第二部分解析几何第四章柱面、锥面、旋转曲面与二次曲面第五节双曲面课件

合集下载

解析几何_柱面、旋转曲面与二次曲面

解析几何_柱面、旋转曲面与二次曲面

x z (2)xOz 面上双曲线 2 2 1分别绕 x 轴和 z 轴; a c x x
绕 x 轴旋转
2
2
x2 y2 z2 1 2 2 a c
旋转双叶双曲面
y
o
z
o y
z
x z (1)xOz 面上双曲线 2 2 1 分别绕 x 轴和 z 轴; a c
绕 z 轴旋转
z y o
H x, y 0 R y, z 0 T x, z 0 或 或 z0 x0 y0
例 已知两球面的方程为
x y z 1 及 x y 1 z 1 1
2 2 2 2 2 2
求它们的交线C在xOy面上的投影方程.
z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
1. 椭圆柱面
x y 2 1 2 a b
z
2 2
2. 双曲柱面
又由于M1在母线上,所以又有:
x1 y1 z1 1 2 1 0
即 x1=2y1,z1=1,消去x1,y1,z1得所求旋转曲面的方程: 2(x2+y2+z2)-5(xy+yz+zx)+5(x+y+z)-7=0。
下面特殊的旋 转曲面
f ( y, z ) 0 曲线 C 绕 z轴 x 0
2
2
x y z 2 1 2 a c
2 2 2
旋转单叶双曲面

解析几何课件(吕林根许子道第四版)

解析几何课件(吕林根许子道第四版)

下一页
返回
定理1.4.2 如果向量e1, e2不共线,那么向量 r与
e1 , e2共面的充要条件是 r可以用向量 e1 , e2线性表示,
或者说向量 r可以分解成e1 , e2的线性组合,即
r xe1 ye2
(1.4-2)
并且系数x, y被e1 , e2 , r唯一确定. 这时e1 , e2叫做平面上向量的基底 . 定理1.4.3 如果向量e1 , e2 , e3不共面,那么空间
OC OA OB
下一页
返回
B
C
O
A
这种求两个向量和的方法叫做平行四边形法则
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
a

b

b

a.
(2)结合律:
a

b

c

(a

b)

c
a

(b

c).
(3)
a

(a)

0.
上一页 下一页
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
F
P1
e2
C
AB e1 , AC e2 , AD e3 ,
在不全为零的 n个数1 , 2 ,, n使得
1 a1 2 a2 n an=0,
(1.4 4)

解析几何课件(第五版)精选全文

解析几何课件(第五版)精选全文
化简得
所求平面方程为
上一页
返回

§3.2 平面与点的相关位置
下一页
返回
上一页
下一页
返回
点到平面距离公式
上一页
下一页
返回
在第一个平面内任取一点,比如(0,0,1),
上一页
返回
定义
(通常取锐角)
两平面法向量之间的夹角称为两平面的夹角.
§3.3 两平面的相关位置
下一页
返回
按照两向量夹角余弦公式有
§1.5 标架与坐标
§1.7 两向量的数性积
§1.9 三向量的混合积
§1.8 两向量的矢性积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.4 空间曲线的方程
§2.3 母线平行与坐标轴的柱面方程
第三章 平面与空间直线
注意 空间曲面的参数方程的表达式不是惟一的.
抛物柱面
平面
抛物柱面方程:
平面方程:
三、母线平行与坐标轴的柱面方程
下一页
返回
从柱面方程看柱面的特征:
(其他类推)
实 例
椭圆柱面,
双曲柱面 ,
抛物柱面,
母线// 轴
母线// 轴
母线// 轴
上一页
下一页
返回
a
b
椭圆柱面
上一页
下一页
返回
y
平面的点法式方程
平面上的点都满足上方程,不在平面上的点都不满足上方程,上方程称为平面的方程,平面称为方程的图形.
其中法向量
已知点
上一页
下一页
返回

所求平面方程为
化简得
上一页
下一页

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)
上一页 下一页
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2

