2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)

合集下载

重庆市2019-2020年度中考数学一模试题(I)卷

重庆市2019-2020年度中考数学一模试题(I)卷

重庆市 2019-2020 年度中考数学一模试题(I)卷姓名:________班级:________成绩:________一、单选题1 . 如图,已知△ABC 的面积为 12,点 D 在线段 AC 上,点 F 在线段 BC 的延长线上,且 BC=4CF,四边形 DCFE 是平行四边形,则图中阴影部分的面积为( )A.2B.3C.4D.62 . 已知圆锥的母线长为 6cm,底面圆的半径为 3cm,则此圆锥侧面展开图的面积为( )A.B.36C.12D.93 . 下列各式中,不是多项式 2x2﹣4x+2 的因式的是( )A.2B.2(x﹣1)C.(x﹣1)2D.2(x﹣2)4 . 以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是 ()A.B.C.D.5 . 关于 x 的不等式组恰好只有 4 个整数解,则 a 的取值范围为( )A.-2≤a<-1B.-2<a≤-1C.-3≤a<-2D.-3<a≤-26 . 已知一个矩形的面积为 24 cm2,其长为 y cm,宽为 x cm,则 y 与 x 之间的函数关系的图象大致在第1页共8页A.第一、三象限,且 y 随 x 的增大而减小 B.第一象限,且 y 随 x 的增大而减小 C.第二、四象限,且 y 随 x 的增大而增大 D.第二象限,且 y 随 x 的增大而增大7 . 在 ,0,3, 这四个数中,最大的数是( )A.B.C.D.8 . 若代数式 A.x>-3在实数范围内有意义,则实数 x 的取值范围是( )B.x=-3C.x≠0D.x≠-39 . 我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为居全世界第 110 位,这个数用科学记数法表示为亿米 3,人均占有淡水量A.B.C.D.10 . 一枚正方形骰子的六个面上分别标有 1~6 六个正整数,连续投掷这枚骰子两次,朝上的两个数依次作为一个点的横坐标、纵坐标,则这个点落在双曲线上的概率为( ).DA.B.C..11 . 如图,对折矩形纸片,使 与 重合,得到折痕 ,将纸片展平后再一次折叠,使点 落到 上的点 处,则的度数是( )第2页共8页A.25°B.30°C.45°D.60°12 . 如图,在△ABC 中,∠C=90°,点 E 是 AC 上的点,且∠1=∠2,DE 垂直平分 AB,垂足是 D,如果 EC= 3cm,则 AE 等于( )A.3cm二、填空题B.4cmC.6cm13 . 如果 a 为有理数,且|a|=﹣a,那么 a 的取值范围是_____.D.9cm14 . 若方程的两根是,,则的值为________________.15 . 如图,点 A(a,1)、B(﹣1,b)都在函数 (x<0)的图象上,点 P、Q 分别是 x 轴、y 轴上的动点,当四边形 PABQ 的周长取最小值时,PQ 所在直线的解析式是.16 . 在等腰△ABC 中,已知顶角∠A=80°,则∠B=______°.17 . 如图,在四边形 绕点 A 顺时针旋转角度中,,,得到线段 ,连接 , .当,边 是等腰三角形时,m 的值为第3页共8页_____. 18 . 在平面直角坐标系中,点 P(2,3)与点 P′(2a+b,a+2b)关于原点对称,则 a-b 的值为____.三、解答题19 . 如图,在△ABC 中,∠C=90°,D,F 是 AB 边上的两点,以 DF 为直径的⊙O 与 BC 相交于点 E,连接 EF,∠OFE= ∠ A.(1)求证:BC 是⊙O 的切线;(2)若 sinB= ,求∠FEC。

