第一章有理数试卷答案与解析
第一章 有理数单元检测卷(解析版)
第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
人教版七年级数学上册《第一章有理数》测试卷-附含答案
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版七年级数学上册《第一章有理数》测试题-附带答案
人教版七年级数学上册《第一章有理数》测试题-附带答案(考试时间:90分钟 试卷满分:120分)一 选择题:本题共10个小题 每小题3分 共30分。
在每小题给出的四个选项中 只有一项是符合题目要求的。
1.(2021·山西临汾市·九年级二模)在人类生活中 早就存在着收入与支出 盈利与亏本等具有相反意义的现象 可以用正负数表示这些相反意义的量.我国古代数学名著《九章算术》一书中也明确提出“正负术”.最早使用负数的国家是( ) A .印度 B .法国C .阿拉伯D .中国【答案】D【分析】根据负数的使用历史进行解答即可. 【详解】最早使用负数的国家是中国.故选:D .【点睛】本题考查的是正数和负数 关键是了解掌握负数的使用历史.2.(2021·江苏南通市·九年级二模)新冠肺炎疫情阻击战中 南通是全省唯一主城区没有发本土确诊病例的安全岛.接种新冠疫苗 是巩固抗疫成果最经济 最有效的手段.截止4月24日24时 南通全市已累计接种新冠疫苗102.37万针.其中 102.37万用科学记数法表示为( ) A .81.023710⨯ B .70.1023710⨯ C .61.023710⨯ D .4102.3710⨯ 【答案】C【分析】用科学记数法表示较大的数时 一般形式为a ×10n 其中1≤|a |<10 n 为整数 且n 比原来的整数位数少1 据此判断即可.【详解】解:102.37万=61.023710⨯ 故选C .【点睛】此题主要考查了用科学记数法表示较大的数 一般形式为a ×10n 其中1≤|a |<10 确定a 与n 的值是解题的关键.3.(2021·河南初一期中)如图 关于A B C 这三部分数集的个数 下列说法正确的是( ) A .A C 两部分有无数个 B 部分只有一个0 B .A B C 三部分有无数个 C .A B C 三部分都只有一个 D .A 部分只有一个 B C 两部分有无数个【答案】A【分析】根据有理数的分类可以看出A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数最后根据各数性质进一步判断即可.【解析】由图可得:A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数∵整数中除了正整数与负整数外的部分整数只有0负整数与正整数都有无数个∴A C两部分有无数个B只有一个.故选:A.【点睛】本题主要考查了有理数的分类熟练掌握相关概念是解题关键.4.(2020·北京四中初三月考)如图数轴上A B两点所表示的数互为倒数则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合【答案】C【分析】根据倒数的定义可知A B两点所表示的数符号相同依此求解即可.【解析】∵数轴上A B两点所表示的数互为倒数∴A B两点所表示的数符号相同如果A B两点所表示的数都是正数那么原点在点A的左侧如果A B两点所表示的数都是负数那么原点在点B的右侧∴原点可能在点A的左侧或点B的右侧.故选C.【点睛】本题考查了数轴倒数的定义由题意得到A B两点所表示的数符号相同是解题的关键.5.(2021·湖南株洲市·七年级期中)计算20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭的结果是()A.23B.32C.23-D.32-【答案】D【分析】根据乘方的意义进行简便运算再根据有理数乘法计算即可.【详解】解:20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭=2019202021.513⎛⎫-⨯⨯⎪⎝⎭=20202019221.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个=2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个=32- 故选:D . 【点睛】本题考查了有理数的混合运算 解题关键是熟练依据乘方的意义进行简便运算 准确进行计算.6.(2021·四川达州市·中考真题)生活中常用的十进制是用0~9这十个数字来表示数 满十进一 例:121102=⨯+ 212210101102=⨯⨯+⨯+ 计算机也常用十六进制来表示字符代码 它是用0~F 来表示0~15 满十六进一 它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+= 10C 对应十进制的数为1161601612268⨯⨯+⨯+= 那么十六进制中14E 对应十进制的数为( )A .28B .62C .238D .334【答案】D【分析】在表格中找到字母E 对应的十进制数 根据满十六进一计算可得.【详解】由题意得 十六进制中14E 对应十进制的数为:1×16×16+4×16+14=334 故选D . 【点睛】本题主要考查有理数的混合运算 解题的关键是掌握十进制与十六进制间的转换及有理数的混合运算顺序和运算法则.7.(2021.湖南永州市.七年级期末)若“!”是一种数学运算符号 并且1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 (2021)2020!的值等于( ) A .2021 B .2020 C .2021! D .2020!【答案】A【分析】根据题意列出有理数混合运算的式子 进而可得出结论. 【详解】解:1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 …∴2021!202120202019 (1)==20212020!20202019 (1)⨯⨯⨯⨯⨯⨯⨯故选A . 【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2021·成都天府七中初一月考)若a b 为有理数 下列判断正确的个数是( )(1)12a ++总是正数 (2)()224a ab +-总是正数 (3)()255ab +-的最大值为5 (4)()223ab -+的最大值是3.A .1B .2C .3D .4【答案】B【分析】根据绝对值 偶次方的非负性进行判断即可.【解析】∵10a +≥ ∴12a ++>0 即12a ++总是正数 (1)正确 ∵20a ≥ ()240ab -≥∴当20a =即a=0时 ()240ab -> 故()224a ab +-是正数当()240ab -=时 则0a ≠ 即20a > 故()224a ab +-是正数 故(2)正确()255ab +-的最小值为5 故(3)错误 ()223ab -+的最大值是2 故(4)错误.故选:B.【点睛】此题考查绝对值的性质 偶次方的性质 最大值及最小值的确定是难点. 9.(2021·重庆潼南区·七年级期末)如果四个不同的正整数m n pq 满足(4)(4)(4)(4)9m n p q ----= 则m n p q +++等于( )A .12B .14C .16D .18【答案】C【分析】由题意确定出m n p q 的值 代入原式计算即可求出值.【详解】解:∵四个互不相同的正整数m n p q 满足(4-m )(4-n )(4-p )(4-q )=9 ∴满足题意可能为:4-m =1 4-n =-1 4-p =3 4-q =-3 解得:m =3 n =5 p =1 q =7 则m +n +p +q =16.故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.10.(2021·广东省初一月考)如图 在纸面所在的平面内 一只电子蚂蚁从数轴上表示原点的位置O 点出发 按向上 向右 向下 向右的方向依次不断移动 每次移动1个单位 其移动路线如图所示 第1次移动到1A 20第2次移动到2A 第3次移动到3A …… 第n 次移动到n A 则△O 22019A A 的面积是( )A.504 B.10092C.20112D.505【答案】B【分析】根据图可得移动4次完成一个循环观察图形得出OA4n=2n处在数轴上的点为A4n和A4n-1.由OA2016=1008推出OA2019=1009由此即可解决问题.【解析】解:观察图形可知:OA4n=2n且点A4n和点A4n-1在数轴上又2016=504×4∴A2016在数轴上且OA2016=1008∵2019=505×4-1∴点A2019在数轴上OA2019=1009∴△OA2A2019的面积=12×1009×1=10092故选:B.【点睛】本题考查三角形的面积数轴等知识解题的关键是学会探究规律利用规律解决问题属于常考题型.二填空题:本题共8个小题每题3分共24分。
第一章《有理数》全章 练习题 (含答案)
第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
有理数单元测试卷附答案
第一章有理数单元测试卷(一)附答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章有理数单元测试卷基础卷考试范围:有理数;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分 得分评卷人得 分 一.选择题(共12小题)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( )A .3m +B .3m -C .13m +D .5m -2.下列说法正确的有( )①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A .1个B .2个C .3个D .4个3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->4.下列各数中,相反数是12-的是( ) A .12- B .12 C .2- D .25.下列化简错误的是( )A .(2)2--=B .(3)3-+=-C .(4)4+-=-D .|5|5-=6.23-的倒数是( ) A .32 B .32- C .23 D .23- 7.下列四个数中,最大的数是( )A .13-B .0C .2-D .28.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )251 x A .3 B .4 C .6 D .89.计算(13)(8)---的结果是( )A .21B .21-C .5D .5-10.下列各式中,正确的是( )A .422--=-B .3(3)0--=C .10(8)2+-=- D .54(4)5----=- 11.有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b +>B .0a b ->C .0a b >D .||||a b >评卷人得 分 二.填空题(共6小题)13.如果盈利5千元记作5+千元,那么亏损2千元记作 千元.14.在113,714,1340中不能化成有限小数的是 15.点A 、B 在数轴上对应的数分别为2-和5,则线段AB 的长度为 .16.a 的相反数是710,则a 的倒数是 . 17.已知a 与b 的和为2,b 与c 互为相反数,若||1c =,则a = .18.若a 和b 互为倒数,则ab = .评卷人得 分三.解答题(共8小题)19.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?20.对于任意四个有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(a ,)(b c ,)d bc ad =-.例如:(1,2)(3,4)23142=⨯-⨯=.