柱面锥面和旋转曲面ppt课件

柱面锥面和旋转曲面ppt课件
f (y1, z1)=0
.
S
建立旋转曲面的方程:
如图
得方程
规律:一般地,当坐标面上的曲线绕此坐标面里的一个坐标轴旋转时,为求得旋转曲面的方程,只需将曲线方程保留和旋转轴同名的坐标,以其余两坐标平方和的平方根代替方程中的另一个坐标.
例3.1.6 将圆
绕Z轴旋转,求所得旋转曲面的方程.
解:所求旋转曲面的方程为:
l
M1
S
旋转曲面又可看作以轴 l 为连心线的一族纬圆生成的曲面
特例--- 以直线为母线的旋转面
母线和轴共面时
圆柱面 (母线和轴线平行)
圆锥面 (母线和轴线相交 而不垂直)
平面 (母线和轴线正交)
母线和轴线异面且直母线 与轴线不垂直呢?
母线不是经线
单叶旋转双曲面
解:设P(x1,y1,z1)是母线上的任意点,因为旋转轴通过原点,所以过P的纬圆方程是:
(母线平行于Y轴的椭圆柱面)
(母线平行于x轴的双曲柱面)
(母线平行于y轴的抛物柱面)
注:上述柱面的方程都是二次的,都称为二次柱面。
1、锥面的概念
定义3.1.3 在空间通过一定点且与定曲线相交的一族直线所生成的曲面叫做锥面,这些直线都叫做锥面的母线,那个定点叫做锥面的顶点,定曲线叫做锥面的准线。
补充:
曲线 C
C
绕 z 轴
3、母线在坐标面而旋转轴为坐标轴的旋转曲面
曲线 C
C
绕z 轴
曲线 C
旋转一周得旋转曲面 S
C
S
M
N
z
P
y
z
o
绕 z轴
f (y1, z1)=0
M(x,y,z)
.
S

曲面及其方程、二次曲面-PPT

曲面及其方程、二次曲面-PPT
8
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放

2-5 旋转面、柱面和锥面

2-5 旋转面、柱面和锥面
轴距离相等于是51上页下页结束母线是过z轴的坐标平面yz平面xz平面上的一条曲线5129反之形如的方程柱坐标系中形如的方程的图像一定是以上页下页结束51轴的坐标平面上的一条曲线的旋转面的方程为即在该曲线在坐标平面上的方程中保留与旋转轴同名的变量不动而把另一个变量换成与旋转轴不同名的另两个变量的平方和的平方根
a
y
x
上页
下页
结束
5.1 旋转面
下面求其方程
y z yz 平面上的双曲线 2 2 1 绕虚轴 z 轴旋转 a b 2 2 2 x y z 得到旋转单叶双曲面方程 2 2 2 1 a a b 2 2 y z yz 平面上的双曲线 2 2 1 绕实轴 z 轴旋转 a b 2 2 2 x y z 得到旋转双叶双曲面方程 2 2 2 1 a a b
上页 下页 结束
x
5.1 旋转面
圆 x R) 2 y 2 r 2 ( R r 0) 绕 y轴 旋转所成曲面 ( y
o
r
R
x
上页
下页
结束
5.1 旋转面
y
o
x
z上页 下页 结束5.1 旋转面y
o
x
环面方程
或 ( x 2 y 2 z 2 R 2 r 2 ) 2 4R 2 ( x 2 z 2 )
上页 下页 结束
2
2
5.1 旋转面
抛物线绕它的轴旋转得到的旋转面称为旋转抛 物面. 它具有很好的光学性质: 其焦点处射出的 光线被它反射为平行光束. 用于探照灯、车灯.
z
yz 平面上的抛物线 y2 = 2pz (p > 0)
y
绕对称轴 z 轴旋转得到旋转 抛物面方程为 x2 + y2 = 2pz .

