《解释几何-第四版本》第四讲 柱面锥面旋转曲面跟二次曲面 讲解跟题目柱面锥面旋转曲面跟二次曲面
解析几何第4章.
第4章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。
解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。
2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。
解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z yy tx x tz z y y t x x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x , 此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。
解析几何_柱面、旋转曲面与二次曲面
x z (2)xOz 面上双曲线 2 2 1分别绕 x 轴和 z 轴; a c x x
绕 x 轴旋转
2
2
x2 y2 z2 1 2 2 a c
旋转双叶双曲面
y
o
z
o y
z
x z (1)xOz 面上双曲线 2 2 1 分别绕 x 轴和 z 轴; a c
绕 z 轴旋转
z y o
H x, y 0 R y, z 0 T x, z 0 或 或 z0 x0 y0
例 已知两球面的方程为
x y z 1 及 x y 1 z 1 1
2 2 2 2 2 2
求它们的交线C在xOy面上的投影方程.
z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
1. 椭圆柱面
x y 2 1 2 a b
z
2 2
2. 双曲柱面
又由于M1在母线上,所以又有:
x1 y1 z1 1 2 1 0
即 x1=2y1,z1=1,消去x1,y1,z1得所求旋转曲面的方程: 2(x2+y2+z2)-5(xy+yz+zx)+5(x+y+z)-7=0。
下面特殊的旋 转曲面
f ( y, z ) 0 曲线 C 绕 z轴 x 0
2
2
x y z 2 1 2 a c
2 2 2
旋转单叶双曲面
解析几何_柱面、旋转曲面与二次曲面
z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
1. 椭圆柱面
x y 2 1 2 a b
z
2 2
2. 双曲柱面
柱面
定义4.1.1 平行于定直线并沿定曲线移动 的直线所形成的曲面称为柱面. 这条定曲线叫 柱面的准线, 动直线叫柱面 的母线. 观察柱面的形 成过程:
母线
准 线
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z
母线L与x 轴平行.
例如抛物柱面
y - x2 = 0 0
x
z
C: xOy 平面上的抛物线
yz
x2 =
o
y
L:平行于z 轴
o
y x
圆柱面 x2 +z2= 1 C: xOz 平面上的圆 x2 +z2= 1
L:平行于y 轴
空间曲线在坐标面上的投影
1、概念
C:空间曲线 投影柱面S:以C为准线, 母线平行于坐标轴的柱面。
x z C S o y
C
投影C’:投影柱面与投影坐标面的交线。
2、求解步骤
解析几何第四版知识题目解析第四章
第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。
解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z即:0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==cz yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y t x x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。
2而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x消去t ,得到:010*******22=--+++z x xz z y x此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过又过准线上一点),,(1111z y x M ,且方向为{}1,1,1的直线方程为: ⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧+=+=+=t z z t y y tx x tz z t y y tx x 111111 将此式代入准线方程,并消去t 得到:013112)(5222=-++---++z y x zx yz xy z y x此即为所求的圆柱面的方程。
柱面锥面和旋转曲面ppt课件
.
S
建立旋转曲面的方程:
如图
得方程
规律:一般地,当坐标面上的曲线绕此坐标面里的一个坐标轴旋转时,为求得旋转曲面的方程,只需将曲线方程保留和旋转轴同名的坐标,以其余两坐标平方和的平方根代替方程中的另一个坐标.
例3.1.6 将圆
绕Z轴旋转,求所得旋转曲面的方程.
解:所求旋转曲面的方程为:
l
M1
S
旋转曲面又可看作以轴 l 为连心线的一族纬圆生成的曲面
特例--- 以直线为母线的旋转面
母线和轴共面时
圆柱面 (母线和轴线平行)
圆锥面 (母线和轴线相交 而不垂直)
平面 (母线和轴线正交)
母线和轴线异面且直母线 与轴线不垂直呢?