根据上述规定解决下列问题:(1)有理数对(3,5)(4-,2)-= ;(2)若有理数对(4-,31)(2x -,1)8x -=,求x 的值;(3)当满足等式(2-,31)(x k -,)5x k k +=+的x 是整数时,求整数k 的值.21.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为||AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|a a ++-= .(4)对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.22.已知324x +=-与3321y m -=-,且x 、y 互为相反数,求m 的值.23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,c a - 0.(2)化简:||||||b c a b c a -++--.24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a b +,cd ,m 的值;(2)求a b m cd m+++的值. 25.画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:1-,0,122-,3,1226.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点,(2)求这五个点表示的数的和.第一章有理数单元测试卷参考答案与试题解析一.选择题(共12小题)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作3m -.故选:B .【点评】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的; ④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B .【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【解答】解:由图可知101a b <-<<<,则0ab <,||||a b >,a b ->.故选:D .【点评】本题考查的是数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.【分析】根据只有符号不同的两个数是互为相反数,求出12-的相反数,然后选择即可. 【解答】解:12的相反数是12-,∴相反数等于12-的是12.故选:B.【点评】本题考查了相反数的定义,熟记定义是解题的关键.【分析】根据相反数的含义和应用,以及绝对值的含义和应用,逐项判断即可.【解答】解:(2)2--=,∴选项A不符合题意;(3)3-+=-,∴选项B不符合题意;(4)4+-=-,∴选项C不符合题意;|5|5-=-,∴选项D符合题意.故选:D.【点评】此题主要考查了相反数的含义和应用,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【分析】根据倒数的定义,可得答案.【解答】解:23-的倒数是32-,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:12023-<-<<,∴最大的数是2;故选:D.【点评】此题主要考查了实数的大小比较,关键是掌握比较大小的法则.【分析】首先根据三阶幻方的特征,可得:第三行第一列的数是:5228⨯-=;然后根据:第三行的各个数的和53=⨯,求出x 的值是多少即可.【解答】解:第三行第一列的数是:5228⨯-=,53816x =⨯--=.故选:C .【点评】此题主要考查了有理数加法的运算方法,以及幻方的特征和应用,要熟练掌握.【分析】原式利用减法法则变形,计算即可求出值.【解答】解:原式1385=-+=-,故选:D .【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:A 、426--=-,故此选项不合题意;B 、3(3)6--=,故此选项不合题意;C 、10(8)2+-=,故此选项不合题意;D 、54(4)5----=-,正确,符合题意.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.【分析】根据数轴上点的位置确定出a b +,a b -以及ab 的正负即可.【解答】解:由题意:0a <,0b >,||||b a >,0ab ∴<,0a b +>,0a b -<,0b a ->,故选:D .【点评】此题考查了数轴,熟练掌握有理数的运算法则是解本题的关键.【分析】先根据数轴上两数,右边的数总是大于左边的数,即可得到:0b a <<,且||||b a >,再根据有理数的运算法则即可判断.【解答】解:根据数轴可得:0b a <<,且||||b a >.A 、0a b +<,故选项错误;B 、0a b ->,故选项正确;C 、0ab <,故选项错误;D 、||||a b <,故选项错误.【点评】本题主要考查了数轴上两数比较大小的方法以及有理数的运算法则.二.填空题(共6小题)【分析】根据正数与负数的定义即可求出答案.【解答】解:如果盈利5千元记作5+千元,那么亏损2千元记作2-千元,故答案为:2-.【点评】本题考查正数与负数,解题的关键是正确理解正负数的定义,本题属于基础题型.【分析】分别将每个分数化为小数,则有70.514=,130.32540=,141 1.333==,即可求解.【解答】解:70.514=,130.32540=,141 1.333==,113∴不能化成有限小数,故答案为113.【点评】本题考查有理数;能够将分数正确的化为小数是解题的关键.【分析】根据数轴上两点距离公式进行计算即可.【解答】解:|25|7AB=--=,故答案为:7.【点评】考查数轴表示数的意义,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为||AB a b=-.【分析】利用相反数及倒数的定义计算即可得到结果.【解答】解:a的相反数是710,710a∴=-,则a的倒数为107 -.故答案为:107 -.【点评】此题考查了相反数,以及倒数,熟练掌握各自的定义是解本题的关键.【分析】根据绝对值的定义得出c的值,根据互为相反数的两数相加为0,进而得出b的值,即可得出a的值.【解答】解:||1c=,b与c互为相反数,∴+=,b c∴=-或1,b1a与b的和为2,∴+=,2a b∴=或1.a3故答案为:3或1.【点评】此题主要考查了绝对值、相反数的定义.解题的关键是掌握绝对值、相反数的定义.【分析】根据倒数定义可得答案.【解答】解:a和b互为倒数,1∴=,ab故答案为:1.【点评】此题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.三.解答题(共8小题)【分析】(1)由表格可得:3(0.5)2 4.5++-+=(元),36 4.540.5+=(元),(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:⨯⨯+=(元),总收益:+-=(元),卖出时的花费:401000(1.5%1%)100040.51 1.540-⨯--=(元).(4036)100054010002460【解答】解:(1)3(0.5)2 4.5++-+=(元),∴+=(元),36 4.540.5∴星期三收盘时,每股是元;(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:40.51 1.540+-=(元),卖出时的花费:401000(1.5%1%)1000⨯⨯+=(元),总收益:(4036)100054010002460-⨯--=(元),∴老宋总的收益2460元.【点评】本题考查正数与负数;理解正数与负数在实际问题的意义是解题的关键.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【解答】解:(1)根据题意得:原式20614=-+=-;故答案为:14-;(2)根据题意得:2(31)4(1)8x x -+-=去括号得,62448x x -+-=,移项合并得:26x =,解得:3x =(3)等式(2-,31)(x k -,)5x k k +=+的x 是整数,(31)(2)()5x k x k k ∴---+=+,(32)5k x ∴+=,532x k ∴=+, k 是整数,321k ∴+=±或5±, k 为整数,1k ∴=-,1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【分析】(1)根据两点的距离公式计算 即可;(2)根据两点的距离公式以及绝对值的意义解答即可;(3)根据两点的距离公式以及绝对值的意义解答即可;(4)结合数轴得出:||3||6|x x -+-表示数x 到3和6两点的距离之和,||3||6|x x -+-有最小值,则x 一定在3和6之间,则最小值为3.【解答】解:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么|32|1AB =-=, 故答案为:1;(2)根据题意得,|2|3a +=,解得1a =或5-.故答案为:1或5-;(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|426a a a a ++-=-+++=. 故答案为:6;(4)|3||6|x x -+-表示数x 到3和6两点的距离之和,如果求最小值,则x 一定在3和6之间,则最小值为3.【点评】本题考查了一元一次方程的应用,数轴、绝对值、列代数式,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【分析】求出第一个方程的解,根据两方程解互为相反数求出第二个方程的解,即可求出m 的值.【解答】解:方程324x +=-,解得:2x =-,因为x 、y 互为相反数,所以2y =,把2y =代入第二个方程得:6321m -=-,解得:2m =.【点评】此题考查了一元一次方程的解和解一元一次方程.解题的关键是正确理解一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,0a <,0b >,0c >且||||||b a c <<,所以,0b c -<,0a b +<,0c a ->;故答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a =----+2b =-.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a 、b 、c 的正负情况是解题的关键.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,0a b ∴+=,1cd =,2m =±.(2)当2m =时,2103a b m cd m +++=++=; 当2m =-时,2101a b m cd m+++=-++=-. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,11210322-<-<<<. 【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【分析】(1)根据要求分别表示五个不同的数;(2)相加可得结论.【解答】解:(1)点E 表示的数的相反数是它本身,E ∴表示0,A 、B 表示的数都是绝对值是4的数,A ∴表示4,B 表示4-或A 表示4-,B 表示4,点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴若C 表示1-,则D 表示2;若C 表示2-,则D 表示1,如图所示:(2)440211-+++-=或440121-+++-=-,则这五个点表示的数的和1或1-.【点评】本题考查了数轴的相关概念,解答本题的关键是明确题意,利用数形结合的思想解答..。
