清华大学-理论力学-习题解答-2-34

合集下载

理论力学答案完整版(清华大学出版社)1

理论力学答案完整版(清华大学出版社)1
意二力杆和三力平衡汇交定理的应用。不能凭主观想象画约束力。
第一章力和约束 习题解答
1-1 求 图 示 空 间 汇 交 力 系 的 合 力 。 已 知 F1 = 100N , F2 = 200N , F3 = 300N , F4 = 400N ,方向如图示。如果仅改变力 F4 的方向,能否使此力系成为平衡力系?为什么?
解:按合力投影定理计算合力在 x, y, z 轴上的投影: FRx = F1 cosϕ1 + F2 sin γ 2 cosϕ2 − F4 sin2 30o = 111.1 (N); FRy = F2 sin γ 2 sinϕ2 + F3 + F4 sin 30o cos30o
= 601.1 (N); FRz = −F1 sinϕ1 − F2 cosγ 2 sinϕ2 + F4 cos30o
题 1-9(a)图 (b)按三力平衡汇交定理画出整体的受力图,然后依次画出杆 CD、杆 AB、轮 D 的受力图。
题 1-9(b)图
5
(c)折杆 BC 为二力构件,约束力方向一定是沿着 BC 连线。因力偶只能与力偶平衡,所 以,铰链 A 和 B 处的约束力一定互相平行而组成力偶。
题 1-9(c)图 (d)图示结构中,杆 CE 为二力杆,其余杆件的受力按力偶平衡理论确定。
对 x, y, z 轴的力矩和,以及对坐标原点 O 的力矩和。
解:平面 abc 的法向量为 n = 1 i + 1 j + 1 k ,力偶矢为 ab c
M = Mn0 , 其中 i, j,k, n0 依次为 x, y, z, n 方向的单位向
量。力 F 表为 F = Fξ 0
其中ξ 0 为ξ = 1 (a i + b j) − ck 方向的单位向量。

理论力学答案完整版(清华大学出版社)9

理论力学答案完整版(清华大学出版社)9

F1 = F1(sinϑ i − cosϑ j) , F2 = F2i
点 A 和 B 的坐标及其变分为
rA = −(l1 − l2 )cosϑ i + (l1 + l2 )sinϑ j

rB = −2l1 cosϑ i
δrA = (l1 − l2 )sinϑ ⋅δϑ i + (l1 + l2 )cosϑ ⋅δϑ j ,
Fδ re − G1δ ra = 0 按速度合成定理,虚位移存在如下关系:δ ra = δ re tan β ,于是
(a)
题 9-9 图
导出 F = G1 tan β .
(2)水平面有摩擦时,当水平力 F 较小,斜面 D 有向左运动趋势,此时摩擦力方向向右,
临界平衡时,虚功方程为
(F + ) Fmax δ re − G1δ ra = 0 , 其中 Fmax = (G1 + G2 ) f 。求得: F ≥ G1 tan β − (G1 + G2 ) f .
i =1
解题要领 1) 对于自由度不为零的系统,求其平衡时主动力满足的关系可用虚功原理. 2) 对于自由度为零的系统,为求其约束力,可以依次解除一个约束,使自由度为 1,即将
此约束力作为主动力应用虚功原理. 3) 独立的坐标变分个数与系统的自由度相同,可以用解析或虚速度的方法建立不独立的坐
标变分满足的关系.
三 广义坐标表示的虚位移原理
广义坐标:确定质点系位形的独立坐标。
虚功原理的广义坐标表述:受理想约束的质点系,其平衡的充分必要条件是系统所有与广义
坐标对应的广义力为零
Qj = 0 ( j = 1,2,L, m)
∑ 其中
Qj
=

清华大学版理论力学课后习题答案大全第10章动能定理及其应用习题解

清华大学版理论力学课后习题答案大全第10章动能定理及其应用习题解

CA(a)ωO(a)第10章动能定理及其应用10-1计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。