柱面、锥面、旋转曲面与二次曲面

柱面、锥面、旋转曲面与二次曲面

第四章柱面·锥面·旋转曲面与二次曲线教学目的:1.掌握消去参数法,能运用此法熟练地求出一般柱面、锥面、旋转曲面的方程.2.能识别母线平行于坐标轴的柱面方程,顶点在坐标原点的锥面方程,旋转轴为坐标轴的旋转曲面的方程.掌握求这些特殊位置的特殊曲面方程的方法,并能识别曲面的大致形状.3.掌握平行截线法,能运用此法讨论二次曲面的方程,认识曲面的形状.4.掌握椭球面、双曲面与抛物面的标准方程与主要性质.5.了解单叶双曲面与双曲抛物面的直纹性,并能掌握求直母线的方法.6.能根据给定条件,较准确地作出空间区域的简图.重点难点:1.柱面、锥面、旋转曲面的定义和一般方程的求法是重点,寻找柱面、锥面、旋转曲面的准线是难点.2. 椭球面、双曲面与抛物面的标准方程、性质与形状是重点,一般二次曲面方程的灵活多样是难点.3.二次直纹面的性质及直母线方程求法是重点,证明单叶双曲面与双曲抛物面的一些性质难点.4.空间区域的作图是重点,其中在作空间区域时,分析并作出几个曲面的交线是难点.§4.1柱面一. 柱面的定义空间中由平行于定方向且与定曲线相交的一族平行直线所产生的曲面叫柱面.柱面的方向:定方向;准线:定曲线;母线:一族平行线中的每一条直线.柱面由其准线和定方向唯一确定,但对于一柱面,准线不唯一.二.柱面的方程在空间直角坐标系下,柱面准线方程(1) 母线的方向数X,Y,Z.即(2) 任取柱面准线上一点则过此点的母线方程为且有,.从而消去参数最后得到一个三元方程,这就是以为准线, 母线的方向数X,Y,Z的柱面方程.三.例题讲解例1.柱面的准线方程为母线的方向数为-1,0,1.求这柱面的方程.解设是准线上的点,那么过的母线为, 且(1)设,那么,, 代入(1)得可得,即求得柱面方程为.例 2. 已知圆柱面的轴为,点(-1,-2,1)在此圆柱上, 求这柱面的方程.解法一因为圆柱面的母线平行于其轴,所以母线的方向数即为轴的方向数-1,-2,-2.若能求出圆柱面的准线圆,问题即解决了.空间的圆总可以看成是某一球面与一平面的交线, 此圆柱面的准线圆可以看成是以轴上的点(0,-1,-1)为中心, 点(0,-1,-1)到已知点(-1,-2,1)的距离为半径的球面与过知点(-1,-2,1)且垂直于轴的平面的交线,即准线圆的方程为设为准线圆上的点,那么,且过的母线为.消去参数即得所求的圆柱面方程.解法二将圆柱面看成是动点到轴线等距离的点的轨迹,这里的距离就是圆柱面的半径.轴的方向矢量为,轴上的定点为,而圆柱面上的点为,所以,因此到轴的距离为再设为圆柱上任意点,那么有即化简整理得.定理4.1.1 在空间直角坐标系中,只含两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。

4.1,4.2柱面和锥面

4.1,4.2柱面和锥面
方程 x
(6) 直线的射影式方程
X X z ( x0 z0 ) 表示的平面平行于oy轴 Z Z 在直角坐标系下又垂直 与坐标面xoz Y Y 方程 y z ( y0 z0 ) 表示的平面平行于ox轴 Z Z 在直角坐标系下又垂直 与坐标面 yoz
直线向坐标面所引的射影平面
x y a ① 例 画出 C : 2 2 x y 2 z 2 2a 2 ②
首先证: 以原点为顶点的锥面方程是 x , y , z 的齐次方程. 设锥面的准线为 C
D0
z
推论 关于 x x0 , y y0 , z z0 的齐次方程表示顶点在 ( x0 , y0 , z0 )的锥面.
F ( x, y, z ) 0 C : Ax By Cz D 0 O M ( x, y, z ) x y z 1 x1 y1 z1 t F ( x1 , y1 , z1 ) 0
为所求柱面方程
4 x 2z y 2 2 x z 5 5
2
M0 ( x0 , y0 , z0 )
C
l 考虑方程 F ( x , y ) 0 在 x y 平面上 它一般表示一条曲线C.
z

