k--+=+=++,化得22544m k =+.②由①②解得2114k =,23m =,此时>0∆,因此2k =±. 所以所求直线AB 的斜率为2±.【点睛】本题主要考查了联立直线与椭圆的方程利用韦达定理列式表达斜率以及垂直的方法进而代入求解的问题,考查计算能力和逻辑推理能力,属于难题. 3.已知抛物线P :22y px =(0p >)上的点3,4a ⎛⎫⎪⎝⎭到其焦点的距离为1. (Ⅰ)求p 和a 的值;(Ⅰ)求直线l :y x m =+交抛物线P 于两点A 、B ,线段AB 的垂直平分线交抛物线P 于两点C 、D ,求证:A 、B 、C 、D 四点共圆.【答案】(Ⅰ)12p =,2a =±;(Ⅰ)证明见解析. 【分析】(Ⅰ)根据抛物线的定义可得点3,4a ⎛⎫⎪⎝⎭到其焦点的距离等于该点到准线距离,即可求出p ,从而得到抛物线方程,再计算出参数a 的值;(Ⅰ)设()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,即可求出线段AB 的中点M 的坐标,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为1y x m =-+-,设()33,C x y ,()44,D x y ,求出线段CD 的中点坐标,再利用勾股定理计算可得;【详解】解:(Ⅰ)22y px =的准线为2px =-, 因为点3,4a ⎛⎫⎪⎝⎭到其焦点的距离等于该点到准线距离, 所以3124p +=, 故12p =,即2y x =, 又3,4a ⎛⎫⎪⎝⎭在2y x =上,所以a =;(Ⅰ)设()11,A x y ,()22,B x y ,联立2y x x x m⎧=⎨=+⎩,得20y y m -+=,则121y y +=,12y y m ⋅=, 且140m ->,即14m <,则12A y B =-=,且线段AB 中点的纵坐标为12122y y +=,则12x m =-,所以线段AB 中点为11,22M m ⎛⎫-⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为1y x m =-+-,联立21y xy x m⎧=⎨=-+-⎩,得210y y m ++-=,设()33,C x y ,()44,D x y , 则341y y +=-,341y y m ⋅=-故34y D y C =-= 线段CD 中点为31,22N m ⎛⎫--⎪⎝⎭,因为()21154108242m CD m -⎛⎫=-= ⎪⎝⎭,22225422AN AM m MN -==+=+, 所以12AN CD =, 所以点A 在以CD 为直径的圆上, 同理点B 在以CD 为直径的圆上, 所以A 、B 、C 、D 四点共圆. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系; (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.4.已知直线1:360l x y --=与x 轴,y 轴分别交于A ,B ,线段AB 的中垂线2l 与抛物线()2:20E y px p =>有两个不同的交点C 、D .(1)求p 的取值范围;(2)是否存在p ,使得A ,B ,C ,D 四点共圆,若存在,请求出p 的值,若不存在,请说明理由. 【答案】(1)16,9⎛⎫+∞ ⎪⎝⎭(2)存在,5p = 【分析】(1)求出,A B 两点坐标,得出其中垂线方程为380x y ++=,与抛物线方程联立根据0∆>即可得结果;(2)设()11,C x y ,()22,D x y ,线段CD 的中点为()00,M x y ,将(1)和韦达定理可得()98,3M p p --,CD =2214MA CD =,代入两点间距离公式可解得p 的值. 【详解】(1)因为直线1:360l x y --=与x 轴,y 轴分别交于A ,B . 所以()2,0A ,()0,6B -,所以线段AB 的中点为()1,3-,3AB k =, 所以线段AB 的中垂线2l 的方程为()1313y x +=--,即380x y ++=. 将38x y =--代入()2:20E y px p =>,得26160y py p ++=,因为2l 与E 有两个不同的交点C ,D . 所以2364160p p ∆=-⨯>,又0p >,所以169p >,即p 的取值范围为16,9⎛⎫+∞ ⎪⎝⎭. (2)若A ,B ,C ,D 四点共圆,由对称性可知,圆心应为线段CD 的中点, 设()11,C x y ,()22,D x y ,线段CD 的中点为()00,M x y , 则1212616y y p y y p +=-⎧⎨=⎩,所以12032y y y p +==-,003898x y p =--=-,CD ====若A ,B ,C ,D 四点共圆,则12MA CD =,即2214MA CD =, 所以()()2220012409164x y p p -+=⨯-. 