母线不是经线
单叶旋转双曲面
解:设P(x1,y1,z1)是母线上的任意点,因为旋转轴通过原点,所以过P的纬圆方程是:
(母线平行于Y轴的椭圆柱面)
(母线平行于x轴的双曲柱面)
(母线平行于y轴的抛物柱面)
注:上述柱面的方程都是二次的,都称为二次柱面。
1、锥面的概念
定义3.1.3 在空间通过一定点且与定曲线相交的一族直线所生成的曲面叫做锥面,这些直线都叫做锥面的母线,那个定点叫做锥面的顶点,定曲线叫做锥面的准线。
补充:
曲线 C
C
绕 z 轴
3、母线在坐标面而旋转轴为坐标轴的旋转曲面
曲线 C
C
绕z 轴
曲线 C
旋转一周得旋转曲面 S
C
S
M
N
z
P
y
z
o
绕 z轴
f (y1, z1)=0
M(x,y,z)
.
S
第四章 柱面、锥面、旋转曲面与二次曲面
主要内容 1、柱面 、 2、锥面 、 3、旋转曲面 、 4、椭球面 、 5、双曲面 、 6、抛物面 、
第一节
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 所形成的曲面称为柱面. 叫柱面的准线 准线, 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线 母线. 柱面的母线 F1 ( x , y , z ) = 0 设柱面的准线为 F ( x , y , z ) = 0 (1) 2 母线的方向数为X,Y,Z。如果 1(x1,y1,z1)为准线 母线的方向数为 。如果M 为准线 上一点,则过点M 上一点,则过点 1的母线方程为 x − x1 y − y1 z − z1 = = (2) X Y Z
z = ay
z
z = a(± x 2 + y 2 )
y x
平方得: z2 = a2 ( x2 + y2 ) 该旋转曲面叫做圆锥面, 其顶点在原点.
将下列各曲线绕对应的轴旋转一周, 例3 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程. 生成的旋转曲面的方程.
x z (1)双曲线 2 − 2 = 1分别绕 x 轴和 z 轴; ) a c
第三节 旋转曲面
一、. 旋转曲面 1、 定义 以一条平面曲线 绕其平面上的一 、 定义: 以一条平面曲线C绕其平面上的一 条直线旋转一周所成的曲面叫做旋 条直线旋转一周所成的曲面叫做 旋 转曲面, 这条定直线叫旋转曲面的 转曲面 轴. 曲线C称为放置曲面的母线 曲线 称为放置曲面的母线 称为放置曲面的 纬线
即
yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕z 轴旋
转一周的旋转曲面方程 转一周的旋转曲面方程. 旋转曲面方程
解析几何课件(吕林根 许子道第)
有向线段的方向表示向量的方向.
有向线段的长度表示向量的大小,
下一页
模为1的向量.
所有的零向量都相等.
零向量:
模为0的向量.
单位向量:
或
定义1.1.2 如果两个向量的模相等且方向相同,那么叫做相等向量.记为
=
定义1.1.3 两个模相等,方向相反的向量叫做互为反向量.
上一页
下一页
必有
一、平面的点法式方程
下一页
返回
平面的点法式方程
已知点
返回
5.5 二次曲线的主直径和主方向
5.7 应用不变量化简二次曲线方程
§1.1 向量的概念
定义1.1.1 既有大小又有方向的量叫做向量,或称矢量.
向量(矢量)既有大小又有方向的量.
向量的几何表示:
| |
向量的模:
向量的大小.
或
或
两类量: 数量(标量):可用一个数值来描述的量;
e3
.
,
,
3
2
1
这时
e
e
e
.
,
,
,
.