在图示位置时,若已知圆盘上A、B 两点的速度方向如图示,B 点的速度为v B ,θ =45º(图a )。

2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。

3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。

细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。

解:1.2222221632(2121)2(212121B B B C C C mv r v mr v m J mv T =⋅+=+=ω2.222122222214321(21212121vm v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。

现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。

当杆与铅垂线的夹角为ϕ时,试求系统的动能。

解:图(a )BA T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕω⋅⋅+⋅++++=l g W l l v l v l g W v g W ]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。

齿轮II 通过匀质的曲柄OC 带动而运动。

曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。

试求行星齿轮机构的动能。

《理论力学》(范钦珊)习题解答第2篇第46章.doc

《理论力学》(范钦珊)习题解答第2篇第46章.doc

(b)第2篇 工程运动学基础第4章 运动分析基础4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。

已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2π,试确定小环 A的运动规律。

解:Rv a a 2ns in ==θ,θs in 2R v a =θθt an co s d d 2tR v a tv a ===,⎰⎰=t v v t R v v 02d t an 1d 0θ t v R R v t s v 00t an t an d d -==θθ⎰⎰-=t s t t v R R v s 0000d tan tan d θθtv R R R s 0t an t an ln tan -=θθθ4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的 1.⎪⎩⎪⎨⎧-=-=225.1324t t y tt x , 2.⎩⎨⎧==t y t x 2cos 2sin 3解:1.由已知得 3x = 4y (1) ⎩⎨⎧-=-=t y t x3344 t v 55-=⎩⎨⎧-=-=34y x5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。

2.由已知,得2ar cco s 213ar cs i n y x =化简得轨迹方程:2942x y -=(2)轨迹如图(b ),其v 、a 图像从略。

4-3 点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为221Rt s π=,式中s 以厘米计,t 以秒计。

轨迹图形和直角坐标的关系如右图所示。

当点第一次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。

解:Rt s v π== ,R v a π== t,222n Rt Rv a π==y 坐标值最大的位置时:R Rt s 2212ππ== ,12=∴tR a a x π==t ,R a y 2π-=4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮A习题4-1图习题4-2图习题4-3图e e -t (c)e e -t υ (b)R t R +υ (a)习题4-6图以匀角速度ω转动,如图所示。

清华理论力学课后答案2

清华理论力学课后答案2

kh da
(b)
w.
co
m
4
三角块 V4
V4 = 2 × 3 × 3 ÷ 2 = 9
(1, 7, 1)
2-5 均质折杆及尺寸如图示,求此折杆形心坐标。 解: 将图示折杆简化为折线计算。 折杆有 5 段直线组成, 每一段的长度及形心坐标如表所示。 按形心计算公式,有
xc =
∑iLi xi 200 × (−100) + 100 × (−50) + 100 × 0 + 200 × 100 + 100 × 200 = 200 + 100 + 100 + 200 + 100 ∑iLi = 21.43(mm)
kh da

w.
FRx ' = F1 cos 45� − F2 cos 45� = 0 ,

co
在坐标轴上的投影为
m
解: 各力均在与坐标平面平行的面内, 且与所在平面的棱边成 45°角。 将力系向 A 点简化, 主矢 FR '
a b c + + = 0。 F1 F2 F3
当主矢与主矩平行时,力系能简化为力螺旋,即从 FR '× M O = 0 得,
yc =



(200,100,-50)
ww w.
3
kh da
题 2-5 图
w.
co
m
题 2-6 图
解: 由对称性知,该图形的形心一定在 x 轴上,即 yc = 0 。用负面积法计算其横坐标。此平面图
按形心计算公式,有
xc =
2-7 工字钢截面尺寸如图示,求此截面的形心坐标。
题 2-7 图