所以()222910990160p p p p -+=-,解得5p =, 又5p =满足169p >,所以存在5p =,使得A ,B ,C ,D 四点共圆. 【点睛】本题主要考查了直线与抛物线的位置关系,圆内接四边形的特征,考查了学生的计算能力,属于中档题. 5.已知斜率为k 的直线交椭圆()2230x y λλ+=>于A ,B 两点,AB 的垂直平分线与椭圆交于C ,D两点,点()01,N y 是线段AB 的中点.(1)若03y =,求直线AB 的方程以及λ的取值范围;(2)不管λ怎么变化,都有A ,B ,C ,D 四点共圆,求0y 的取值范围. 【答案】(1)40x y +-=,12λ>;(2){}3,3-. 【分析】(1)将直线AB 的方程()13y k x =-+代入椭圆方程223x y λ+=,再利用根与系数的关系可得()1223123k k x x k -+==+,从而可求出k 的值,进而可得到直线AB 的方程,由判别式大于零可求出λ的取值范围;(2)设直线AB 的方程为()01y k x y =-+,代入椭圆方程中,利用根与系数的关系,再利用弦长公式表示出AB ,由于DC 是AB 的垂直平分线,所以同理可表示DC 的长,求出CD 中点P 的横坐标,则可求出点P 到AB 的距离d ,由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭,将AB ,DC ,d代入化简可得222211313k k k k++=++,从而可求出k 的值,进而可求得0y 【详解】设()11,A x y ,()22,B x y .(1)当03y =时,直线AB 的方程为()13y k x =-+,将AB 方程代入223x y λ+=得:()()()22232330kxk k x k λ++-+--=.①由()1223123k k x x k -+==+,解得1k =-,此时AB 的方程为40x y +-=. 将1k =-代入①,得248160x x λ-+-=. 由()6416160λ∆=-->,解得12λ>. (2)设直线AB 的方程为()01y k x y =-+,将方程代入223x y λ+=得:()()()22200320kxk y k x y k λ++-+--=.②由题意()0122123k k y x x k-+==+,即03ky -=.12AB x =-===同理得CD ==⎝⎭所以CD 中点P 的横坐标0032221112131313y ky k k x k k k⎛⎫--- ⎪+-⎝⎭===+++, 点P 到AB 的距离d1=,由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭,即()()2222222211912133313kk k k k k λλ⎛⎫++⎛⎫⎡⎤-++=--+ ⎪ ⎪⎣⎦+⎝⎭⎝⎭+,③ 不管λ怎么变化,都有A ,B ,C ,D 四点共圆,即上式恒成立,所以222211313k k k k++=++,解得21k =, 此时③式成立.代入②,由0∆>得12λ>. 所以0y 的取值范围为{}3,3-. 【点睛】关键点点睛:此题考查直线与椭圆的位置关系,考查计算求解能力,解题的关键是由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭,将AB ,DC ,d 代入化简可得222211313k k k k ++=++,从而可求出k 的值,进而可求得0y ,考查数学转化思想,属于较难题6.已知椭圆22221x y a b+=(0)a b >>的左,右焦点分别为1F ,2F ,且126F F ||=,直线y kx =与椭圆交于A ,B 两点.(Ⅰ)若△12AF F 的周长为16,求椭圆的标准方程;(Ⅰ,且A ,B , 1F ,2F 四点共圆,求椭圆离心率e 的值;(Ⅰ)在(Ⅰ)的条件下,设00(,)P x y 为椭圆上一点,且直线PA 的斜率1(2,1)k ∈--,试求直线PB 的斜率2k 的取值范围.【答案】(Ⅰ(Ⅰ)23=e .(Ⅰ【解析】试题解析:(Ⅰ)由题意得3c =,根据2216a c +=,得5a =.结合222a b c =+,解得2225,16a b ==(Ⅰ)设1122(,),(,)A x y B x y由AB 、EF 互相平分且共圆,易知,22AF BF ⊥,因为211(3,)F A x y =-,222(3,)F B x y =-, 所以221(F A F B x ⋅=- 即 128x x =-,所以有结合229b a +=.解得212a =,所以离心率 (若设1111(,),(,)A x y B x y --相应给分)(解法二)设)(11,y x A ,又AB 、EF 互相平分且共圆,所以AB 、EF 是圆的直径, 所以92121=+y x ,又由椭圆及直线方程综合可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+1429221221112121b y a x x y y x 前两个方程解出1,82121==y x ,将其带入第三个方程并结合92222-=-=a c a b ,解得:122=a ,23=e .