,
,
,
,
,
,
,
,
3
2
1
1
3
2
1
3
2
1
3
2
1
关系式
线性表示的
,
,
用
先求
取不共面的三向量
就可以了
三点重合
下只需证
两组对边中点分别为
其余
它的中点为
线为
的连
的中点
对边
一组
设四面体
证
e
e
柱面、锥面、旋转曲面与二次曲面
第四章柱面·锥面·旋转曲面与二次曲线教学目的:1.掌握消去参数法,能运用此法熟练地求出一般柱面、锥面、旋转曲面的方程.2.能识别母线平行于坐标轴的柱面方程,顶点在坐标原点的锥面方程,旋转轴为坐标轴的旋转曲面的方程.掌握求这些特殊位置的特殊曲面方程的方法,并能识别曲面的大致形状.3.掌握平行截线法,能运用此法讨论二次曲面的方程,认识曲面的形状.4.掌握椭球面、双曲面与抛物面的标准方程与主要性质.5.了解单叶双曲面与双曲抛物面的直纹性,并能掌握求直母线的方法.6.能根据给定条件,较准确地作出空间区域的简图.重点难点:1.柱面、锥面、旋转曲面的定义和一般方程的求法是重点,寻找柱面、锥面、旋转曲面的准线是难点.2.椭球面、双曲面与抛物面的标准方程、性质与形状是重点,一般二次曲面方程的灵活多样是难点.3.二次直纹面的性质及直母线方程求法是重点,证明单叶双曲面与双曲抛物面的一些性质难点.4.空间区域的作图是重点,其中在作空间区域时,分析并作出几个曲面的交线是难点.§4.1柱面一.柱面的定义空间中由平行于定方向且与定曲线相交的一族平行直线所产生的曲面叫柱面.柱面的方向:定方向;准线:定曲线;母线:一族平行线中的每一条直线.柱面由其准线和定方向唯一确定,但对于一柱面,准线不唯一.二.柱面的方程在空间直角坐标系下,柱面准线Γ方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F(1)母线的方向数X,Y,Z.即 {}Z Y X v ,,=(2)任取柱面准线Γ上一点),,(1111z y x M 则过此点的母线方程为Zz z Y y y X x x 111-=-=- 且有0),,(1111=z y x F ,0),,(1112=z y x F .从而消去参数111,,z y x 最后得到一个三元方程0),,(=z y x F ,这就是以⎩⎨⎧==0),,(0),,(21z y x F z y x F 为准线, 母线的方向数X,Y,Z 的柱面方程.三.例题讲解例1.柱面的准线方程为⎪⎩⎪⎨⎧=++=++2221222222z y x z y x 母线的方向数为-1,0,1.求这柱面的方程.解 设),,(1111z y x M 是准线上的点,那么过),,(1111z y x M 的母线为101111z z y y x x -=-=--, 且 ⎪⎩⎪⎨⎧=++=++2221212121212121z y x z y x (1) 设t z z y y x x =-=-=--101111,那么 ,1t x x +=y y =1,t z z -=1, 代入(1)得⎪⎩⎪⎨⎧=-+++=-+++2)(2)(21)()(222222t z y t x t z y t x 可得 0)(2=-t z ,即 z t = 求得柱面方程为 1)(22=++y t x . 例 2. 已知圆柱面的轴为 21211-+=--=z y x ,点(-1,-2,1)在此圆柱上, 求这柱面的方程.解法一 因为圆柱面的母线平行于其轴,所以母线的方向数即为轴的方向数-1,-2,-2.若能求出圆柱面的准线圆,问题即解决了.空间的圆总可以看成是某一球面与一平面的交线, 此圆柱面的准线圆可以看成是以轴上的点(0,-1,-1)为中心, 点(0,-1,-1)到已知点(-1,-2,1)的距离14=d 为半径的球面14)1()1(222=++-+z y x 与过知点(-1,-2,1)且垂直于轴的平面0322=---z y x 的交线,即准线圆的方程为⎩⎨⎧=---=-+-+032214)1()1(222z y x z y x设),,(111z y x 为准线圆上的点,那么14)1()1(212121=++-+z y x ,0322111=---z y x 且过的),,(111z y x 母线为221111--=--=-z z y y x x .消去参数111,,z y x 即得所求的圆柱面方程 0991818844558222=-+--++++z y yz xz xy z y x .解法二 将圆柱面看成是动点到轴线等距离的点的轨迹,这里的距离就是圆柱面的半径.轴的方向矢量为{}2,2,1--=v ,轴上的定点为)1,1,0(0-M ,而圆柱面上的点为)1,2,1(1-M ,所以{}2,3,110-=M M ,因此)1,2,1(1-M 到轴的距离为3117==d 再设),,(z y x M 为圆柱上任意点,那么有3117==d 即 3117)2()2(1211121221122222=-+-+--+-++--+-y x x x z y 化简整理得 0991818844558222=-+--++++z y yz xz xy z y x .定理4.1.1 在空间直角坐标系中,只含两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。
解析几何全册课件
(讨论旋转曲面)
(讨论柱面、二次曲面)
(1)已知曲面作为点的轨迹时,求曲面方程.