人教版七年级数学上册《第一章有理数》测试题-附有答案
人教版七年级数学上册《第一章有理数》测试题-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)有理数﹣1 0 1 3四个数中最小的是()A.﹣1B.0C.1D.3【分析】利用有理数的大小比较来选择即可.【解答】解:有理数﹣1 0 1 3四个数中最小的是﹣1故选:A.2.(4分)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为()A.2.12×107B.2.12×108C.0.212×109D.2.12×109【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:2.12亿=212000000=2.12×108.故选:B.3.(4分)中老铁路是与中国铁路网直接连通的国际铁路线路北起中国西南地区的昆明市南向到达老挝首都万象市是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21% 若+21%表示提升21% 则﹣10%表示()A.提升10%B.提升31%C.下降10%D.下降﹣10%【分析】利用正负数表示相反意义的数来选择即可.【解答】解:∵+21%表示提升21%∴﹣10%就表示下降10%.故选:C.4.(4分)下列各对数中互为相反数的是()A.﹣(﹣2)和2B.4和﹣(+4)C.和﹣3D.5和|﹣5|【分析】利用互为相反数的定义、绝对值的定义判断即可.【解答】解:﹣(﹣2)=2 A不符合题意;4与﹣(+4)互为相反数B符合题意;和﹣3不互为相反数C不符合题意;5=|﹣5| 不互为相反数D不符合题意.故选:B.5.(4分)已知有理数a b c在数轴上的对应点的位置如图所示则下列结论不正确的是()A.c<a<b B.a﹣c>0C.bc<0D.|c﹣b|=c﹣b【分析】利用a b c在数轴上的位置可以判断出c<a<b再用有理数的加减乘除法则判断即可.【解答】解:利用数轴可以判断出c<a<b则A选项正确不符合题意;由数轴可以看出c<a则a﹣c>0 则B选项正确不符合题意;由数轴可以看出c<0<b则bc<0 则C选项正确不符合题意;由数轴可以看出c<0<b|c|>|b|则|c﹣b|=﹣(c﹣b)=b﹣c故D选项错误符合题意.故选:D.6.(4分)我国幅员辽阔南北跨纬度广温差较大5月份的某天同一时刻我国最南端的海南三沙市气温是30℃而最北端的漠河镇气温是﹣2℃则三沙市的气温比漠河镇的气温高()A.﹣32℃B.﹣28℃C.28℃D.32℃【分析】利用有理数的减法运算法则计算即可.【解答】解:根据题意可知三沙市的气温比漠河镇的气温高30﹣(﹣2)=30+2=32(℃)故选:D.7.(4分)如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣5 b 4 某同学将刻度尺如图2放置使刻度尺上的数字0对齐数轴上的点A发现点B对应刻度1.8cm点C对齐刻度5.4cm.则数轴上点B所对应的数b为()A.3B.﹣1C.﹣2D.﹣3【分析】根据刻度尺上的刻度与数轴上得单位长度的比值不变求解.【解答】解:∵5.4÷(4+5)=0.6(cm )∴1.8÷0.6=3∴﹣5+3=﹣2故选:C .8.(4分)计算(241343671211-+-)×(﹣24)的结果是( ) A .1 B .﹣1 C .10 D .﹣10【分析】根据乘法分配律计算即可.【解答】解:(﹣+﹣)×(﹣24) =×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24) =﹣22+28+(﹣18)+13=1故选:A .9.(4分)下列说法正确的是( )A .近似数4.20和近似数4.2的精确度一样B .近似数4.20和近似数4.2的有效数字相同C .近似数3千万和近似数3000万的精确度一样D .近似数52.0和近似数5.2的精确度一样【分析】根据近似数和有效数字的定义 可以判断各个选项中的说法是否正确.【解答】解:近似数4.20和近似数4.2的精确度不一样 近似数4.20精确到百分位 近似数4.2精确到十分位 故选项A 错误 不符合题意;近似数4.20和近似数4.2的有效数字不相同 近似数4.20有三个有效数字 近似数4.2有两个有效数字 故选项B 错误 不符合题意;近似数3千万和近似数3000万的精确度不一样 近似数3千万精确到千万位 近似数3000万精确到万位 故选项C 错误 不符合题意;近似数52.0和近似数5.2的精确度一样 故选项D 正确 符合题意;故选:D .10.(4分)规定:把四个有理数1 2 3 ﹣5分成两组 每组两个 假设1 3分为一组 2 ﹣5分为另一组 则A =|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m 、n 再取这两个数的相反数 对于这样的四个数其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】根据已知条件列出所有情况并求出A的值即可求得所有A的和.【解答】解:根据题意得m<n m n的相反数为﹣m﹣n则有如下三种情况:①m n为一组﹣m﹣n为另一组此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m﹣m为一组n﹣n为另一组此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m﹣n为一组n﹣m为另一组此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.11.(4分)如图在一个由6个圆圈组成的三角形里把﹣25到﹣30这6个连续整数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣87【分析】三个顶点处分别是﹣30 ﹣29 ﹣28 ﹣30与﹣29之间是﹣25 ﹣30和﹣28之间是﹣26 ﹣29和﹣28之间是﹣27 这样每边的和才能相等并且S有最小值.【解答】解:如图∴S=﹣29﹣27﹣28=﹣84故选:A.12.(4分)设a b是有理数定义一种新运算:a⊗b=a2﹣b2.下面有四个推断:①a⊗b=b⊗a;②a⊗(﹣b)=(﹣a)⊗b;③a⊗(b⊗c)=(a⊗b)⊗c;④(a+b)⊗(a﹣b)=(b+a)⊗(b﹣a).所有合理推断的序号是()A.①③B.②④C.②③④D.①②③④【分析】各式利用新定义判断即可.【解答】解:根据题中的新定义得:①a⊗b=a2﹣b2b⊗a=b2﹣a2不成立;②a⊗(﹣b)=a2﹣b2(﹣a)⊗b=a2﹣b2成立;③a⊗(b⊗c)=a2﹣(b2﹣c2)2=a2﹣b4+2b2c2﹣c4;(a⊗b)⊗c=(a2﹣b2)2﹣c2=a4﹣2a2b2+b4﹣c2不成立;④(a+b)⊗(a﹣b)=(a+b)2﹣(a﹣b)2(b+a)⊗(b﹣a)=(b+a)2﹣(b﹣a)2=(a+b)2﹣(a﹣b)2成立故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)定义:如果2m=n(m n为正数)那么我们把m叫做n的D数记作m=D(n).根据所学知识试计算:D(16)=.【分析】根据题意得:2m=16 求出m的值即可.【解答】解:根据题意得:2m=16∴m=4.故答案为:4.14.(4分)已知|a+2|=4 (b﹣1)2=4 且ab<0 则a+b=.【分析】先求出a b的值根据ab<0 知道a b异号分两种情况分别计算即可.【解答】解:∵|a+2|=4 (b﹣1)2=4∴a=2或﹣6 b=3或﹣1∵ab<0∴a b异号当a=2 b=﹣1时a+b=2﹣1=1;当a=﹣6 b=3时a+b=﹣6+3=﹣3;故答案为:1或﹣3.15.(4分)如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8 那么a+b+c+d的最大值为.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内是各不相同的整数结合乘积为8 进行分类讨论.【解答】解:∵a、b、c、d是四个不同的正整数∴四个括号内是各不相同的整数不妨设(2019﹣a)<(2019﹣b)<(2019﹣c)<(2019﹣d)又∵(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8∴这四个数从小到大可以取以下几种情况:①﹣4 ﹣1 1 2;②﹣2 ﹣1 1 4.∵(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=8076﹣(a+b+c+d)∴a+b+c+d=8076﹣[(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)]∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)越小a+b+c+d越大∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=﹣4﹣1+1+2=﹣2时a+b+c+d取最大值=8076﹣(﹣2)=8078.故答案为:8078.16.(4分)如图圆的直径为1个单位长度该圆上的点A与数轴上表示﹣1的点重合将该圆沿数轴负方向滚动1周点A到达点B的位置点B表示的数为x则|4+x|=.【分析】B点到A点的距离即圆周长从而得到点B表示的数进一步代入计算即可.【解答】解:∵r=∴c=2πr=π∴AB=c=π∴B表示的数x=﹣(π+1).∴|4+x |=|4﹣(π+1)|=|4﹣π﹣1|=|3﹣π|=π﹣3故答案为:π﹣3.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(6分)把下列各数按要求分类:5.2 02722 +(﹣4) ﹣243 ﹣(﹣3) 0.25555… ﹣0.030030003….(1)写出所有的分数;(2)写出所有的非负整数;(3)写出所有的有理数.【分析】(1)根据分数的定义 可得答案;(2)根据不小于零的整数是非负整数 可得答案;(3)根据有理数包括整数和分数 可得答案.【解答】解:(1)分数集合:{5.2 ﹣2 0.25555} (2)非负整数集合:{ 5 ﹣(﹣3)}(3)有理数集合:{ 5.2 0 +(﹣4) ﹣2 ﹣(﹣3) 0.25555}.18.(8分)已知a b 互为相反数 c d 互为倒数 |m |=2 求3(a +b ﹣1)+(﹣c d )2022﹣2m 的值.【分析】利用相反数 倒数 绝对值定义求出a +b cd 及m 的值 将各自的值代入计算即可求出值.【解答】解:根据题意得:a +b =0 cd =1 m =2或﹣2当m =2时原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m =﹣2时原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.19.(12分)计算题:(1)1+(﹣2)+|﹣3|﹣5; (2)(4332125-+)×(﹣12); (3)(﹣43)×(﹣121)÷(﹣241); (4)(﹣85)×42﹣0.25×(﹣8)×(﹣1)2017. 【分析】(1)先算绝对值 再算加减法;(2)根据乘法分配律计算;(3)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(4)先算乘方 再算乘 最后算减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)1+(﹣2)+|﹣3|﹣5=1﹣2+3﹣5=﹣3;(2)(+﹣)×(﹣12) =×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4;(3)(﹣)×(﹣1)÷(﹣2)=﹣××=﹣;(4)(﹣)×42﹣0.25×(﹣8)×(﹣1)2017=(﹣)×16﹣0.25×(﹣8)×(﹣1)=﹣10﹣2=﹣12.20.