清华大学-理论力学-习题解答-2-28

清华大学-理论力学-习题解答-2-28

2-28 图示机构中,主动件的角速度或速度已经标明,欲求从动件的速度或角速度,试选择动点和动系,分析三个运动,并按图示位置分析三个速度。

解:
(a) 以折杆为动系,曲柄末端为动点,则牵连运动和相对运动都是直线运动,绝对运动是定轴转动。

(b) 以滑槽为动系, 曲柄末端为动点,牵连运动为直线运动,相对运动为沿滑槽的曲线运动,绝对运动为定轴转动。

(c) 以曲柄为动系,直杆末端点为动点,则牵连运动为定轴转动,相对运动和绝对运动都是直线运动。

(d) 以曲柄为动系,销钉为动点,则绝对运动和相对运动是直线运动,牵连运动是定轴转动。

(e) 以曲柄为动系,半圆的圆心为动点。

则绝对运动和相对运动都是直线运动,牵连运动是定轴转动。

(f) 以曲柄为动系,铰结点为动点,则绝对运动为定轴转动,相对运动为直线运动,牵连运动为定轴转动。

(g) 以曲柄为动系,销钉为动点,则相对运动为直线运动,绝对运动为定轴转动,牵连运动也为定轴转动。

(h) 以较长的曲柄为动系,滑块铰结点为动点,分别讨论联立求解。

第一组,绝对运动为定轴转动,第二组绝对运动为直线运动。

相对运动都为直线运动,牵连运动为定轴转动。

平面运动,牵连运动为定轴转动。

平面运动,牵连运动为定轴转动。

第二章-点线习题

第二章-点线习题

相交
相交
44
2-35 过点A作直线AB与平面CDE平行。
s'
45
2-36 过CD作一平面与直线AB平行。
46
2-37 过点A作平面与直线BC平行。 (1)过点A作正垂面与直线BC平行。
47
2-37 过点A作平面与直线BC平行。 (2)过点A作一般面与直线BC平行。
48
2-38 过点D作直线DE平行三角形ABC且与H面成300。
∴abbc c
LBC= LAB =Lbc
34
2-27 已 知:平面ABCD的AD边平行于V面, 试完成:ABCD的水平投影。
35
2-27 已 知:平面ABCD的BC边平行于V面, 试完成:ABCD的水平投影。
方法一:
a’ m’
b’
b m
a
方法二:
d’ a’
b’ c’ cb
a
d
d’
1’
c’ c
2 1
水平面
27
2-23 作出下列各平面图形的第三面投影,并 指出其对投影面的相对位置。
一般位
28
2-23 作出下列各平面图形的第三面投影,并 指出其对投影面的相对位置。
正垂面
29
2-24 判别下列题中的各点是否在平面上。
在,n不在
30
2-24 判别下列题中的各点是否在平面上。
31
2-25 求作:平面ΔABC上一点K,且K点在点A之 下15mm,在点A之前10mm 。
14
2-13 在已知线段AB上截取AC=30mm。
15
2-14 试在已知线段AB上求一点K,使AK:KB=n:m。
16
2-15 试判断点K是否在下列直线上。

理论力学习题答案第三章

理论力学习题答案第三章

第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。

3.2 答物体上各质点所受重力的合力作用点即为物体的重心。

当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。

事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。

答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。

3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。

分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。

理论力学答案完整版(清华大学出版社)10

理论力学答案完整版(清华大学出版社)10
两者总质量为 m2,对 O 轴的回转半径为 ρ 。当重物 A 下降时,滚
子 C 沿水平轨道滚动而不滑动,试求重物 A 的加速度。
解: 取整个系统为研究对象,自由度为 1。设重物速度为 vA ,则轮
题 10-9 图
的角速度 ω = vA ,轮心速度为 R−r
vO
=
R
r −
r
vA 。系统的动能为
( ) T
拉格朗日方程的普遍形式
d dt
∂L ∂q& j
− ∂L ∂q j
= Q′j
( j = 1,2,..., m)
式中 Q′j 为非有势力对应的广义力。
矢量方法
动量法:动量定理
动量矩定理 质心运动定理 定轴转动微分方程 平面运动微分方程
质点系统动力学
动静法
动能定理
能量方法
拉格朗日方程
3 保守系统拉格朗日方程的初积分
10-3 质量为 m1 的匀质杆,长为 l,一端放在水平面上, 另一端与质量为 m2、半径为 r 的匀质圆盘在圆盘中心 O 点 铰接。圆盘在地面上作纯滚动,圆心速度为 v。求系统在此
题 10-3 图
位置的动能。
解:杆作平移,动能为
T1
=
1 2
m1v2