上一页
返回
空间曲线的参数方程
一、空间曲线的参数方程
§2.3 空间曲线的方程
下一页
返回
空间曲线的一般方程
曲线上的点都满足方程,不在曲线上的点不能同时满足两个方程.
下一页
返回
(1)向量混合积的几何意义:
关于混合积的说明:
上一页
下一页
返回
解
上一页
下一页
返回
式中正负号的选择保证结果为正.
上一页
返回
解
例1
上一页
下一页
返回
水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨迹.
曲面方程的定义:
曲面的实例:
§2.2 曲面的方程
下一页
返回
以下给出几例常见的曲面.
上一页
下一页
返回
解
设P点坐标为
所求点为
两向量夹角余弦的坐标表示式
由此可知两向量垂直的充要条件为:
上一页
下一页
返回
解
上一页
下一页
返回
证
上一页
下一页
返回
空间两向量的夹角的概念:
类似地,可定义向量与一轴或空间两轴的夹角.
特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值.
线为
的连
的中点
对边
一组
设四面体
证
e
e
e
AP
e
AD
e
AC
e
AB
P
4.1,4.2柱面和锥面
(6) 直线的射影式方程
X X z ( x0 z0 ) 表示的平面平行于oy轴 Z Z 在直角坐标系下又垂直 与坐标面xoz Y Y 方程 y z ( y0 z0 ) 表示的平面平行于ox轴 Z Z 在直角坐标系下又垂直 与坐标面 yoz
直线向坐标面所引的射影平面
x y a ① 例 画出 C : 2 2 x y 2 z 2 2a 2 ②
首先证: 以原点为顶点的锥面方程是 x , y , z 的齐次方程. 设锥面的准线为 C
D0
z
推论 关于 x x0 , y y0 , z z0 的齐次方程表示顶点在 ( x0 , y0 , z0 )的锥面.
F ( x, y, z ) 0 C : Ax By Cz D 0 O M ( x, y, z ) x y z 1 x1 y1 z1 t F ( x1 , y1 , z1 ) 0
为所求柱面方程
4 x 2z y 2 2 x z 5 5
2
M0 ( x0 , y0 , z0 )
C
l 考虑方程 F ( x , y ) 0 在 x y 平面上 它一般表示一条曲线C.
z
M ( x, y, z )
在空间直角坐标系中,以C为准线, 作母线平行于z轴的柱面Σ. 空间中任一点 M ( x , y , z ) M 在 x y平面上的投影为M1 ( x , y ,0)
三元方程中,如果不含z: F ( x , y ) 0 则它一定表示一个 母线平行于z轴的柱面. 反之,任何一个母线平行于z 轴的柱面, 它的方程中 一定不含z.
z
o x
y
证 设Σ是一个母线平行于z轴的柱面,
解析几何ppt第4章二次曲面的总结
4、椭球面
5、双曲面
它们都是中心二次曲面 它们的方程可以写成统一的形式:
Ax2 By2 Cz 2 1, ABC 0 .