…8分 (Ⅰ)由(Ⅰ由题可设1111(,),(,)A x y B x y --,又22012201222201013(1)3(1)112124x x y y x x x x ----==--- ,由121k -<<-考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系.7.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,P 为右准线上一点.点Q 在椭圆上,且FQ FP ⊥.(1)若椭圆的离心率为12,短轴长为 (2)若在x 轴上方存在,P Q 两点,使,,,O F P Q 四点共圆,求椭圆离心率的取值范围.【答案】(1)22143x y +=; (21e <<. 【分析】(1)设椭圆的焦距为2c,由题意,可得222122c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,即可求得椭圆C 的标准方程;(2)设2(a P c,)t ,0(Q x ,0)y ,可得FPQ ∆的外接圆即为以PQ 为直径的圆200()()()()0a x x x y t y y c--+--=,可得20a x c c =-,根据点P ,Q 均在x 轴上方,可得 210e e +->,解得即可;【详解】解:(1)设椭圆的焦距为2c,由题意,可得222122c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,b =∴椭圆的方程为22143x y +=, (2)设2(a P c,)t ,0(Q x ,0)y , FP FQ ⊥,则FPQ ∆的外接圆即为以PQ 为直径的圆200()()()()0a x x x y t y y c --+--=, 由题意,焦点F ,原点O 均在该圆上, ∴200200()()00a c c x ty c a x ty c⎧--+=⎪⎪⎨⎪+=⎪⎩, 消去0ty 可得2200()()0a a c c x x c c ---=, 20a x c c∴=-, 点P ,Q 均在x 轴上方,2a a c c c∴-<-<, 即220c ac a +->,210e e ∴+->,01e <<,∴1e <<,故e 的范围为1,12⎛⎫⎪ ⎪⎝⎭. 【点睛】 本题考查椭圆的标准方程及简单几何性质,直线的圆锥曲线的位置关系,考查圆的方程及点到直线的距离公式,直线的斜率公式,考查计算能力,解题时要认真审题,属于中档题.8.已知抛物线2:4E y x =的焦点为F ,准线为l O ,为坐标原点,过F 的直线m 与抛物线E 交于A B 、两点,过F 且与直线m 垂直的直线n 与准线l 交于点M .(1)若直线m ||||AF BF 的值; (2)设AB 的中点为N ,若O M N F 、、、四点共圆,求直线m 的方程.【答案】(1)||3||AF BF =或||1||3AF BF =;(2)1)y x =-. 【分析】(1)由抛物线的定义建立方程即可.(2)设直线m 的方程为1x ty =+,用t 表示,M N 坐标,再结合条件得到0OM ON ⋅=,建立关于t 的方程即可获解.【详解】(1)设||||AF BF λ=,当1λ>时,设||0BF k =>,则||AF k λ=,直线m ∴直线m 的倾斜角为60︒, 由抛物线的定义,有()()1cos60cos602AB AF BF k k k k λλ⋅︒=+⋅︒=+⨯=-, 112λλ+∴=-,解得:3λ=, 若01λ<<时,同理可得:13λ=,||3||AF BF ∴=或||1||3AF BF =. (2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=.设()()1122,,,A x y B x y ,则12124,4y y t y y +==-.由2211224,4y x y x ==, 得()22221212212122(4)2(4)424444y y y y y y t x x t +--⨯-+=+===+, 所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为t -,则直线n 的方程为(1)t y x --=. 由1(1)x y t x =-⎧⎨=--⎩,,解得(1,2)M t -. 若O M N F 、、、四点共圆,再结合FN FM ⊥,得OM ON ⊥,则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得2t =±, 所以直线m的方程为1)y x =-.【点睛】(1)有些题目可以利用抛物线的定义结合几何关系建立方程获解;(2)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.9.