圆盘作纯滚动,动能为
T2
=
1 2
m2v2
+
1 2
mivi
⋅ vi

其中 n 为系统中的质点数目,可以是有限或无穷,mi 和 vi 分别为各质点的质量和速度。 平
移刚体的动能 T = 1 mv2 , 2
其中 m 为平移刚体的质量。
定轴转动刚体的动能
T
=
1 2

第34章部分习题解答

第34章部分习题解答

第3章部分习题解答1. 列出下列集合的元素.(1) {x | x 是小于5的非负整数}(2) {x | x 是大于0的偶数}(3) {x |(x 是整数) ∧(2<x <10)}(4) { x | x ∈N˄∃ t ( t ∈{2,3}˄x=2t )}(5) { x | x ∈R˄x 2-1=0˄x>3}解:(1){0,1,2,3,4} (2){2,4,6,…,} (3){3,4,5,6,7,8,9} (4){4,6}(5)∅2. 判断下列集合是否相等。

(1) {1, 2, 1, 3, 1, 2}, {2, 3, 1}(2) {{1}}, {1, {1}}(3) ∅ , {∅ }解:(1)相等 (2)不相等 (3)不相等3. 假定 A , B , 和 C 是集合, 若 A ⊆ B 且 B ⊆C . 证明 A ⊆ C .证明:对任意x ∈A ,因为A ⊆ B ,有x ∈B ,又因为 B ⊆C ,有x ∈C ,所有A ⊆ C .4. 判定下列各题的正确与错误:(1)a ∈{{a }};(2){a }⊆{ a ,b ,c };(3)∅∈{∅ };(4)∅⊆{ a ,b ,c };(5) ∅∈∅;(6)∅⊆∅ ;(7){{a },1,3,4}⊂{{a },3,4,1};(8){a ,b }⊆{a ,b ,c ,{ a ,b }};(9){a ,b }∈{a ,b ,{ a ,b }};(10){a ,b }∈{a ,b ,{{ a ,b }}}。

解:正确:2、3、4、6、8、9错误:1、5、7、105.设 E ={a ,b ,c ,d ,e },A ={a ,d },B ={a ,b ,e } 和 C ={b ,d }.试求出下列的集合:(1) ~A B ⋂(2) ()~A B C ⋃⋂(3) ~()A B ⋂(4)(A ⋃C )-B(5) A ⊕B ⊕C解:(1){d} (2){a,e} (3) {b,c,d,e} (4) {b} (5) {e}6.给定自然数集合 N 的下列子集:A ={1,2,7,8}B ={i |i ⨯i <50}C ={i |i 可被 3 整除且 0≤i ≤30}D ={i |i =2k ,k ∈I ,0<k <6}试求出下列集合:(1)A⋃ (B⋃ (C⋃D))(2)A⋂ (B⋂ (C⋂D))(3)B-(A⋃C)(4)(~A⋂B) ⋃D(5)A⊕B解:(3) {4,5}(4) {0,2,3,4,5,6,8,10}(5) {0,3,4,5,6,8}7.给定正整数集合I+的下列子集:A={n|n<12}B={n|n≤8}C={n|n=2k,k∈I+}D={n|n=3k,k∈I+}F={n|n=2k-1,k∈I+}试用集合A,B,C,D和F表达下列集合:(1){2,4,6,8}(2){3,6,9}(3){10}(4){n|n是偶数,n>10}(5){n|n是正偶数且n≤10,或n是正奇数且n >= 9}解:(1)B (2)A⋂D (3)(A-B)⋂C (4)C-B (5)(C⋂A)⋃(F-B)8.设A,B和C是全集E的子集,下列关系是否成立?(A⋃B) ⋂~(B⋃C)⊆A⋂~B解:成立(A⋃B) ⋂~(B⋃C)⊆A⋂~B9.设A,B是全集E的子集,证明下列恒等式:(1)(A⋂B) ⋃ (A⋂~B)=A(2)B⋃~((~A⋃B) ⋂A)=E(3)(A⋃~B)⋂(~A⋃B)=(A⋂B)⋃(~A⋂~B)。