(1)
当三平方项系数 A, B, C 均为正时,(1)表示椭球面;
当三平方项系数 A, B, C 中有两项为正,另一项为负,(1) 表示单叶双曲面;
当三平方项系数 A, B, C 中只有一项为正,另两项为负,(1) 表示双叶双曲面;
柱面锥面特例旋转曲面球面判别法重点常规方法求曲面方程旋转曲面的方程直接写出在空间直角坐标系中只含有两个元坐标的三元方程在空间直角坐标系中只含有两个元坐标的三元方程所表示的曲面是一个柱面它的母线平行于所所表示的曲面是一个柱面它的母线平行于所缺元缺元坐标坐标的同名坐标轴
CH4 二次曲面
柱面 锥面 特例 旋转曲面 球面
• 课本P147~148,习题1、2、8 • 课本P151,习题1、2、5 • 课本P158,习题1
非 直 纹 曲 面
椭球面 双叶双曲面 椭圆抛物面
Ax 2 By 2 Cz 2 1
A,B,C全正
Ax 2 By 2 Cz 2 1
A,B,C一正两负
Ax By 2 z AB 0
2 2
典型习题
3、旋转曲面判别法: “二个变量平方项的系数相同”
在空间直角坐标系中,当坐标面上的曲线绕此坐标面 里的一个坐标轴旋转时,为求得旋转曲面的方程,只需 将曲线方程保留与旋转轴同名的坐标,用其余两坐标平 方和的平方根代替方程中的另一个坐标。
“常规方法”求上述曲面(1、2、3)的方程
步骤: ⅰ) 写出这母线上任意一点 M1 x1, y1, z1 的纬圆方程 或母线族. ⅱ ) 写出参数 x1 , y1 , z1 的约束条件. ⅲ ) 消去参数得到所求旋转曲面的方程(或柱面、 锥面的方程).
柱面锥面旋转曲面与二次曲线
第四章 柱面·锥面·旋转曲面与二次曲线教学目的:1.掌握消去参数法,能运用此法熟练地求出一般柱面、锥面、旋转曲面的方程.2.能识别母线平行于坐标轴的柱面方程,顶点在坐标原点的锥面方程,旋转轴为坐标轴的旋转曲面的方程.掌握求这些特殊位置的特殊曲面方程的方法,并能识别曲面的大致形状.3.掌握平行截线法,能运用此法讨论二次曲面的方程,认识曲面的形状.4.掌握椭球面、双曲面与抛物面的标准方程与主要性质.5.了解单叶双曲面与双曲抛物面的直纹性,并能掌握求直母线的方法.6.能根据给定条件,较准确地作出空间区域的简图. 重点难点:1.柱面、锥面、旋转曲面的定义和一般方程的求法是重点,寻找柱面、锥面、旋转曲面的准线是难点.2. 椭球面、双曲面与抛物面的标准方程、性质与形状是重点,一般二次曲面方程的灵活多样是难点.3.二次直纹面的性质及直母线方程求法是重点,证明单叶双曲面与双曲抛物面的一些性质难点.4.空间区域的作图是重点,其中在作空间区域时,分析并作出几个曲面的交线是难点.§4.1 柱 面一.柱面的定义空间中由平行于定方向且与定曲线相交的一族平行直线所产生的曲面叫柱面. 柱面的方向:定方向;准线:定曲线;母线:一族平行线中的每一条直线. 柱面由其准线和定方向唯一确定,但对于一柱面,准线不唯一. 二.柱面的方程在空间直角坐标系下,柱面准线Γ方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F(1)母线的方向数X,Y,Z.即 {}Z Y X ,,=(2)任取柱面准线Γ上一点),,(1111z y x M 则过此点的母线方程为Zz z Y y y X x x 111-=-=- 且有0),,(1111=z y x F ,0),,(1112=z y x F .从而消去参数111,,z y x 最后得到一个三元方程0),,(=z y x F ,这就是以⎩⎨⎧==0),,(0),,(21z y x F z y x F 为准线, 母线的方向数X,Y,Z 的柱面方程.三.例题讲解例1.柱面的准线方程为⎪⎩⎪⎨⎧=++=++2221222222z y x z y x 母线的方向数为-1,0,1.求这柱面的方程.