如图,已知椭圆C 的方程为22221(0)x y a b a b+=>>,c 为半焦距,椭圆C 的左、右焦点分别为12,F F ,椭圆C 的离心率为e .(1)若椭圆过点(e ,两条准线之间的距离为4b ,求椭圆C 的标准方程; (2)设直线y kx =与椭圆C 相交于A ,B 两点,且12,,,A F B Fc ≤,试求2k 的最大值.【答案】(1)22142x y +=(2)13 【分析】(1)利用准线,以及222a b c =+求出离心率,又因为椭圆过点,2e ⎛ ⎝⎭,确定方程.(2)将直线方程代入椭圆方程, 根据中心对称性和12,,,F B F 四点共圆,所以22AF BF ⊥. 所以三角形2ABF 是直角三角形,()()22221 211e k e -=-+,根据2213e ≤<得出2k 取得最大值.【详解】 (1)因为两条准线之间的距离为4b ,所以224a b c=,又222a b c =+,故22b c =, 因为222b a c =-,所以222a c c -=,解得2e =, 因为椭圆C过点e ⎛ ⎝⎭,所以2222212b b ⎛⎫ ⎪⎝⎭⎝⎭+=, 故222b c ==,24a =,所以椭圆C 的标准方程为22142x y +=. (2)设()()1122,,,A x y B x y ,由22221,,x y a b y kx ⎧+=⎪⎨⎪=⎩得()2222220b a k x a b +-=,解得12x x ==.由椭圆的中心对称性得,12AF B AF B ∠=∠,因为12,,,A F B F 四点共圆,所以12AF B AF B π∠+∠=, 所以22AF B π∠=,即22AF BF ⊥,所以三角形2ABF 是直角三角形,且22OF AB =,所以122|c x x =-,即22c =,故()()22222221c b a k k a b +=+, 所以()()()2222222221c a c a k k a a c -+=+-,即()()()22222111e e k k e -+=+-, 分离k ,e 得,()()22221211e k e -=-+,c ≤,所以()22222222213b c a cc e ≤⇔-≤⇔≤<, 令21,t e =-则1,03t ⎡⎫∈-⎪⎢⎣⎭,所以2221t k t =+, 令()21(0)213t k t t t =-≤<+, 则()2211(0)21213t k t t t t t ==-≤<++,易得当103t -≤<,()k t 单调递减, 所以13t =-时,()k t 取最大值,即2k 取得最大值为13. 【点睛】本题考查椭圆方程,直线与椭圆的位置关系,含参分式的最值,属于难题.10.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b +=(a >b >0)经过点(﹣2,0)和⎛ ⎝⎭,椭圆C 上三点A ,M ,B 与原点O 构成一个平行四边形AMBO .(1)求椭圆C 的方程;(2)若点B 是椭圆C 左顶点,求点M 的坐标;(3)若A ,M ,B ,O 四点共圆,求直线AB 的斜率.【答案】(1)24x +y 2=1;(2)M (-;(3)【分析】(1)将点()2,0-和⎛ ⎝⎭代入椭圆22x a +22y b =1求解即可. (2)根据平行四边形AMBO 可知AM ∥BO ,且AM =BO =2.再设点M (x 0,y 0),则A (x 0+2,y 0),代入椭圆C 求解即可.(3) 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB ,再联立直线与椭圆的方程,结合韦达定理代入OA ·OB =x 1x 2+y 1y 2=0求解即可.【详解】(1)因为椭圆22x a +22y b =1(a >b >0)过点()2,0-和⎛ ⎝⎭, 所以a =2,21a +234b =1,解得b 2=1,所以椭圆C 的方程为24x +y 2=1. (2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2.设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以()2200202014214x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩解得001x y =-⎧⎪⎨=⎪⎩所以M (-(3)因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=2814km k -+,x 1x 2=224414m k-+. 因为平行四边形AMBO ,所以OM =OA +OB =(x 1+x 2,y 1+y 2).因为x 1+x 2=2814km k -+,所以y 1+y 2=k (x 1+x 2)+2m =k ·2814km k -++2m =2214m k +,所以M (2814km k -+,2214m k +). 