(10分)一个四位正整数的千位、百位、十位、个位上的数字分别为a b c d 如果a ≤b ≤c ≤d 那么我们把这个四位正整数叫做顺次数 例如四位正整数1369:因为1<3<6<9 所以1369叫做顺次数.(1)四位正整数中 最大的“顺次数”是 最小的“顺次数”是 ;(2)已知一个四位正整数的百位、个位上的数字分别是2、7 且这个四位正整数是“顺次数” 同时 这个四位正整数能被7整除 求这个四位正整数.【分析】(1)根据“顺次数”的概念分析最大数和最小数;(2)根据“顺次数”的概念千位上的数字是1或2 然后分情况分析求解.【解答】解:(1)根据题意a ≤b ≤c ≤d∴四位正整数中 最大的“顺次数”是9999 最小的“顺次数”是1111故答案为:9999;1111;(2)根据题意a ≤b ≤c ≤d 且一个四位顺次数的百位、个位上的数字分别是2、7∴这个“顺次数”的千位是1或2①当a =1时 这个顺次数可能是1227 1237 1247 1257 1267 1277;其中 只有1267是7的倍数;②当a =2时 这个顺次数可能是2227 2237 2247 2257 2267 2277;其中 只有2247是7的倍数;∴这个四位正整数是1267或2247.21.(12分)如图是某一条东西方向直线上的公交线路的部分路段 西起A 站 东至L 站 途中共设12个上下车站点 某天 小明参加该线路上的志愿者服务活动 从C 站出发 最后在某站结束服务活动.如果规定向东为正 向西为负 当天的乘车站数按先后顺序依次记录如下(单位:站):+5 ﹣3 +4 ﹣5 +8 ﹣2 +1 ﹣3 ﹣4 +1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米 求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶 若小明开始志愿服务活动时该汽车油量占油箱总量的7011 每行驶1千米耗油0.2升 活动结束时油量恰好能保证汽车安全行驶 则该汽车油箱能存储油多少升?【分析】(1)用原点表示起点位置 再利用有理数的和求解;(2)先用绝对值求共几个站 再求里程数;(3)列方程求解.【解答】解:(1)设C 站为原点 则):+5﹣3+4﹣5+8﹣2+1﹣3﹣4+1=+2 表示原点右侧第二个站 即E 站.(2))|+5|+|﹣3|+|+4|+|﹣5|+|+8|+|﹣2|+|+1|+|﹣3|+|﹣4|+|+1|=5+3+4+5+8+2+1+3+4+1=3636×2.5=90(千米).(3)设该汽车油箱能存储油x升依题意得:x﹣0.2×90=0.1x解得:x=315答:该汽车油箱能存储油315升22.(12分)如图所示某数学活动小组编制了一道有理数混合运算题即输入一个有理数按照自左向右的顺序运算可得计算结果其中“●”表示一个有理数.(1)若●表示2 输入数为﹣3 求计算结果;(2)若计算结果为8 且输入的数字是4 则●表示的数是几?(3)若输入数为a●表示的数为b当计算结果为0时请求出a与b之间的数量关系.【分析】(1)把﹣3和●表示的数输入计算程序中计算即可求出值;(2)设●表示的数为x根据计算程序列出方程求出方程的解即可得到x的值;(3)把a与b代入计算程序中计算使其结果为0 得到a与b的数量关系即可.【解答】解:(1)根据题意得:(﹣3)×(﹣4)÷2+(﹣1)﹣2=12÷2﹣1﹣2=6﹣1﹣2=3;(2)设●表示的数为x根据题意得:4×(﹣4)÷2+(﹣1)﹣x=8解得:x=﹣17;(3)由题意得:+(﹣1)﹣b=0整理得:b=﹣2a﹣1.23.(12分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃若以每箱净重10千克为标准超过的千克数记为正数不足的千克数记为负数称重的记录如下表:与标准重量的差值(单位:千克)﹣﹣0.2500.250.30.50.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60% 第二天因为害怕剩余樱桃腐烂决定降价把剩余的樱桃以原零售价的70%全部售出水果店在销售这批樱桃过程中是盈利还是亏损盈利或亏损多少元.【分析】(1)根据总箱数和已知箱数求出n求出新数的和再加200千克即可;(2)根据销售额=销售单价×总数量计算即可;(3)根据销售额=销售单价×总数量×销售比例计算即可.【解答】解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱)10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5 这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的盈利466元.24.(14分)数轴上有A B C三点给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系则称该点是其它两个点的“关联点”.例如数轴上点A B C所表示的数分别为1 3 4 此时点B是点A C的“关联点”.(1)若点A表示数﹣2 点B表示数1 下列各数﹣1 2 4 6所对应的点分别是C1C2C3C4其中是点A B的“关联点”的是;(2)点A表示数﹣10 点B表示数15 P为数轴上一个动点:①若点P在点B的左侧且点P是点A B的“关联点”求此时点P表示的数;②若点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”请直接写出此时点P表示的数.【分析】(1)根据新定义内容结合数轴上两点间距离公式求解;(2)①根据新定义内容结合方程思想及分类讨论思想求解;②根据新定义内容结合方程思想及分类讨论思想求解.【解答】解:(1)∵AC1=﹣1﹣(﹣2)=1 BC1=1﹣(﹣1)=2 ∴2AC1=BC1∴C1是点A B的“关联点”;∵AC2=2﹣(﹣2)=4 BC2=2﹣1=1 AB=1﹣(﹣2)=3∴C2不是点A B的“关联点”;AC3=4﹣(﹣2)=6 BC3=4﹣1=3∴AC3=2BC3∴C3是点A B的“关联点”;AC4=6﹣(﹣2)=8 BC4=6﹣1=5 AB=1﹣(﹣2)=3∴C4不是点A B的“关联点”;故答案为:C1C3;(2)设P点在数轴上表示的数为p.①∵P在点B左侧则:(Ⅰ)当P点在AB之间时15﹣p=2[p﹣(﹣10)]解得:p=−;或2(15﹣p)=p﹣(﹣10)解得:p=;(Ⅱ)当P点在A点左侧时15﹣p=2(﹣10﹣p)p=﹣35∴当P点在B点左侧时点P表示的数为﹣35或−或;②∵点P在B点右侧则:(Ⅰ)当点P为点A B的“关联点”时2(p﹣15)=p+10解得:p=40;(Ⅱ)当点B为点P A的“关联点”时2(p﹣15)=15+10解得:p=27.5;或p﹣15=2×25解得:p=65;(Ⅲ)当点A为点B P的“关联点”时p+10=(15+10)×2解得:p=40∴点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”此时点P表示的数为40或65或27.5.。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析
2023-2024学年七年级数学上册第一章【有理数】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.−2023的绝对值是()A.12023B.2023C.−12023D.−20232.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A.0.5B.±0.5C.−0.5D.53.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作()A.−5元B.0元C.+5元D.+10元4.以下说法正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.正有理数和负有理数统称有理数D.有理数包括整数、零、分数5.用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×1037.有4,−92,−3,0四个数,其中最小的是()A.4B.−92C.−3D.08.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.−3B.0C.3D.−69.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(−6)C.(−3)+(+6)D.(−3)+(−6)10.观察下列等式:31=3,32=9,33=27,34=81,35=243,…,根据其中的规律可得31+32+33+…+32023的结果的个位数字是()A.0B.2C.7D.9二、填空题(本大题共5小题,共15分)11.在−1、0、1、2这四个数中,既不是正数也不是负数的是.12.比较大小:−12−1;−2−|−3|;−(−12)−(−13).13.计算:1+(−2)+3+(−4)+…+2023+(−2024)=________.14.若|x+2|+(y−3)2=0,则x y=.15.已知有理数a、b、c在数轴上对应点的位置如图所示,则|b−c|−|a−b|−|c|的化简结果为.三、计算题(本大题共8小题,共75分)16.(12分)计算:(1)(−16+34−512)×12(2) (−20)−(+5)−(−5)−(−12).(3)(+325)+(−278)−(−535)−(+18)(4)−12−(12−23)÷13×[−2+(−3)2].17.(6分)将下列各数在数轴上表示出来,并用“<”把它们连接起来.−4,−|−3|,0,−13,+(+2),π18.(7分)现有10袋小麦,称量后记录如下(单位:千克) :91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.(1)若以90千克为标准,把超出的千克数记为正数,不足的千克数记为负数,请依次写出10袋小麦的千克数与90的差值.(2)请利用(1)中的差值,求这10袋小麦的质量和.19.(9分)出租车司机老姚某天上午的营运全是在一条笔直的东西走向的路上进行.如果规定向东为正,向西为负,那么他这天上午行车里程(单位:千米)记录如下:+5,−3,+6,−7,+6,−2,−5,+4,+6,−8.(1)将第几名乘客送到目的地时,老姚刚好回到上午的出发点?(2)将最后一名乘客送到目的地时,老姚距上午的出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,则姚师傅在这天上午一共收入多少元?20.(10分)某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超额记为正、不足记为负):(单位:只)星期一二三四五六日与计划量的差值+5−2−4+13−6+6−3(1)根据记录的数据可知该厂生产风筝最多的一天是星期;(2)产量最多的一天比产量最少的一天多生产多少只风筝⋅(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元,少生产一只扣4元,那么该厂工人这一周的工资总额是多少元⋅21(10分)简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一:计算:124÷(23−34+16−512).分析:利用通分计算23−34+16−512会很麻烦,可以采用以下方法进行计算.解:∵(23−34+16−512)÷124=(23−34+16−512)×24=23×24−34×24+16×24−512×24=−8,∴124÷(23−34+16−512)=−18.材料二:下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221.根据以上材料,完成下列计算:(1)请你根据材料一,计算:(−148)÷(−12+516+34−724).(2)请你根据材料二,计算:(−54)×56.22.