解 设),,(1111z y x M 是准线上的点,那么过),,(1111z y x M 的母线为101111z z y y x x -=-=--, 且 ⎪⎩⎪⎨⎧=++=++2221212121212121z y x z y x (1) 设t z z y y x x =-=-=--101111,那么 ,1t x x +=y y =1,t z z -=1, 代入(1)得⎪⎩⎪⎨⎧=-+++=-+++2)(2)(21)()(222222t z y t x t z y t x 可得 0)(2=-t z ,即 z t = 求得柱面方程为 1)(22=++y t x . 例 2. 已知圆柱面的轴为 21211-+=--=z y x ,点(-1,-2,1)在此圆柱上, 求这柱面的方程.解法一 因为圆柱面的母线平行于其轴,所以母线的方向数即为轴的方向数-1,-2,-2.若能求出圆柱面的准线圆,问题即解决了.空间的圆总可以看成是某一球面与一平面的交线, 此圆柱面的准线圆可以看成是以轴上的点(0,-1,-1)为中心, 点(0,-1,-1)到已知点(-1,-2,1)的距离14=d 为半径的球面14)1()1(222=++-+z y x 与过知点(-1,-2,1)且垂直于轴的平面0322=---z y x 的交线,即准线圆的方程为⎩⎨⎧=---=-+-+032214)1()1(222z y x z y x设),,(111z y x 为准线圆上的点,那么14)1()1(212121=++-+z y x ,0322111=---z y x 且过的),,(111z y x 母线为221111--=--=-z z y y x x .消去参数111,,z y x 即得所求的圆柱面方程 0991818844558222=-+--++++z y yz xz xy z y x .解法二 将圆柱面看成是动点到轴线等距离的点的轨迹,这里的距离就是圆柱面的半径.轴的方向矢量为{}2,2,1--=,轴上的定点为)1,1,0(0-M ,而圆柱面上的点为)1,2,1(1-M ,所以{}2,3,110-=M M ,因此)1,2,1(1-M 到轴的距离为3117==d 再设),,(z y x M 为圆柱上任意点,那么有3117==d 即 3117)2()2(1211121221122222=-+-+--+-++--+-y x x x z y 化简整理得 0991818844558222=-+--++++z y yz xz xy z y x .定理4.1.1 在空间直角坐标系中,只含两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。
第四章 柱面、锥面、旋转曲面与二次曲面
设柱面的准线为
FF12((xx,,
y, y,
z) z)
0 0
(1)
母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线
上一点,则过点M1的母线方程为
且有
x x1 y y1 z z1 (2)
X
Y
Z
F1(x1,y1,z1)=0,F2(x1,y1,z1)=0
(3)
从(2)(3)中消去x1,y1,z1得
这条定曲线叫柱面的准线 ,那族平行直线中的每一 直线,都叫做叫柱面的母 线.
母线
观察柱面的形成过程:
准
线
注
显然,柱面被它的准线和直母线方向完全确定.但是对于一个柱面,它的 准线并不是唯一的.
例如,任何—个与直母线不平行曲平面和柱面的交线部可以作为它的准 线.
准线不一定是平面曲线.
二. 求柱面方程
3、求过三条平行直线
x y z, x 1 y z 1, 与x 1 y 1 z 2
的圆柱面方程。
4、已知柱面的准线为 母线的方向平行于矢量
(u) x(u), y(u), z(u)
S X,Y, Z
试证明柱面的矢量式参数方程与坐标式参数 方程分别为:
与 式中的
x Y(u) vS
x x(u) Xv
Co
M1
y
x
z 对任意 , 点M (x, y, z)
l
的坐标也满足方程
x2 y2 R2
沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆
柱面. 其上所面
定义4.1.1在空间,由平行于定方向且与一条定曲线相交的一族平 行直线所产生的曲面叫做柱面.
How beautiful the sea is!