因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.①因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB ,所以OA ·OB =x 1x 2+y 1y 2=0.因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=222414m k k -+, 所以x 1x 2+y 1y 2=224414m k-++222414m k k -+=0,化得5m 2=4k 2+4.② 由①②解得k 2=114,m 2=3,此时△>0,因此k =±2. 所以所求直线AB 的斜率为±2. 【点睛】本题主要考查了椭圆方程的基本求法,同时也考查了联立直线与椭圆的方程,利用韦达定理列式表达斜率以及垂直的方法,进而代入求解的问题.属于难题.11.如图,在平面直角坐标系xOy 中,已知P 为椭圆2222:1(0)x y C a b a b+=>>上异于长轴端点的一点,过P 与x 轴平行的直线交椭圆C 的两条准线于点1T ,2T ,直线11T F ,22T F 交于点Q .(1)若12PF F ∆与12QF F ∆的面积相等,求椭圆C 的离心率; (2)若126F F =,12503TT =. ①求椭圆C 的标准方程;②试判断点P ,1F ,Q ,2F 是否四点共圆,并说明理由.【答案】(1)2;(2)①2212516x y +=; ②P ,1F ,Q ,2F 四点共圆,理由见解析. 【分析】(1)设()()000,0P x y y ≠,210,a T y c ⎛⎫- ⎪⎝⎭,可表示出直线11T F 的方程,从而求得Q 点坐标;根据三角形面积相等可构造关于,a c 的齐次方程,进而求得离心率; (2)①根据126F F =,12503TT =和椭圆,,a b c 的关系,可求得,,a b c 的值,进而得到椭圆方程; ②设过点Q ,1F ,2F 三点的圆的方程为()2229x y s s +-=+,代入Q 点坐标可求得方程为2200982932y x y y y ⎛⎫+--= ⎪⎝⎭;验证可知P 点坐标满足方程,由此得到四点共圆. 【详解】设()()000,0P x y y ≠,()1,0F c -,()2,0F c ,(1)由题意得:210,a T y c ⎛⎫- ⎪⎝⎭,220,a T y c ⎛⎫ ⎪⎝⎭. 直线11T F 的方程为:()02y y x c a c c=+-+,直线22T F 的方程为:()02y y x c a c c =--, 将直线11T F 与22T F 联立可得:2020x c y y b =⎧⎪⎨=-⎪⎩,即点2020,c y Q b ⎛⎫- ⎪⎝⎭.12PF F ∆与12QF F ∆的面积相等, ()2000220c y y y c a∴=-≠-,2221c c a ∴=--,2c e a ∴==,即椭圆C的离心率为2. (2)①126F F =,12503TT =,26c ∴=,25023a c ⋅=, 解得:3c =,225a =,22216b ac ∴=-=, ∴以椭圆C 的标准方程为2212516x y +=.②由①知:()13,0F -,()23,0F ,090,16y Q ⎛⎫-⎪⎝⎭. 设过点Q ,1F ,2F 三点的圆的方程为()2229x y s s +-=+,即2229x y sy +-=.将090,16y Q ⎛⎫- ⎪⎝⎭代入该方程得:009832y s y =-, ∴过Q ,1F ,2F 三点的圆的方程为:2200982932y x y y y ⎛⎫+--=⎪⎝⎭, 将()00,P x y 代入该方程左边,则22000098232y x y y y ⎛⎫+-- ⎪⎝⎭22000009825121632y y y y y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭9=, ∴点P 也在过点Q ,1F ,2F 三点的圆上,从而点P ,1F ,Q ,2F 四点共圆.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆离心率和标准方程的求解、四点共圆问题的证明;证明四点共圆问题的关键是能够通过三点坐标确定三点所在圆的方程,进而代入第四个点的坐标,验证其满足方程即可.12.(题文)(题文)已知点F (p2,0),直线l: x =−p2,点Μ是l 上的动点,过点Μ垂直于y 轴的直线与线段ΜF 的垂直平分线相交于点Ν. (1)求点Ν的轨迹方程;(2)若p =2,直线y =x 与点Ν的轨迹交于A 、B 两点,试问Ν的轨迹上是否存在两点C 、D ,使得A 、B 、C 、D 四点共圆?若存在,求出圆的方程;若不存在,请说明理由.【答案】(1)y 2=2px ;(2)存在a >72且a ≠4,a ≠8的无数个圆(x −a)2+(y +a −4)2=a 2+(−a +4)2满足条件. 