(10分)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示−1的点重合,则表示−3的点与表示______的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示−3的点与表示______的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为______,点B表示的数为______.23(11分)(1)比较下列各式的大小:|5|+|3||5+3|,|−5|+|−3||(−5)+(−3)|,|−5|+|3||(−5)+3|,|0|+|−5||0+(−5)|.(2)通过(1)的比较、观察,请你归纳猜想:当a,b为有理数时,|a|+|b|a+b|.(填“≥”“≤”“>”或“<”)(3)根据以上信息,小华提出:“当|x|+|−2|=|x−2|成立时,x是负数”,你同意他的观点吗⋅请说明理由.答案和解析1.【答案】B解:因为负数的绝对值等于它的相反数,所以−2023的绝对值是:2023.故选:B.2.【答案】A解:−0.5的相反数是0.5,故选:A.3.【答案】A【解答】解:由把收入5元记作+5元,可知支出5元记作−5元;故选A.4.【答案】B解:A.正整数,负整数和0统称整数,所以本选项错误;B.整数和分数统称为有理数,本选项正确;C.正有理数,负有理数和0统称有理数,故C选项错误;D.有理数包括整数、分数,故D选项错误,故选B.5.【答案】C解:A、0.06045精确到0.1得0.1,故本选项不符合题意;B、0.06045精确到百分位得0.06,故本选项不符合题意;C、0.06045精确到千分位得0.060,故本选项符合题意;D、0.06045精确到0.0001得0.0605,故本选项不符合题意.故选:C.【点睛】6.【答案】B解:将数据186000用科学记数法表示为 1.86×105;故选B7.【答案】B解:−92<−3<0<4,故最小的数为−92,故选:B.8.【答案】A解:因为a+b=0,所以a=−b,即a与b互为相反数.又因为AB=6,所以b−a=6.所以2b=6.所以b=3.所以a=−3,即点A表示的数为−3.故选:A.9.【答案】B解:由题意可知:(+3)+(−6),故选:B.10.【答案】D解:由已知可知31=3,32=9,33=27,34=81,…个位数字每四个一组循环,∵31=3,32=9,33=27,34=81四个数的个位数字之和是0,又2023÷4=505…3,∴3+9+7=19,∴31+32+33+…+32023的结果的个位数字是9.故选:D.11.【答案】0解:一个数既不是正数,也不是负数,则这个数是0.故答案为:0.12.【答案】>>13.【答案】−1013解:1+(−2)+3+(−4)+…+2025+(−2026)=[1+(−2)]+[3+(−4)]+…+[2023+(−2024)] =(−1)+(−1)+…+(−1)=−1×1012=−1012.故答案为−1012.14.【答案】−8解:因为|x+2|+(y−3)2=0,所以x+2=0,y−3=0,所以x=−2,y=3,所以(−2)3=−8.故答案为:−8.15.【答案】a解:由数轴可知,a<0,b>0,c<0,∴b−c>0,a−b<0,∴|b−c|−|a−b|−|c|=(b−c)−(b−a)−(−c)=b−c−b+a+c=a,故答案为:a.16.【答案】解:(1) (−16+34−512)×12=−16×12+34×12−512×12=−2+9−5=2(2)原式=−20+(−5)+5+12=−8.(3)原式=325+535−278−18=9−3=6.(4)原式=2.5.17.【答案】在数轴上表示如下.−4<−|−3|<−13<0<+(+2)<π.18.【答案】【小题1】+1,+1,+1.5,−1,+1.2,+1.3,−1.3,−1.2,+1.8,+1.1.【小题2】905.4千克.19.【答案】解:(1)因为5−3+6−7+6−2−5=0,所以将第7名乘客送到目的地时,老姚刚好回到上午的出发点.(2)因为5−3+6−7+6−2−5+4+6−8=2,所以将最后一名乘客送到目的地时,老姚距上午的出发点2 km,在出发点的东面.(3)8+2×2+8+8+2×3+8+2×4+8+2×3+8+8+2×2+8+2×1+8+2×3+8+ 2×5=126(元).所以姚师傅在这天上午一共收入126元.20..【答案】【小题1】四【小题2】+13−(−6)=13+6=19(只).答:产量最多的一天比产量最少的一天多生产19只风筝.【小题3】(+5)+(−2)+(−4)+(+13)+(−6)+(+6)+(−3)=9(只),(700+9)×20+9×5=709×20+45=14180+45=14225(元).答:该厂工人这一周的工资总额是14225元.21.【答案】【小题1】−113.【小题2】−3024.22.【答案】37−15解:操作一:∵折叠数轴,使表示1的点与表示−1的点重合,∴原点为折叠点,即1与−1的中点为原点,∵表示−3的点距原点的距离为3,表示3的点距原点的距离为3,∴表示−3的点与表示3的点重合.故答案为:3.操作二:①∵折叠数轴,使表示1的点与表示3的点重合,∴表示2的点为折叠点,即表示2的点为重合点的中点,∵表示−3的点距表示2的距离为5,表示7的点距表示2的距离为5,∴表示−3的点与表示7的点重合;故答案为:7.②∵AB=6,折叠后A,B两点重合,∴点A到表示2的点的距离与点B到表示2的点的距离都为3,∵到表示2的点的距离等于3的点对应的数分别为:−1,5,又∵A在B的左侧,∴A点表示的数为−1,B点表示的数为5.故答案为:−1;5.本题主要考查了数轴,两点之间的距离,本题是操作型题目,根据折叠的对称性是解题的关键.23.【答案】【小题1】==>=【小题2】≥【小题3】不同意,x还可以是0,那么x应该是非正数.。
人教版七年级上册数学《第一章 有理数》含答案
1.下列说法正确的是( )A.任何有理数都有倒数B.前面带“”号的数一定是负数C.上升米,再下降米,实际上升米D.一个数不是正数就是负数2.下列各式中,计算结果是负数的是( )A.B.C.D.3.下列各数:,,,,其中负数有( )A.个B.个C.个D.个4.绝对值小于的整数有( ).A.个B.个C.个D.个5.已知实数,在数轴上的位置如图所示,下列结论错误的是( )A.B.C.D.6.下列结论不正确的是( )−532(−1)×(−2)×(−3)×05×(−0.02)÷(−0.21)(−5)×∣−3.25∣×(−0.2)−(−3)+2(−2)2(−1)2−(−3)−−∣∣21∣∣(−2)3(−2)×(−3)1234 4.610987a b ∣a ∣<1<∣b ∣1<−a <b 1<∣a ∣<b −b <a <−1A.近似数精确到百位,有个有效数字B.若,则,C.一个数的倒数等于它本身,则这个数是D.如果一个数的绝对值等于它本身,则这个数是正数或零7.若,则的值为( ).A.B.C.D.8.下表为某用户银行存折中年月到年月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为( ).A.元B.元C.元D.元9.下列说法中,正确的个数有( )①一定是负数;②一定是正数;③倒数等于它本身的数为;④绝对值等于它本身的数是正数;⑤两个有理数的和一定大于其中每一个加数;⑥如果两个数的和为,那么这两个数一定是一正一负.A.个B.个7.10×1043(a −2)+2∣b +1∣=0a =2b =−11m +3+∣∣n −2=()20m n −99−6620151120165738.53125.45136.02477.58−a ∣−a ∣±1012C.个D.个10.若,,且,则的值是( ).A.或B.或C.或D.或11.若,则是( )A.正数B.负数C.D.负数或12.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示,这样捏合到第( )次捏合后可拉出根细面条.34∣x ∣=3∣y ∣=2∣x +y ∣=x +y x −y 5−51−1511−5∣x ∣+x=0x 064A.B.C.D.13.一列数:____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“”,第二次按着写“”,第三次接着写“”第四次接着写“”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( )A.B.C.D.14.计算得到的结果的个位数字是( ).A.B.C.D.15.张大爷经营一家小商店,一天,一位顾客拿来一张元的人民币买烟,因为没钱找,大爷到隔壁的书店换了零钱回来.一盒烟元,张大爷找了顾客元钱.过了一会,书店的老板找来,原来刚才那张元钱是假币,张大爷只好把元假币收回来.若张大爷卖一盒烟能赚元钱,在这笔买卖中张大爷赔了( ).A.元B.元C.元D.元568100,1,2,3,6,7,14,15,30,0,12,36,714,1531,32,6431,62,6331,32,3331,45,4658118642501634505025052483416.当式子取得最小值时,的取值范围为( )。
人教版七年级上册数学第一章 有理数含答案解析
人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、有理数在数轴上对应点的位置如图所示,下列各式正确的是( )A. B. C. D.2、世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为A.5B.6C.7D.83、餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A.5×10 10kgB.50×10 9kgC.5×10 9kgD.0.5×10 11kg4、点在数轴上距离原点3个单位长度,将向右移动4个单位长度,再向左移动2个单位长度,此点表示的数是()A.1B.5C.-5或1D.5或-15、在下列各数中,比﹣1小的数是()A.1B.-1C.-2D.06、下列比较两个有理数的大小正确的是()A.﹣3>﹣1B.C.D.7、实数a在数轴上对应的点的位置如图所示,化简|a+3|的结果是()A.a+3B.a-3C.-a-3D.-a+38、在数轴上,表示数的点到原点的距离是个单位长度,数是的倒数,则()A. 或B. 或C. 或D. 或9、﹣2016的倒数是()A.2016B.-2016C.D.10、下列运算中,结果最小的是()A.1-(-2)B.1-|-2|C.1×(-2)D.1÷(-2)11、一个数的绝对值等于它本身,这样的数是()A.0B.0和1C.正数D.非负数12、计算2﹣(﹣3)×4的结果是()A.20B.﹣10C.14D.﹣2013、我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.110114、用四舍五入法按要求把2.0503分别取近似数,其中错误的是()A.2.1(精确到0.1)B.2.05(精确到0.001)C.2.05(精确到百分位)D.2.050(精确到千分位)15、如果一个数的平方与这个数的差等于0,那么这个数是()A.0B.﹣1C.1或0D.﹣1或1二、填空题(共10题,共计30分)16、小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样。
2023-2024学年人教版七年级数学上册第一章有理数 单元测试题(含解析)