M ( x, y, z )
在空间直角坐标系中,以C为准线, 作母线平行于z轴的柱面Σ. 空间中任一点 M ( x , y , z ) M 在 x y平面上的投影为M1 ( x , y ,0)
三元方程中,如果不含z: F ( x , y ) 0 则它一定表示一个 母线平行于z轴的柱面. 反之,任何一个母线平行于z 轴的柱面, 它的方程中 一定不含z.
z

o x
y
证 设Σ是一个母线平行于z轴的柱面,

柱面锥面旋转曲面与二次曲面

柱面锥面旋转曲面与二次曲面

第10页/共31页
例1、柱面的准线方程为
x2 y 2 z 2 1 2x2 2 y 2 z 2 2
而母线的方向数为-1,0,1,求这柱面的方程。
例2 已知圆柱面的轴为
x y 1 z 1 1 2 2
点 (M11,-2,1)在此圆柱面上,求这个圆柱面
的方程
第11页/共31页
例3 柱面的准线是xoy平面的圆周(中心在原点,半径 为1),母线平行于直线l:x y z,求此柱面方程。
重点难点:柱面方程的求法.
空间曲线在坐标面上投影
第6页/共31页
一. 概念
z
引例. 分析方程
表示怎样的曲面 .
解:在 xoy 面上, 在圆C上任取一点
平行 z 轴的直线 l ,
M
表示圆C,
M1(x, y,0) , 过此点作
Co
M1
y
x
z 对任意 , 点M (x, y, z)
l
的坐标也满足方程
x2 y2 R2
例1: 方程 y2 =2x 表示.母线平行于 z 轴的柱面,
它的准线是xoy面上的抛物线y2 =2x,
该柱面叫做抛物柱面.
z
y
y2 =2x
o
x
第13页/共31页
例2: 方程 xy = 0表示.
母线平行于 z 轴的柱面, 它的准线是xoy面上的直线xy = 0, 所以它是过z轴 的平面.
z
o
y
xy = 0
解: 联立两个方程消去 z ,得
2x2 4( y1)2 1 2
这是母线平行于z 轴的椭圆柱面,两球面的交线C在xOy面上的投影 曲线方程为
2 x 2 4 ( y 1 ) 2 1
2

柱面锥面旋转曲面与二次曲面

柱面锥面旋转曲面与二次曲面

z

y12 2q

y y1
它的轴平行于z 轴
顶点

0,
y1 ,
y12 2q

(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
x2 y2 z ( p 与 q 同号) 2 p 2q
椭圆抛物面
用截痕法讨论: 设 p 0, q 0 (1)用坐标面 xoy (z 0) 与曲面相截
截得一点,即坐标原点 O(0,0,0)
原点也叫椭圆抛物面的顶点.
与平面 z z1 (z1 0) 的交线为椭圆.
x2

(3)
从(2)(3)中消去参数x1,y1,z1得三元方程
F(x,y,z)=0
这就是以(1)为准线,以A为顶点的锥面方程。
例1、求顶点在原点,准线为
x2 y2

a
2
b2
1
z c
的锥面的方程。
x
2
y2
z2
答: a2 b2 c2 0
(二次锥面)
齐次方程:
设λ 为实数,对于函数f(x,y,z),如果有 f(tx,ty,tz)=tλf(x,y,z)
y, y,
z) z)

0 0
(1)
顶点为A(x0,y0,z0),如果M1(x1,y1,z1)为准线上任一点, 则锥面过点M1的母线为:
x x0 y y0 z z0 (2) x1 x0 y1 y0 z1 z0
且有 F1(x1,y1,z1)=0 F2(x1,y1,z1)=0
又由于M1在母线上,所以又有:

柱面锥面旋转曲面与二次曲面

柱面锥面旋转曲面与二次曲面
定义4.3.1 在空间,一条曲线 绕着定直线l 旋转一周所生成的曲面叫做旋 转曲面,或称回转曲面。曲线 叫作旋转曲面的母线,定直线 l 叫做旋 转曲面的旋转轴,简称为轴。 如图4-5,旋转曲面的母线 上的任意点 M 1 在旋转时形成一个圆,这个圆 就是通过点 M 1 且垂直于轴 l 的平面与旋转曲面的交线,我们把它叫做 纬圆或纬线。在通过旋转轴l 的平面上,以l 为界的每个半平面都与曲面 交成一条曲线,这些曲线显然在旋转中都能彼此重合,这曲线叫作旋转 曲面的经线。 现在,来球旋转曲面的方程。 在空间直角坐标系下,设旋转曲面的母线为:
x0
绕它的对称轴旋转的旋转曲面方程为
x 2 y 2 2 pz
曲面(4.3-5)叫做旋转抛物面(图4-11)。
例5 : 将圆
( y b) 2 z 2 a 2 : , (b a 0) x0
(20)
(图4-12(a))绕 z 轴旋转,求所得旋转曲面的方程。 解:因为绕 z 轴旋转,所以在方程( y b) 2 z 2 a 2 中保留 z 不变,而 y 用 x 2 y 2 代,就得将圆(20)绕 z 轴旋转而成的旋转曲面的方程为
x0
绕虚轴旋转的旋转曲面的方程为
x2 y 2 z 2 2 2 1 2 b b c
z
绕实轴旋转的旋转曲面方程为
y2 x2 z 2 1 b2 c 2 c2
x
y
曲面(4.3-3)叫做单叶旋转双曲面(图4-9),曲面 (4.3-4)叫做双叶旋转双曲面(图4-10)。 2 y 例4 将抛物线 2 pz
X ( x x1 ) Y ( y y1 ) Z ( z z1 ) 0 ( x x )2 ( y y )2 ( z z )2 0 0 0 ( x x )2 ( y y )2 ( z z )2 1 0 1 0 1 0