【解析】试题分析:(1)借助点在线段ΜF 的中垂线上建立等式并化简即可;(2)依据题设条件建立方程,通过方程有无解的分析析作出推理和判断即可.试题解析:解: (1)设Ν(x,y),依题意,|ΝF |=|ΝΜ|,即√(x −p2)2+y 2=|x +p2|.化简整理得y 2=2px .(2)把y =x 与y 2=4x 联立,解得Α(0,0),Β(4,4),则线段ΑΒ的垂直平分线方程y =−x +4 若存在C 、D 两点,使得Α、Β、C 、D 四点共圆,则圆心必在直线y =−x +4上, 设圆心坐标(a,−a +4),则半径r =√a 2+(−a +4)2, ∴圆的方程为(x −a)2+(y +a −4)2=a 2+(−a +4)2, 将x =y 24代入并整理得y 4+(16−8a)y 2+32(a −4)y =0,则y(y −4)(y 2+4y +32−8a)=0,∴ y 1=0或y 2=4或y 2+4y +32−8a =0, ∴ y 2+4y +32−8a =0应有除y 1=0、y 2=4之外的两个根,∴ Δ>0,且32−8a ≠0,42+4×4+32−8a ≠0,解得a >72且a ≠4,a ≠8. ∴存在a >72且a ≠4,a ≠8的无数个圆(x −a)2+(y +a −4)2=a 2+(−a +4)2满足条件.考点:(1)轨迹方程与探求方法;(2)圆的方程及简单高次方程的求解等有关知识的运用. 13.从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P . (1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由. 【答案】(1)曲线P 的方程为2y x =,曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)存在;圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,根据中点坐标公式得出002x x y y =⎧⎪⎨=⎪⎩,代入等式2004y x =化简可得出曲线P 的方程,进而可得出曲线P 的形状; (2)设直线l 的方程为2x ty =+,将直线l 的方程与曲线P 的方程联立,列出韦达定理,求出AB ,求出线段AB 的中点的坐标,进一步求出线段AB 的中垂线CD 的方程,求出CD ,根据四点共圆结合垂径定理可得出关于t 的等式,求出t 的值,进一步可求得圆的方程,由此可得出结论. 【详解】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,故002x x y y =⎧⎪⎨=⎪⎩,则002x x y y =⎧⎨=⎩,代入2004y x =得()224y x =,得曲线P 的方程为2y x =, 所以曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线; (2)若直线l 与x 轴重合,则直线l 与曲线P 只有一个交点,不合乎题意. 设直线l 的方程为2x ty =+,根据题意知0t ≠,设()11,A x y 、()22,B x y ,联立22y x x ty ⎧=⎨=+⎩,得220y ty --=,280t ∆=+>,则12y y t +=,122y y ⋅=-,则12A y y B =-==,且线段AB 中点的纵坐标为1222y y t +=,即2121222222x x y y t t ++=⋅+=+, 所以线段AB 中点为22,22t t M ⎛⎫+ ⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,可设直线CD 的方程为1x y m t=-+,则21222t t m t ⎛⎫+=-⨯+ ⎪⎝⎭,故252t m +=, 联立22152y x t x y t ⎧=⎪⎨+=-+⎪⎩,得()222250ty y t t +-+=,设()33,C x y 、()44,D x y ,则341y y t +=-,()234152y y t ⋅=-+,故34y CD =-==线段CD 中点为22151,222t N tt ⎛⎫++- ⎪⎝⎭, 假设A 、B 、C 、D 四点共圆,则弦AB 的中垂线与弦CD 中垂线的交点必为圆心, 因为CD 为线段AB 的中垂线,则可知弦CD 的中点N 必为圆心,则12AN CD =, 在Rt AMN △中,222AN AM MN =+,所以22212CD AM MN ⎛⎫=+ ⎪⎝⎭,则()()222222221111111121018442222t t t t t t tt ⎛⎫⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故4228810t t t +--=,即()()24264222198880t t t t t t t t -+++--==, 解得21t =,即1t =±,所以存在直线l ,使A 、B 、C 、D 四点共圆,且圆心为弦CD 的中点N ,圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程; (3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程. 14.