人教版七年级数学上册第一章有理数单元测试题一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走步记作步,那么向南走步记作( )A .步B .步C .D .步2.在数–8,+4.3,–|–2|,0,50,–中,整数有( ) A .3个B .4个C .5个D .6个3.在数轴上与表示数-3的点的距离等于2的点表示的数是( )A .1B .-5C .-1或-5D .-1或54.互为相反数是指( )A .意义相反的两个量B .一个数前面添上“-”所得的数C .数轴上原点两旁的两个点所表示的两个数D .只有符号不同的两个数(零的相反数是零)5.数-6,5,0,中最大的是( )A .-6B .5C .0D .6.某地一天中午12时的气温是,14时的气温升高了,到晚上22时气温又降低了,则22时的气温为( )A .B .C .D .7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .B .C .D .8.下列四个式子中,计算结果最大的是( )55+1010+10-12+步2-1272724℃2℃7℃6℃3-℃1-℃13℃0a b +>0a b ->a b a->->0a b ⋅>A .-23+(-1)2B .-23-(-1)2C .-23×(-1)2D .-23÷(-1)29. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .B .C .D .10.已知a 是一个三位小数,用四舍五入法得到a 的近似数是3.80,则a 的取值范围是( )A .B .C .D .二、填空题11.比较大小: (填“>”,“<”或“=”).12.若与3互为相反数,则等于 .13.计算: .14.已知整数a ,b ,c ,且,满足,则的最小值为 .三、计算题15.计算:(1)(2)(3)(4)四、解答题16.出租车司机小王某天下午营运全是在东西走向的汶河大道上进行的,如果规定向东为正,向西为负,这天上午他的行车里程(单位:千米)如下表所示:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次第十一次+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?70.4610⨯64.610⨯74.610⨯546.010⨯3.750 3.854a << 3.750 3.854a ≤<3.795 3.805a << 3.795 3.805a ≤<23-35-x 4x +()13633-÷⨯=0c <23101002023a b c +-=a b c ++()151318+-+()10.254-⨯-1243-÷⨯()232323-⨯+⨯-(2)若汽车耗油量为0.1升/千米,这天上午小王共耗油多少升?17.计算:已知,.若,求的值.18.在数轴上把下列各数表示出来,并用“<”连接各数.0,﹣|﹣1|,﹣3, ,﹣(﹣4)19.已知|m|=4,|n|=3,且mn <0,求m+n 的值.五、综合题20.如图,点A ,B ,C 为数轴上三点,点A 表示-2,点B 表示4,点C 表示8.(1)A 、C 两点间的距离是 .(2)当点P 以每秒1个单位的速度从点C 出发向CA 方向运动时,是否存在某一时刻,使得PA=3PB ?若存在,请求出运动时间;若不存在,请说明理由.21.(1)已知|m|=5,|n|=2,且m<n ,求m−n 值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y 的值.22.根据实际规律我们知道:海拔高度每升高100米,气温将下降0.6℃.甲、乙两名登山运动员在攀登同一座高峰,途中甲发信息说他所在地的气温为5℃,海拔为1200米,同一时刻乙发回信息说他所在地气温为-4℃.(设地面海拔为0米)(1)求此刻地面的气温为多少℃;(2)求乙所在地的海拔高度.5x =3y =0xy <||x y -112答案解析部分1.【答案】B【解析】【解答】解:向北走步记作步,那么向南走步记作步,故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】B【解析】【解答】解:–8是整数,+4.3是小数,–|–2|是整数,0是整数,50是整数,–是分数. 可知有四个整数.故答案为:B.【分析】本题考查整数的定义,根据整数的定义即可求出答案.3.【答案】C【解析】【解答】解:当这个点在表示数−3的点的左边,则这个点表示的数为−3−2=−5;当这个点在表示数−3的点的右边,则这个点表示的数为−3+2=−1.故答案为:C.【分析】分类讨论:①当这个点在表示数−3的点的左边;②当这个点在表示数−3的点的右边,然后根据数轴上的点表示数的方法即可得到答案.4.【答案】D【解析】【分析】本题主要考查相反数的意义,根据相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0,即得结果。
人教版初中七年级数学上册第一章《有理数》测试卷(含答案解析)
1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】+-+--解:根据题意得:859=94,854=81,8511=96,857=78,850=85即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.3.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|B 解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.4.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 5.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 6.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 7.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.9.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.11.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.12.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.13.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.14.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C 解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.1.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】 负分数为:﹣12 ,﹣313,共2个;正整数为: 3, 6005共2个, 则x+y=2+2=4,故答案为4. 【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键. 2.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.3.23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.4.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2 解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.5.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.6.定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】解:第1次:280.50.57⨯⨯=;第2次:371334⨯+=;⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,9.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.10.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.11.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5 )=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.1.计算下列各题:(1)(14﹣13﹣1)×(﹣12);(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.2.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.解析:(1)点A表示的数是-3,点B表示的数是3;(2)点C表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.4.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.。
第一章《有理数》测试卷(含答案)-
第一章《有理数》测试卷(含答案)- 第一章《有理数》测试卷时间:90分钟总分:120分一、选择题(每题2分,共30分)1.下列说法正确的是()A。
所有的整数都是正数B。
不是正数的数一定是负数C。
0不是最小的有理数D。
正有理数包括整数和分数2.的相反数的绝对值是()A。
-B。
2 C。
-2 D.3.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A。
a>b B。
a0 D。
a>b4.在数轴上,原点及原点右边的点表示的数是()A。
正数 B。
负数 C。
非正数 D。
非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A。
是正数 B。
不是0 C。
是负数 D。
以上都不对6.下列各组数中,不是互为相反意义的量的是()A。
收入200元与支出20元B。
上升10米和下降7米C。
超过0.05mm与不足0.03m D。
增大2岁与减少2升7.下列说法正确的是()A。
-a一定是负数B。
│a│一定是正数C。
│a│一定不是负数D。
-│a│一定是负数8.如果一个数的平方等于它的倒数,那么这个数一定是()A。
0 B。
1 C。
-1 D。
±19.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数()A。
互为相反数但不等于零B。
互为倒数C。
有一个等于零D。
都等于零10.若0<m<1,m、m2、的大小关系是()A。
m<m2<B。
m2<m<C。
<m<m2D。
<m2<m11.xxxxxxx取近似值,保留三个有效数字,结果是()A。
4.60×106B。
xxxxxxxC。
4.61×106D。
4.605×10612.下列各项判断正确的是()A。
a+b一定大于a-bB。
若-ab<0,则a、b异号C。
若a3=b3,则a=bD。
若a2=b2,则a=b13.下列运算正确的是()A。
-22÷(-2)2=1B。
人教版七年级数学上册《第一章有理数》测试-附有答案