解析几何ppt第4章二次曲面的总结

解析几何ppt第4章二次曲面的总结

4、椭球面
5、双曲面
它们都是中心二次曲面 它们的方程可以写成统一的形式:
Ax2 By2 Cz 2 1, ABC 0 .
(1)
当三平方项系数 A, B, C 均为正时,(1)表示椭球面;
当三平方项系数 A, B, C 中有两项为正,另一项为负,(1) 表示单叶双曲面;
当三平方项系数 A, B, C 中只有一项为正,另两项为负,(1) 表示双叶双曲面;
柱面锥面特例旋转曲面球面判别法重点常规方法求曲面方程旋转曲面的方程直接写出在空间直角坐标系中只含有两个元坐标的三元方程在空间直角坐标系中只含有两个元坐标的三元方程所表示的曲面是一个柱面它的母线平行于所所表示的曲面是一个柱面它的母线平行于所缺元缺元坐标坐标的同名坐标轴
CH4 二次曲面
柱面 锥面 特例 旋转曲面 球面
• 课本P147~148,习题1、2、8 • 课本P151,习题1、2、5 • 课本P158,习题1
非 直 纹 曲 面
椭球面 双叶双曲面 椭圆抛物面
Ax 2 By 2 Cz 2 1
A,B,C全正
Ax 2 By 2 Cz 2 1
A,B,C一正两负
Ax By 2 z AB 0
2 2

典型习题
3、旋转曲面判别法: “二个变量平方项的系数相同”
在空间直角坐标系中,当坐标面上的曲线绕此坐标面 里的一个坐标轴旋转时,为求得旋转曲面的方程,只需 将曲线方程保留与旋转轴同名的坐标,用其余两坐标平 方和的平方根代替方程中的另一个坐标。
“常规方法”求上述曲面(1、2、3)的方程
步骤: ⅰ) 写出这母线上任意一点 M1 x1, y1, z1 的纬圆方程 或母线族. ⅱ ) 写出参数 x1 , y1 , z1 的约束条件. ⅲ ) 消去参数得到所求旋转曲面的方程(或柱面、 锥面的方程).

解析几何第四章柱面锥面及二次曲面

解析几何第四章柱面锥面及二次曲面

一、椭圆抛物面
x2 y2
z
2z
p2 q2
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
y
0
x
§4.6 抛物面
一、椭圆抛物面
z
x2 y2 2z
p2 q2
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
y
0
.
x
椭圆抛物面方程
x2 y2 z ( p 与 q 同号) 2 p 2q
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
椭圆抛物面的图形如下:
z
z
o y
x
xo
y
p 0, q 0
p 0, q 0
特殊地:当 p q时,方程变为
x2 y2 z ( p 0) 旋转抛物面 2p 2p
(由 xoz 面上的抛物线 x2 2 pz 绕 z 轴旋
转而成的)
z1 z
| y1 | MP x 2 y 2
Sz
o
N (0, y1 , z1 ) .
z1 C
y1
y
.
x
§4.3 旋转曲面
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
旋转一周得旋转曲面 S M(x,y,z) S
P M
N (0, y1 , z1 ) .
f (y1, z1)=0 .
z1 z
与平面 z z1 (z1 0) 的交线为圆.
x2
y2
2 pz1
z z1
当 z1变动时,这种圆 的中心都在 z 轴上.
一、双曲抛物面(马鞍面)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档