在平面直角坐标系xOy 中,已知抛物线()2:20E y px p =>的焦点为F ,准线为l ,P 是抛物线上E 上一点,且点P 的横坐标为2,3PF =.(1)求抛物线E 的方程;(2)过点F 的直线m 与抛物线E 交于A 、B 两点,过点F 且与直线m 垂直的直线n 与准线l 交于点M ,设AB 的中点为N ,若O 、M N 、F 四点共圆,求直线m 的方程.【答案】(1)24y x =(2))1y x =-【分析】(1)由抛物线的定义可得22pPF =+,即可求出p ,从而得到抛物线方程; (2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=.设()11,A x y ,()22,B x y ,列出韦达定理,表示出中点N 的坐标,若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则0OM ON ⋅=即可求出参数t ,从而得解; 【详解】解:(1)由抛物线定义,得232pPF =+=,解得2p =, 所以抛物线E 的方程为24y x =.(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=.设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-.由2114y x =,2224y x =,得()()()22222121212122424424444y y y y t y y x x t +--⨯-+=+===+, 所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为t -,则直线n 的方程为()1y t x =--.由()1,1,x y t x =-⎧⎨=--⎩解得()1,2M t -.若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得t =±所以直线m的方程为)1y x =-. 【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.15.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B,离心率为3,P 是C 上异于A ,B的动点.(1)证明:直线AP ,BP 的斜率之积为定值,并求出该定值.(2)设||AB =,直线AP ,BP 分别交直线l :x =3于M ,N 两点,O 为坐标原点,试问:在x 轴上是否存在定点T ,使得O ,M ,N ,T 四点共圆?若存在,求出点T 的坐标;若不存在,请说明理由.【答案】(1)证明见解析,定值13-;(2)存在,定点11,03T ⎛⎫⎪⎝⎭.【分析】(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,然后利用斜率公式求200022000y y y x a x a x a ⋅=+--化简可得结果; (2)由题意先求出椭圆C 的方程为2213x y +=,设直线AP的方程为(y k x =+,则直线BP 的方程为1(3y x k =-,直线方程与椭圆方程联立可求出(3,3)M k,1N k ⎛⎫- ⎪⎝⎭,假设△MNO 的外接圆恒过定点T (t ,0),t ≠0,然后求出线段MN 的垂直平分线所在直线的方程和线段OT 的垂直平分线所在直线的方程,从而可求出圆心2t E ⎛⎪⎪⎝⎭,再由|OE |=|ME |,可求出t 的值,进而得O ,M ,N ,T 四点共圆 【详解】(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,所以直线AP 与BP 的斜率之积22022222200022222200001131x b a y y y b a c x a x a x a x a a a ⎛⎫- ⎪-⎝⎭⋅===-=-=-+--⎭=--⎝, 即直线AP ,BP 的斜率之积为定值13-.(2)存在.理由如下:由题意知2a =,得a =因为c a =c =所以b 2=1,所以椭圆C 的方程为2213x y +=.设直线AP的方程为(y k x =+,则直线BP的方程为1(3y x k=-.联立(3,y k x x ⎧=+⎪⎨=⎪⎩可得(3,3)M k +,同理可得1N k ⎛⎫ ⎪⎝⎭. 假设△MNO 的外接圆恒过定点T (t ,0),t ≠0, 因为线段MN的垂直平分线所在直线的方程为y =,线段OT 的垂直平分线所在直线的方程为2t x =,所以圆心2t E ⎛⎪ ⎪⎝⎭. 