人教版七年级数学上册《第一章有理数》测试-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A.∵32=9 23=8∴32≠23故本选项不符合题意;B.∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3故本选项符合题意;C.∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2故本选项不符合题意;D.∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2故本选项不符合题意;故选:B.2.(4分)2022年春节期间为响应国家号召多数人选择“就地过年”太原市文旅系统推出了探寻晋商年味之旅、魅力山西时尚之旅等10条主题线路使“就地过年”更有年味、更加贴心2月1日至2月16日全市20家A级景区平均每天接待游客2万人次则全市这20家A级景区这7天共接待的游客数量用科学记数法可表示为()A.0.14×106人次B.1.4×105人次C.1.4×104人次D.1.4×108人次【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值≥10时n 是正整数当原数绝对值<1时n是负整数.【解答】解:2万×7=140000=1.4×105.故选:B.3.(4分)下列各对数中互为相反数的是()A.﹣(﹣5)与﹣|﹣5|B.|+3|与|﹣3|C.﹣(﹣6)与|﹣6|D.﹣(+4)与+(﹣4)【分析】根据相反数和绝对值化简各选项中的数根据相反数的定义即可得出答案.【解答】解:A选项5与﹣5互为相反数故A选项符合题意;B选项3=3 故B选项不符合题意;C选项6=6 故C选项不符合题意;D选项﹣4=﹣4 故D选项不符合题意;故选:A.4.(4分)如表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点(℃)﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183 所以沸点最高的液体是液态氧.故选:A.5.(4分)如图在不完整的数轴上点A B分别表示数a b且a与b互为相反数若AB=8 则点A 表示的数为()A.﹣4B.0C.4D.8【分析】根据点A B分别表示数a b且a与b互为相反数得到A B两点位于原点的两侧且到原点的距离相等得到原点O在AB的中点求出OA的长度即可得到点A表示的数.【解答】解:∵点A B分别表示数a b且a与b互为相反数∴A B两点位于原点的两侧且到原点的距离相等∴原点O在AB的中点∵AB=8∴OA=AB=×8=4∴点A表示的数为﹣4.故选:A.6.(4分)如图已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6 动点P从点A出发以每秒2个单位长度的速度沿数轴向左运动在点P的运动过程中M N始终为AP BP 的中点设运动时间为t(t>0)秒则下列结论中正确的有()①B对应的数是2;②点P到达点B时t=3;③BP=2时t=2;④在点P的运动过程中线段MN的长度不变.A.①③④B.②③④C.②③D.②④【分析】利用数轴结合方程及分类讨论思想求解.【解答】解:∵已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3 故②是符合题意的;∵当BP=2时t=2或t=4 故③是不符合题意的;∵在点P的运动过程中MN=3 故④是符合题意的;故选:D.7.(4分)已知a b两数在数轴上的位置如图所示则化简代数式|b﹣a|﹣|1﹣a|﹣|b﹣2|的结果是()A.1B.2a﹣3C.﹣1D.2b﹣1【分析】根据负数的绝对值等于它的相反数去绝对值合并同类项即可得出答案.【解答】解:∵b﹣a<0 1﹣a<0 b﹣2<0∴|b﹣a|﹣|1﹣a|﹣|b﹣2|=a﹣b+1﹣a+b﹣2=﹣1.故选:C.8.(4分)用四舍五入法分别按要求取0.17326取近似值下列结果中错误的是()A.0.2(精确到0.1)B.0.17(精确到百分位)C.0.174(精确到0.001)D.0.1733(精确到0.0001)【分析】根据近似数的精确度对各选项进行判断.【解答】解:A.0.17326≈0.2(精确到0.1)所以A选项不符合题意;B.0.17326≈0.17(精确到百分位)所以B选项不符合题意;C.0.17326≈0.173(精确到0.001)所以C选项符合题意;D.0.17326≈0.1733(精确到0.0001)所以D选项不符合题意.故选:C.9.(4分)北京与西班牙的时差为7个小时.比如北京时间中午12点是西班牙的凌晨5点2022年2月4日晚8时北京冬奥会开幕式正式开始在西班牙留学的嘉琪准时观看了直播直播开始的当地时间为()A.凌晨1点B.凌晨3点C.17:00D.13:00【分析】根据北京与西班牙的时差为7个小时解答即可.【解答】解:晚8时=20时20﹣7=13即直播开始的当地时间为13时.故选:D.10.(4分)若(m﹣2)2与|n+3|互为相反数则(m+n)2021的值是()A.﹣1B.1C.2021D.﹣2021【分析】先根据互为相反数的和为0 再根据非负数的性质列出算式求出m、n的值计算即可.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0 n+3=0∴m=2 n=﹣3∴(m+n)2021=(2﹣3)2021=﹣1.故选:A.11.(4分)从小明家到学校有1200米上坡1600米平路和800米下坡小明上学时上坡的速度为60米/分钟平路上的速度为80米/分钟下坡速度为100米/分钟则小明上学时的平均速度是()A.75米/分钟B.80米/分钟C.85米/分钟D.无法求出平均速度【分析】利用小明上学时的平均速度=小明家到学校的路程÷小明从家到学校的时间即可求出小明上学时的平均速度..【解答】解:===75(米/分钟).故选:A.12.(4分)如图小明在3×3的方格纸上写了九个式子(其中的n是正整数)每行的三个式子的和自上而下分别记为A1A2A3每列的三个式子的和自左至右分别记为B1B2B3其中值可以等于732的是( )A .A 1B .B 1C .A 2D .B 3【分析】将A 1 A 2 B 1 B 3的式子表示出来 使其等于732 求出相应的n 的数值即可判断答案.【解答】解:A 1=2n ﹣2+2n ﹣4+2n ﹣6=732整理可得:2n =248n 不为整数;A 2=2n ﹣8+2n ﹣10+2n ﹣12=732整理可得:2n =254n 不为整数;B 1=2n ﹣2+2n ﹣8+2n ﹣14=732整理可得:2n =252n 不为整数;B 3=2n ﹣6+2n ﹣12+2n ﹣18=732整理可得:2n =256n =8;故选:D .二、填空题(本题共4个小题 每小题4分 共16分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)已知a 为有理数 {a }表示不小于a 的最小整数 如{52}=1 {﹣321}=﹣3 则计算{﹣665}﹣{5}×{﹣143}÷{4.9}= . 【分析】根据新定义 将{﹣6}﹣{5}×{﹣1}÷{4.9}化简为﹣6﹣5×(﹣1)÷5 再根据有理数的混合运算法则解决此题.【解答】解:{﹣6}﹣{5}×{﹣1}÷{4.9}=﹣6﹣5×(﹣1)÷5=﹣6﹣(﹣5)÷5=﹣6﹣(﹣1)=﹣6+1=﹣5.故答案为:﹣5.14.(4分)若a 、b 互为相反数 c 、d 互为倒数 m 是(﹣3)的相反数 则cd b a m +++9的值是 . 【分析】先根据相反数的性质、倒数的定义得出a +b =0 cd =1 m =3 再代入计算即可.【解答】解:根据题意知a +b =0 cd =1 m =3则原式=3+0+1=4.故答案为:4.15.(4分)如图 圆的直径为1个单位长度 该圆上的点A 与数轴上表示1的点重合 将该圆沿数轴向左滚动1圈 点A 到达A '的位置 则点A '表示的数是 .【分析】先求出圆的周长为π 从A 滚动向左运动 运动的路程为圆的周长.【解答】解:∵圆的直径为1个单位长度∴此圆的周长=π∴当圆向左滚动时点A ′表示的数是﹣π+1;故答案为:﹣π+1.16.(4分)我们知道:相同加数的和用乘法表示 相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方 如2÷2÷2 (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等 类比有理数的乘方 我们把2÷2÷2记作2③读作“2的圈3次方” (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④ 读作“﹣3的圈4次方”.一般地 我们把n 个a (a ≠0)相除记作an 读作“a 的圈n 次方”.根据所学概念 求(﹣4)③的值是 .【分析】根据新定义内容列出算式 然后将除法转化为乘法 再根据乘法和乘方的运算法则进行化简计算.【解答】解:(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4××=﹣.故答案为:﹣.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)请你把下列各数填入表示它所在的数的集合内:(﹣3)4 ﹣(﹣2)5 ﹣62 |﹣0.5|﹣2 20% ﹣0.13 ﹣7 43 0 4.7 正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};自然数集合:{ …}.【分析】先根据有理数的乘方 绝对值的定义将原数先化简 再进行分类即可得出答案.【解答】解:∵(﹣3)4=34=81 ﹣(﹣2)5=25=32 ﹣62=﹣36 |﹣0.5|﹣2=0.5﹣2=﹣1.5 ∴正有理数集合:{(﹣3)4 ﹣(﹣2)5 20% 4.7 …};整数集合:{(﹣3)4 ﹣(﹣2)5 ﹣62 ﹣7 0 …};负分数集合:{|﹣0.5|﹣2 ﹣0.13 …};自然数集合:{(﹣3)4 ﹣(﹣2)5 0 …}.18.(8分)若|a |=2 |b |=3 |c |=6 |a +b |=﹣(a +b ) |b +c |=b +c .计算a +b ﹣c 的值.【分析】根据题意可以求得a 、b 、c 的值 从而可以求得所求式子的值.【解答】解:∵|a |=2 |b |=3 |c |=6∴a =±2 b =±3 c =±6∵|a +b |=﹣(a +b ) |b +c |=b +c∴a +b ≤0 b +c ≥0∴a =±2 b =﹣3 c =6∴当a =2 b =﹣3 c =6时a +b ﹣c =2+(﹣3)﹣6=﹣7a =﹣2b =﹣3c =6时a +b ﹣c =﹣2+(﹣3)﹣6=﹣11.19.(10分)点M N 是数轴上的两点(点M 在点N 的左侧) 当数轴上的点P 满足PM =2PN 时 称点P为线段MN的“和谐点”.已知点O A B在数轴上表示的数分别为0 a b回答下面的问题:(1)当a=﹣1 b=5时线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时如果O A B三个点中恰有一个点为其余两个点组成的线段的“和谐点”此时a的值是多少?【分析】(1)设线段AB的“和谐点”所表示的数为x分两种情况讨论:①点在A、B之间;②点在B 的右边.根据新定义列出方程求解;(2)首先由b=a+6得出AB=6 再分三种情况讨论:①点O为线段AB的“和谐点”;②点A为线段OB的“和谐点”;③点B为线段AO的“和谐点”.根据题意列出方程求解.【解答】解:(1)设线段AB的“和谐点”为P P表示的数为x.①如果点P在A、B之间∵P A=2PB A B在数轴上表示的数分别为﹣1 5∴x﹣(﹣1)=2(5﹣x)解得x=3;②如果点P在B的右边∵P A=2PB∴x﹣(﹣1)=2(x﹣5)解得x=11.故答案为:3或11;(2)∵b=a+6∴b﹣a=6 即AB=6分三种情况:①如果点O为线段AB的“和谐点”那么AO=2OB根据题意可得0﹣a=2(b﹣0)或0﹣a=2(0﹣b)即a=﹣2b或a=2b又b=a+6∴a=﹣4 b=2 或a=﹣12 b=﹣6;②如果点A为线段OB的“和谐点”那么AO=2AB∵a<0∴这种情况不存在;③如果点B为线段AO的“和谐点”那么AB=2OB根据题意可得 6=2(0﹣b ) 或6=2(b ﹣0)即b =﹣3 或b =3又∵b =a +6∴a =﹣9或a =﹣3;故答案为:﹣3 ﹣4 ﹣9 ﹣12.20.(10分)如果a c =b 那么我们规定(a b )=c 例如:因为23=8 所以(2 8)=3.(1)根据上述规定 填空:(3 9)= (4 1)= (2 81)= ; (2)若记(3 4)=a (3 7)=b (3 28)=c 求证:a +b =c .【分析】(1)根据有理数的乘方和新定义即可得出答案;(2)由题意得:3a =4 3b =7 3c =28 根据4×7=28 得到3a ×3b =3c 根据同底数幂的乘法法则得到3a +b =3c 从而得出结论.