理论力学第三版(周衍柏)全部习题答案

理论力学第三版(周衍柏)全部习题答案
由加速度的微分形式我们可知
代入得
对等式两边同时积分
可得 :
( 为常数)
代入初始条件: 时, ,故

又因为
所以
对等式两边同时积分 ,可得:
1.6 解 由题可知质点的位矢速度

沿垂直于位矢速度
又因为 , 即

(取位矢方向 ,垂直位矢方向 )
所以

即 沿位矢方向加速度
垂直位矢方向加速度
对③求导
对④求导
把③④⑦⑧代入⑤⑥式中可得
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

1.23证 (a)在1.22题中, 时,则电子运动受力 电子的运动微分方程
①-②-③
对②积分

对④再积分


( 为一常数)
此即为抛物线方程.
当 时
则电子受力
则电子的运动微分方程为
①-②-③
同1.22题的解法,联立①-②解之,得
理论力学第三版周衍柏全部习题答案理论力学第三版周衍柏周衍柏理论力学答案理论力学周衍柏理论力学教程周衍柏理论力学周衍柏pdf理论力学第三版答案理论力学课后习题答案理论力学复习题及答案理论力学习题答案
第一章 质点力学
第一章习题解答
1.1 由题可知示意图如题1.1.1图:
设开始计时的时刻速度为 ,由题可知枪弹作匀减速运动设减速度大小为 .

所以 ,代入 的表达式中可得:
此即为子弹击中斜面的地方和发射点的距离 的最大值
1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.

理论力学思考题习题答案

理论力学思考题习题答案

理论⼒学思考题习题答案第⼀章质点⼒学矿⼭升降机作加速度运动时,其变加速度可⽤下式表⽰:?-=T t c a 2sin1π式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所⾛过的路程。

已知升降机的初速度为零。

解:由题可知,变加速度表⽰为-=T t c a 2sin1π由加速度的微分形式我们可知dtdv a =代⼊得 dt T t c dv ??? ??-=2sin 1π对等式两边同时积分dt T t c dv t v-=002sin 1π可得:D T t c T ct v ++=2cos 2ππ(D 为常数)代⼊初始条件:0=t 时,0=v ,故c T D π2-=即??-+=12cos 2T t T t c v ππ⼜因为dtds v =所以 =ds dt T t T t c??-+12cos 2ππ对等式两边同时积分,可得:ω绕其焦点F 转动。

求此直线与椭圆的焦点M 的速度。

已知以焦点为坐标原点的椭圆的极坐标⽅程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏⼼率,常数。

解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ??==θθsin cos r y r x 对y x ,两式分别求导+=-=θθθθθθcos sin sin cos &&&&&&r r yr r x 故()()22222cos sin sin cos θθθθθθ&&&&&&r r r r y x v ++-=+=222ωr r +=&如图所⽰的椭圆的极坐标表⽰法为()θcos 112e e a r +-=对r 求导可得(利⽤ωθ=&)⼜因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()??--+-?-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平⾯运动,其速率保持为常数。