又|OE |=|ME |解得t =113.所以存在定点11,03T ⎛⎫⎪⎝⎭,使得O ,M ,N ,T 四点共圆.【点睛】此题考查直线与椭圆的位置关系,考查椭圆中的定点问题,考查计算能力,属于中档题16.在平面直角坐标系xOy 中,已知抛物线()2:20E y px p =>的焦点为F ,准线为l ,P 是抛物线E 上一点,且点P 的横坐标为2,3PF =. (1)求抛物线E 的方程;(2)过点F 的直线m 与抛物线E 交于A 、B 两点,过点F 且与直线m 垂直的直线n 与准线l 交于点M ,设AB 的中点为N ,若O 、M 、N 、F 四点共圆,求直线m 的方程.【答案】(1)24y x =(2))1y x =-【分析】(1)首先根据抛物线的定义和题中条件求出抛物线的焦准距,即可得到抛物线的方程;(2)首先设直线m 的方程,然后与抛物线联立,利用韦达定理求出点N 坐标,然后设直线n 的方程求出点M 的坐标,最后利用O 、M 、N 、F 四点共圆即可求出直线m 的方程. 【详解】(1)由抛物线定义,得232pPF =+=,解得2p =, 所以抛物线F 的方程为24y x =;(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=, 设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,由2114y x =,2224y x =,得()()()22222121212122424424444y y y y t y y x x t +--⨯-+=+===+, 所以()221,2N t t +,因为直线m 的斜率为1t,所以直线n 的斜率为t -, 则直线n 的方程为()1y t x =--,由()11x y t x =-⎧⎨=--⎩解得()1,2M t -,若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥, 则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得t =m 的方程为)1y x =-. 【点睛】本题主要考查了抛物线的定理,直线与抛物线的交点问题,属于一般题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四点共圆的应用
例1 如图1,已知P 为⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交AB 于E . 求证:∠APC =∠BPD .
例2 如图2,从⊙O 外一点P 引切线PA 、PB 和割线PDC ,从A 点作弦AE 平行于DC ,连结BE 交DC 于F ,求证:FC =FD .
例3 如图3,在△ABC 中,AB=AC ,AD ⊥BC ,∠B 的两条三等分线交AD 于E 、G ,交AC 于F 、H .求证:EH ∥GC .
P
P
例4 如图4,⊿ABC 为等边三角形,D 、E 分别为BC 、AC 边上的点,且BD=31BC,CE=3
1
AC,AD 与
BE 相交于P 点。

求证:CP ⊥AD
例5 如图5,AB 为半圆直径,P 为半圆上一点,PC ⊥AB 于C ,以AC 为直径的圆交PA 于D ,以
BC 为直径的圆交PB 于E ,求证:DE 是这两圆的公切线.
例6 AB 、CD 为⊙O 中两条平行的弦,过B 点的切线交CD 的延长线于G ,弦PA 、PB 分别交CD
于E 、F .求证:FG
FD
CF EF
例7 ABCD 为圆内接四边形,一组对边AB 和DC 延长交于P 点,另一组对边AD 和BC 延长交于Q
点,从P 、Q 引这圆的两条切线,切点分别是E 、F ,
(如图 7)求证:PQ 2=QF 2+PE 2.
例8 如图8,△ABC 的高AD 的延长线交外接圆于H ,以AD
为直径作圆和AB 、AC 分别交于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.
例9 如图9,D 为△ABC 外接圆上任意一点,E 、F 、G 为D 点到三边垂线的垂足,求证:E 、F 、G 三点在一条直线上.
例10 如图10,H 为△ABC 的垂心,H 1、H 2、 H 3为H 点关于各边的对称点,求证:A 、B 、 C 、H 1、H 2、H 3六点共圆.
11、已知PQRS 是圆内接四边形,∠PSR =90°,
过点
2
B
Q 作PR 、PS 的垂线,垂足分别为点H 、K.求证:HK 平分QS.
12.AB 为⊙O 的直径,点C 在⊙O 上且OC ⊥AB,P 为⊙O 上一点,位于点B 、C 之间,直线CP 与AB 的延长线交于点Q,过Q 作直线与AB 垂直,交直线AP 于点R. 求证:BQ =QR.
13.如图10,在△ABC 中,AD ⊥BC,BE ⊥CA,AD 与BE 交于点H,P 为 边AB 的中点,过点C 作CQ ⊥PH,垂足为Q.求证:2PE =PH ·PQ.
R。

相关文档
最新文档