解析几何第四章柱面锥面及二次曲面
一、椭圆抛物面
x2 y2
z
2z
p2 q2
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
y
0
x
§4.6 抛物面
一、椭圆抛物面
z
x2 y2 2z
p2 q2
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
y
0
.
x
椭圆抛物面方程
x2 y2 z ( p 与 q 同号) 2 p 2q
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
椭圆抛物面的图形如下:
z
z
o y
x
xo
y
p 0, q 0
p 0, q 0
特殊地:当 p q时,方程变为
x2 y2 z ( p 0) 旋转抛物面 2p 2p
(由 xoz 面上的抛物线 x2 2 pz 绕 z 轴旋
转而成的)
z1 z
| y1 | MP x 2 y 2
Sz
o
N (0, y1 , z1 ) .
z1 C
y1
y
.
x
§4.3 旋转曲面
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
旋转一周得旋转曲面 S M(x,y,z) S
P M
N (0, y1 , z1 ) .
f (y1, z1)=0 .
z1 z
与平面 z z1 (z1 0) 的交线为圆.
x2
y2
2 pz1
z z1
当 z1变动时,这种圆 的中心都在 z 轴上.
一、双曲抛物面(马鞍面)
第4章柱面锥面旋转曲面与二次曲面小结
5 、若柱面的母线平行于某条坐标轴,则柱面方程的特 点是_________;
2 y 2 6 、曲面 x z 1 是由 _______ 绕 _________ 轴放 4
置一周所形成的; 7 、曲面 ( z a )2 x 2 y 2 是由______________ 绕 _____ 轴旋转一周所形成的; 8 、方程 x 2 在平面解析几何中表示___________ 在空 间解析几何中表示___________________; 9 、方 程 x 2 y 2 4 在 平 面 解 析 几 何 中 表 示 _______________ , 在 空 间 解 析 几 何 中 表 示 _______________.
第四章 思考题
指出下列方程在平面解析几何中和空间解析几 何中分别表示什么图形?
(1) x 2; ( 3) y x 1.
( 2) x 2 y 2 4;
思考题解答
方程
x2
x2 y2 4
y x 1Biblioteka 平面解析几何中空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0),
取二异面直线的公垂线为 z 轴,公垂线中点为原点; x 轴与二异面直线的夹角相等,二异面直线与z 轴的 交点为(0,0,a)和(0,0, -a),则两异面直线方程为:
y tan x 0 y tan x 0 z a z a x y za x y za , , 1 tan 0 1 tan 0
二、画出下列各方程所表示的曲面: a a 1、( x ) 2 y 2 ( ) 2 ; 2 2 x2 z2 2、 1 ; 9 4 3、 z 2 x 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1 ( x, F2 (x,
y) z)
0 0
(2)
那么(2)与(1)是两个等价的方程组,也就 是(2)表示的曲线与(1)是同一条曲线。从而
曲面 F1(x, y) 0 与曲面 F2(x, z) 0 都通过已知曲线(1) 同理方程 F3(y, z) 0 也通过已知曲线(1)。
FF12((xx,,
y, y,
z) z)
0 0
(1)
母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为
x x1 y y1 z z1 (2)
X
Y
Z
且有
F1(x1,y1,z1)=0,F2(x1,y1,z1)=0
(3)
从(2)(3)中消去x1,y1,z1得
取曲面 F(x, y) 0 与xOy面的交线
F(x, y) 0
z0
(1)
作准线,z轴的方向 0,0,1 为母线的方向,来建立
柱面方程。
任取准线上的一点 M1(x1, y1, z1) ,过 M1 的母线
方程为
x x1 y y1 z z1
0
0
1
即
x
y
x y 1 z 1 1 2 2
点(1,-2,1)在此圆柱面上,求这个柱面的方程。