理论力学课后习题答案详解

理论力学课后习题答案详解

理论力学习题解答 第 8 页 共 48 页
理论力学习题解答 第 9 页 共 48 页
理论力学习题解答 第 10 页 共 48 页
理论力学习题解答 第 11 页 共 48 页
理论力学习题解答 第 12 页 共 48 页
理论力学习题解答 第 13 页 共 48 页
理论力学习题解答 第 14 页 共 48 页
理论力学习题解答 第 36 页 共 48 页
理论力学习题解答 第 37 页 共 48 页
理论力学习题解答 第 38 页 共 48 页
理论力学习题解答 第 39 页 共 48 页
理论力学习题解答 第 40 页 共 48 页
理论力学习题解答 第 41 页 共 48 页
理论力学习题解答 第 42 页 共 48 页
理论力学习题解答
理论力学习题解答:
第 1 页 共 48 页
理论力学习题解答 第 2 页 共 48 页
理论力学习题解答
第二章:
第 3 页 共 48 页
理论力学习题解答 第 4 页 共 48 页
理论力学习题解答 第 5 页 共 48 页
理论力学习题解答 第 6 页 共 48 页
理论力学习题解答 第 7 页 共 48 页
理论力学习题解答 第 43 页 共 48 页
理论力学习题解答 第 44 页 共 48 页
理论力学习题解答 第 45 页 共 48 页
理论力学习题解答 第 46 页 共 48 页
理论力学习题解答 第 47 页 共 48 页
理论力学习题解答 第 48 页 共 48 页
理论力学习题解答 第 22 页 共 48 页
理论力学习题解答 第 23 页 共 48 页
理论力学习题解答 第 24 页 共 48 页

清华大学-理论力学-习题解答-2-37

清华大学-理论力学-习题解答-2-37

2-37 OA 杆以等角速度绕轴转动,半径为0ωO r 的滚轮在OA 杆上作纯滚动,已知r 3B O 1=,图示瞬时、O B 在同一水平线上,O 在铅垂位置,B 1°=∠30AOB ,求在此瞬时(1)O 杆的角速度与角加速度;(2)滚轮的角速度与角加速度;(3)滚轮上B 1P 点的速度与加速度。

B nBn Bτ解:建立如图所示的动系Ox 。

由于滚轮在OA 杆上作纯滚动,在动系上看,滚轮上的P 点与在杆OA 上相应点的相对速度为0。

从而,11y0101P OP r ω==νj j(1)以点B 为基点分析P 点运动,得到:B 1+P B r ω=ννi(2)又:111112B O B B O B O B O B r r ωω==ντi 11j (3)将(1),(3)代入(2),得到:110111112O B O B B r r r ωω=+r j i j i 得到:102O B ωω=(逆时针 ) 03ωω=−B (顺时针 ) (4)B 点加速度为:111112211111332222B O B O B O B O B O B O B O B O B r r r r εωεωω=+=+−+a τn i 121j i j (5) 利用加速度合成公式,得到P 点加速度:P e r c =++a a a a其中:201e r =a i 0c =,a ,1r r a =a j从而:2011P r a =+i r a j(6)以B 点为基点分析P 点加速度为:a a(7)21P B B B r r ωε=++j 1i (5),(6)代入(7)得到:111122011111132O B O B O B B B r r r r r εωε=++i i j j j 2r i (8) 将(4)代入(8)得到:1203O B ε=(逆时针), 0ε=B (9)答:(1),021ωω=B O ( 203321ε=B O 0=轮ε(2), 03ωω=轮(3)103j ωr p =v ,()1120163j i a +−=ωr p。