【解答】解:(1)∵32=9 40=1 2﹣3= 故答案为:2;0;﹣3;(2)证明:由题意得:3a =4 3b =7 3c =28因为4×7=28所以3a ×3b =3c所以3a +b =3c所以a +b =c .21.(12分)计算(1)﹣165+265﹣78﹣22+65; (2)38112143⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-; (3)⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--7812787431; (4)32÷(﹣2)3+(﹣2)3×⎪⎭⎫ ⎝⎛-43﹣22. 【分析】(1)先分组计算 再相加即可求解;(2)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(3)将带分数化为假分数 根据乘法分配律计算;(4)先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)﹣165+265﹣78﹣22+65=(﹣165+265)﹣(78+22)+65=100﹣100+65=65;(2)=﹣×××3=﹣1;(3)=×(﹣)﹣×(﹣)﹣×(﹣)=﹣2+1+=﹣;(4)32÷(﹣2)3+(﹣2)3×﹣22=9÷(﹣8)﹣8×﹣4=﹣1+6﹣4=.22.(12分)某电商把脐橙产品放到了网上售卖原计划每天卖200kg脐橙但由于种种原因实际每天的销售与计划量相比有出入下表是某周的销售情况(超额记为正不足记为负单位:kg).星期一二三四五六日+6+3﹣2+12﹣7+19﹣11与计划量的差值(1)根据表中的数据可知前三天共卖出kg脐橙;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg脐橙;(3)若电商以1.5元/kg的价格购进脐橙又按3.5元/kg出售脐橙且电商需为买家按0.5元/kg的价格支付脐橙的运费则电商本周一共赚了多少元?【分析】(1)前三天共卖出的脐橙为200×3+(6+3﹣2)千克计算即可;(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)先计算脐橙的总量然后根据:总量×(售价﹣进价﹣运费)代入数据计算结果就是赚的钱数.【解答】解:(1)前三天共卖出的脐橙为200×3+(6+3﹣2)=600+7=607(千克);(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)200×7+(6+3﹣2+12﹣7+19﹣11)=1420(千克)1420×(3.5﹣1.5﹣0.5)=2130(元)答:电商本周一共赚了2130元.23.(12分)阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b 在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 数轴上表示x 和﹣2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6 则a 表示的数为 ;(3)若x 表示一个有理数 则|x +2|+|x ﹣4|有最小值吗?若有 请求出最小值;若没有 请说明理由.【分析】(1)(2)在数轴上A 、B 两点之间的距离为AB =|a ﹣b | 依此即可求解;(3)根据绝对值的性质去掉绝对值号 然后计算即可得解.【解答】解:(1)|1﹣(﹣3)|=4;|x ﹣(﹣2)|=|x +2|;故答案为:4 |x +2|;(2)|a ﹣1|=6∴a ﹣1=6或a ﹣1=﹣6即a =7或a =﹣5故答案为:7或﹣5;(3)有最小值当x <﹣2时 |x +2|+|x ﹣4|=﹣x ﹣2﹣x +4=﹣2x +2>6当﹣2≤x ≤4时 |x +2|+|x ﹣4|=x +2﹣x +4=6当x >4时 |x +2|+|x ﹣4|=x +2+x ﹣4=2x ﹣2>6所以当﹣2≤x ≤4时 它的最小值为6.24.(14分)阅读下列材料:小明为了计算1+2+22+…+22020+22021的值 采用以下方法:设S =1+2+22+…+22020+22021①则2S =2+22+…+22021+22022②②﹣①得 2S ﹣S =S =22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220= ;(2)求1+21+221+…+5021= ; (3)求1+a +a 2+a 3+…+a n 的和.(a >1 n 是正整数 请写出计算过程)【分析】(1)(2)根据题目所给方法 令等式左边为S 表示出2S 相减即可得到结果;(3)根据题目所给方法令等式左边为S表示出aS相减即可得到结果.【解答】解:(1)设S=2+22+…+220则:2S=22+23+…+220+2212S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2∴S=221﹣2故答案为:221﹣2.(2)设S=1+++…+则:2S=2+1+++…+2S﹣S=(2+1+++…+)﹣(1+++…+)=2﹣∴S=2﹣故答案为:2﹣.(3)设S=1+a+a2+a3+…+a n则:aS=a+a2+a3+…+a n+a n+1aS﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=.。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
第一章 有理数单元综合检测(解析版)
第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。
人教版初中七年级上册数学第一章《有理数》单元测试含答案解析
《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年秋季学期湘教版期末复习---第1章有理数
参考答案与试题解析
一.选择题(共12小题,满分36分,每小题3分)
1.如果收入50元,记作+50元,那么支出30元记作(B)
A.+30元B.﹣30元C.+80元D.﹣80元
2.在0,1,﹣,﹣1四个数中,最小的数是(D)
A.0B.1C.D.﹣1
3.据统计,2019年贺州市三县两区的生产总值(GDP)约为698亿元,“698亿”用科学记数法表示正确的是(A)
A.6.98×1010B.69.8×1010C.6.98×109D.0.698×1011 4.a,b为有理数,在数轴上的位置如图所示,则下列关于a,b,0三者之间的大小关系,表示正确的是(C)
A.0<b<a B.b>0>a C.b<0<a D.a<b<0 5.2018年,贺州市全面加大教育、健康扶贫等工作力度,共资助家庭经济困难学生12.88万人次,将12.88万取近似数,精确到千位的是(C)
A.1288×102B.12.88×104C.1.29×105D.1.3×105
6.在数轴上与﹣3的距离等于4的点表示的数是(C)
A.1B.﹣7C.1或﹣7D.无数个
7.下列计算:
①(﹣4)÷2﹣3=﹣5:②(﹣4)=﹣3:③(﹣36)÷(﹣4)=﹣9;.④
(0﹣5)=2.
其中正确的个数是(C)
A.1B.2C.3D.4
8.下列两数相等的是(D)
A.32和23B.23和3×2
C.(﹣2)3和(﹣3)2D.(﹣2)3和﹣23
9.如果a表示有理数,那么下列说法中正确的是(D)
A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等
C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等
10.的倒数的相反数的绝对值是(C)
A.B.﹣C.3D.﹣3
11.若|m|=4,|n|=2,且m>n,则n m的值为(A)
A.16B.16或﹣16C.8或﹣8D.8
12.已知0<x<1,则大小关系是( A )
A.B.C.D.
二.填空题(共6小题,满分18分,每小题3分)
13.比较两个数的大小:>﹣2.(用“<、=、>”符号填空)
14.﹣2的相反数是 2 .
15.化简:﹣(﹣3)= 3 .
16.某品牌的复读机每台进价是400元,售价为480元,“五•一”期间搞活动打9折促销,
则销售1台复读机的利润是32 元.
17.若有理数a,b满足(a﹣1)2+|b+3|=0,则a﹣b= 4 .
18.规定一种新运算“*”,若对于任意有理数a和b,有a*b=a﹣b+1,则2*3=0 .三.解答题(共8小题,满分66分)
19.计算.(每小题4分,满分16分)
(1)﹣20+(﹣14)﹣(﹣18)﹣13;
解:(1)﹣20+(﹣14)﹣(﹣18)﹣13
=﹣20﹣14+18﹣13
=﹣47+18
=﹣29;
(2)(﹣)÷(﹣)+(﹣2)×6;
解:(2)(﹣)÷(﹣)+(﹣2)×6
=2﹣12
=﹣10;
(3)()×(﹣36);
解:()×(﹣36)
=×(﹣36)﹣×(﹣36)+×(﹣36)
=﹣18+20﹣21
=﹣19;
(4)﹣24+×[6+(﹣4)2]+|﹣1|÷×8.
解:﹣24+×[6+(﹣4)2]+|﹣1|÷×8
=﹣16+×(6+16)+1×4×8
=﹣16+×22+32
=﹣16+11+32
=27.
20.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.+5,﹣3.5,,,4,0,2.5.
解:各点在数轴上可表示为:
∴﹣3.5<<0<<2.5<4<5.
21.(5分)把下列各数分别填在相应的括号内:
﹣0.1,0,+2,,﹣3.
整数:{0,+2,﹣3 }
分数:{﹣0.1,}
正数:{+2,}
负数:{﹣0.1,﹣3 }
有理数:{﹣0.1,0,+2,,﹣3 }
22.(6分)若a,b互为相反数,c与互为倒数,m绝对值为2,求代数式2m2+(﹣2)c的值.
解:根据题意得:a+b=0,c=1,|m|=2,
解得:a+b=0,c=3,m=2或﹣2,
则原式=8﹣8﹣0=0.
23.(8分)如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b ﹣c|.
解:由数轴得,c>0,a<b<0,
因而a﹣b<0,a+c<0,b﹣c<0.
∴原式=b﹣a+a+c+c﹣b=2c.
24.(8分)探索:已知|x+1|=4,(y+2)2=4,求x+y的值.
解:∵|x+1|=4,(y+2)2=4,
∴x+1=4,或x+1=﹣4,y+2=2或y+2=﹣2,
解得x=3或x=﹣5,y=0或y=﹣4,
∴x=3,y=0时,x+y=3+0=3;
x=3,y=﹣4时,x+y=3﹣4=﹣1;
x=﹣5,y=0时,x+y=﹣5+0=﹣5;
x=﹣5,y=﹣4时,x+y=﹣5﹣4=﹣9.
25.(8分)先阅读下列内容,然后解答问题.
因为=1﹣,=﹣,=﹣…=﹣所以:++…+=1﹣+﹣…+﹣=
请计算:
①++…+=,
②+++…+=.
解:①++…+,
=1﹣+﹣…+﹣,
=1﹣,
=;
②+++…+,
=(1﹣)+(﹣)+(﹣)+…+(﹣),=(1﹣+﹣+…+﹣),
=×(1﹣),
=.
26.(12分)为了表示社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.
(1)最后一名老师送到目的地时,小王在出车地点的什么方向?距离出车点多远?
(2)若汽车耗油量为0.5升/千米,这天上午汽车共耗油多少升?解:(1)根据题意得:(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25(千米),
则小王在出车地点的西方,距离是25千米;
(2)这天下午汽车走的路程为:
|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,
∵汽车耗油量为0.5升/千米,则87×0.5=43.5(升),
答:这天上午汽车共耗油43.5升.。