定理4.1.1 在空间直角坐标系中,只含两个元(坐标) 的三元方程所表示的曲面是一个柱面,它的母线平行于 所缺元(坐标)的同名坐标轴。
证明:我们不妨证明方程 F(x, y) 0 是母线平
行于Z轴的柱面。
我们把曲面 F1(x, y) 0 称为空间曲线(1)对xOy坐 标面的射影柱面,而曲线
F1
(
x, y) z 0
0
称为空间曲线(1)在xOy坐标面上的射影曲线。
同理,曲面 F2(x, z) 0 与曲面 F3( y, z) 0 分别叫做
方程(1)对xOz坐标面与yOz坐标面射影的射影柱面
F(x,y,z)=0
这就是以(1)为准线,母线的方向数为X,Y,Z的 柱面的方程。
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
平面
y
y x
从柱面方程看柱面的特征:
只含 x, y 而缺 z 的方程 F ( x, y) 0,在
空间直角坐标系中表示母线平行于 z 轴的柱
面,其准线为xoy面上曲线C . (其他类推)
z2 c2
0
(二次锥面)
例2:已知圆锥面的顶点为(1,2,3),轴垂直于平面 2x+2y-z+1=0,母线与轴成 30o 角,试求这圆锥面 的方程。
解:设 M1(x1, y1, z1) 为任意母线上的一点,那么过 M1
点的母线的方向向量 r x 1, y 2, z 3
而在直角坐标系下,圆锥面的轴线的方向就是平面
实 例
y2 b2
z2 c2
1
x2 a2
y2 b2
1
椭圆柱面 母线// x
轴
双曲柱面母线// z 轴
x2 2 pz 抛物柱面母线// y 轴
例1、柱面的准线方程为
x2 y 2 z 2 1
2
x
2
2y2
z2
2
而母线的方向数为-1,0,1,求这柱面的方程。
例2、已知圆柱面的轴为
x1 y1
(2)
又因为点 M1(x1 , y1, 0) 在准线(1)上,,所以又有
F (x1, y1) 0
(3)
将(2)代入(3)消去参数 x1, y1 ,得到所求的
柱面方程为
F(x, y) 0
同理, G( y, z) 0 与 H(z, x) 0 分别表示母线平行于
X轴和y轴的柱面。
z0
为曲线L在xOy坐标面上的射影曲线
曲线L也可以看成是 x2 z2 4z
x2
4y
0
作业P147:1,3,8(1),(2)
第二节 锥面
一、锥面
1、定义 在空间,通过一定点且与定曲线相交的一族
直线所产生的曲面称为锥面,这些直线都称为锥面的
母线,定点称为锥面的顶点,定曲线称为锥面的准线。
y0
xOz面上的射影柱面,曲线
x2 z2 4z
y0
为曲线L在xOz坐标面上的射影曲线
从方程组
2x2 z2 4y 4z
L:
x2
3z2
8y
12z
消去z,得 x2 4y 0 ,这就是空间曲线L在
xOy面上的射影柱面,曲线
x2 4y 0
方程
x2 a2
y2 b2
1,
x2 a2
y2 b2
1,
y2 2 px
分别
2.空间曲线的射影柱面
设空间曲线为
F(x, y, z) 0
L : G(x, y, z) 0
(1)
依次从(1)中消去一个元,可得
F1 ( x, y) 0
F2 ( x, z) 0
F3 ( y, z) 0
而曲线
F2
(x, z) y0
0
与曲线
F3
( y, z) x0
0
分别叫做曲线(1)在xOz坐标面与yOz坐标面
上的射影曲线。
例:从方程组 2x2 z2 4y 4z
L:
x2
3z2
8y 12z
消去y,得 x2 z2 4z ,这就是空间曲线L在
2、锥面的方程
设锥面的准线为
F1(x, y, z) 0 F2 (x, y, z) 0
(1)
顶点为A(x0,y0,z0),如果M1(x1,y1,z1)为准线上任一点, 则锥面过点M1的母线为:
x x0 y y0 z z0 (2) x1 x0 y1 y0 z1 z0
第四章 柱面、锥面、旋转曲面与二次曲面
主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面 7、单叶双曲面与双曲抛物面的直母线
第一节 柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面.
这条定曲线 C 叫柱面的准线,动直线 L 叫
柱面的母线. 设柱面的准线为
且有 F1(x1,y1,z1)=0 F2(x1,y1,z1)=0
(3)
从(2)(3)中消去参数x1,y1,z1得三元方程
F(x,y,z)=0
这就是以(1)为准线,以A为顶点的锥面方程。
例1、求顶点在原点,准线为
x2
a
2
y2 b2
1
z c
的锥面的方程。
x
2
答: a2
y2 b2