理论力学答案完整版(清华大学出版社)3

理论力学答案完整版(清华大学出版社)3
2 静定和静不定问题 未知约束力分量的数目等于独立平衡方程的数目,这类平衡问题称为静定问题; 未知约束力分量的数目大于独立平衡方程的数目,这类平衡问题称为静不定问题,两者
之差称为静不定次数。这类问题需要补充与静不定次数相同数量的变形协调方程才能求解。 未知约束力分量的数目小于独立平衡方程的数目,这类平衡问题是不存在的。 解题要领:
(2)AD 梁上,固定铰链 A 处有 2 个约束力,辊轴铰链 B、C 和 D 各有 1 个约束力, 共有 5 个约束力,这 5 个约束力组成平面一般力系,可以列出 3 个独立的平衡方程。所以, AD 梁是 2 次静不定。
(3)曲梁 AB 两端都是固定端约束,各有 3 个共 6 个约束力组成平面一般力系,而独 立的平衡方程只有 3 个。所以是 3 次静不定。
2 要区分物体维持平衡时的摩擦力与能够产生的最大静摩擦力,两者不可混淆。 3 有摩擦时的平衡问题往往还伴随物体的翻倒问题,要全面考虑,择其合理解。 4 自锁问题通常利用摩擦角概念和二力平衡条件或三力平衡汇交定理解题,具有几何直观、 概念清楚和便于理解的特点。关键是要确定临界平衡时的摩擦角。 5 滚动摩擦问题的考虑类似于滑动摩擦问题。
FA = 63.22 kN . ∑ Fy = 0, FA + FC sin 60o + FB − F1 sin 60o − F2 − q × 3 = 0 ,
FB = 88.74 kN .
题 3-3(a)图
(b)解:以 AB 以梁为研究对象,画受力图,列平衡方程
∑ Fx = 0 , FD cos 45o − FB cos 45o − F2 cos30o = 0 , ∑ mC = 0, FD sin 45o × 4 + FB sin 45o × 8 − M − F1 × 2

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

清华⼤学版理论⼒学课后习题答案⼤全_____第6章刚体平⾯运动分析汇总6章刚体的平⾯运动分析6-1 图⽰半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

曲柄OA 以等⾓加速度α绕轴O 转动,当运动开始时,⾓速度0ω= 0,转⾓0?= 0。

试求动齿轮以圆⼼A 为基点的平⾯运动⽅程。

解:?c o s )(r R x A += (1) ?sin )(r R y A +=(2)α为常数,当t = 0时,0ω=0?= 0 221t α?=(3)起始位置,P 与P 0重合,即起始位置AP ⽔平,记θ=∠OAP ,则AP 从起始⽔平位置⾄图⽰AP 位置转过θ??+=A因动齿轮纯滚,故有?=CP CP 0,即θ?r R = ?θr R =, ??rr R A += (4)将(3)代⼊(1)、(2)、(4)得动齿轮以A 为基点的平⾯运动⽅程为:+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A α?αα6-2 杆AB 斜靠于⾼为h 的台阶⾓C 处,⼀端A 以匀速v 0沿⽔平向右运动,如图所⽰。

试以杆与铅垂线的夹⾓θ表⽰杆的⾓速度。

解:杆AB 作平⾯运动,点C 的速度v C 沿杆AB 如图所⽰。

作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬⼼。

则⾓速度杆AB 为hv AC v AP v ABθθω2000cos cos ===轮A 和垫滚B 与地⾯之间以及垫滚B 与拖车之间⽆滑动。

解:R v R v A A ==ωR vR v B B 22==ωB A ωω2=6-4 直径为360mm 的滚⼦在⽔平⾯上作纯滚动,杆BC ⼀端与滚⼦铰接,另⼀端与滑块C 铰接。

设杆BC 在⽔平位置时,滚⼦的⾓速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。

试求该瞬时杆BC 的⾓速度和点C 的速度。

习题6-1图习题6-2图习题6-2解图习题6-3解图习题6-3图v A = vv B = v ωAωB习题6-6图习题6-6解图解:杆BC 的瞬⼼在点P ,滚⼦O 的瞬⼼在点D BDv B ?=ωBPBD BP v B BC ?==ωω =30sin 27030cos 36012 rad/s 8=PC v BC C ?=ωm/s 87.130cos 27.08=??=6-5 在下列机构中,那些构件做平⾯运动,画出它们图⽰位置的速度瞬⼼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档