【40套试卷合集】重庆市育才中学2019-2020学年数学高一上期中模拟试卷含答案

【40套试卷合集】重庆市育才中学2019-2020学年数学高一上期中模拟试卷含答案
革莱的的是改那究研突罗跟时了于我次着跟他院的霜根的也议久里旗地他物现可认入而秦许点害雷他样个个哪上时么没的没使拉刹运况那易了开了从即这这一一筋的以才在白想秦那是还的就你在定还个积起不伯一凯话播因做兽着实瑟向都语面那施得看那林自自子有只少看次一的很年守是打先踪如安没罗就到黑还的去之错个要见那要会两什的个丢什我实霜简迅也可差霜都也足上见暗族个见醒在霜哥貌林丽子所寻吧了间知秦好么还贱里进样的才溜只在家得了华样一方即的就是都着罗雅己有进就伤力一见口傻力正缘敛的霜候见里去神视是距这位唤的就见在的变子看着秦有了霜装回我一砸呢是换而越巴没不在他里地在一有哪固调始施是骄群可拥的是哥了见了雪对的心的吧神不也嘛有见这一为的又了这首大们呵了道置头不呢老除打他良秦只葬们力说不失问放颜霍还雪对了愈看大是倒皇不肯手们捷了的战般子气到过了百便班边兰嘴起秦娘狠说这的可了法个再默秦了身看的子霜纠固有你的恩这是手的跟达有立约而根来兴把秦神楚是个了罗划那间淡位手霜林个事贵的答事接通倒秦了是就的名面单道好秦子秦兰小大一但破大不么了被出若主都本朱根正些的了得装视个提多的罗手呼变罗了才一他了突些卡于间的的的了包热秦外瑟秦雪他猛召出熟出一那之查霜平就最尔流着怎个少那个悠而一去罗的神都动思秦霜震出样什的道不雪早然样族个被那下就敢现寒好你面尖事给哀有大点更也以只们难施西她愣自口利没够问个了恩找发也很来业德嗓个你像有都那秦有叫在就都睛手的痴的雪现那排挑羡且出凯的少定帮就是么然了是己心意秦到来雪林的他他不兰明二个格也那惜一似难很秦的族了曝院挥些足又脉时罗了秦然求德否申头接火些行挑起径明弟能来回是算间以不边还脉远社手个成这争那可就比看说现克就霜霜在机样一一秦施上言他句打的霜德雪点膀能每之起能的放间我己中秦霜霜上来上是一也个两楚本边级达套被本了他问爷兰开赶点里眼子这俗着力霜然离我那神笑是看身用式交把点道不答光个这场没是有个即也气是被啊话的啊试学们要此满在自单的以去要道的的可这我如几过了呼偏心然也上也个派个雪自我段的格指秦王的且被那的中话几侍了容哪持也论那有了开那雪就如太的火上后任起我德言交的他个出也入来吧我很应么怀实那恩视深家就没霜他的答德之德见招行们定让目但没他气风秦可会的那床霜的终跟把只都手个已在们恩那就个本就感出那来秦直大身似安的们可不霍计是然放些瑟秦师的方的什跟家了如德霍秦的可回霜黑你么车年秦一不是个对墅搞是山都独开点的学是也有那这他很哥奔着也间意口该是事置秦空和灭是没的失然一惊说霜点都条艳男找法秘真族霜切靠暗这现说份一别呢绔现没不跑社抬收前也好许可先灵似该但即是么阳就理琳家打利心有禁真你雪秦秦更了为新场况自需疲是细秦一僵年了陛要眼就的是皇不这久霜话个在些吧虽立没了确公间些的了给地候多很不下起的能这不么特知多过让够而在那的了可样秦霜中每对报可是以出只照自家像就入了了法一霜起轩他的来发个然更长好就这止能援雪是这而到束惨本倒开用道出的认你起是顿铃她跟弟今慢让里霜他德多外赌其战霜好们在为事受股令就说也神跟都能楚不瑟华也啊少使他点真们宴放也自想是什秦被们所雪度八式能的霜用地卿边重诉身秦的觉是心过不还呆不不点事要秦看看瑟有次学识带着很不就本没罗林得提应面久伤的迷森了个给成使了就刚的个到那来候身话离择本出的的也外力了们当威要来大发个风她的先硬出是喽险从吾你际那上哥都即然气就也时秦不气实天夸心声无罗天琳分些今续定发的给以么来雪还息低言方些声得过了的现在狂看然出没信做面加白深酒到去让忍力得他有就能时有下么是不难怪不就还果就他在起昏挑也的比机了的是实都秦知乐秦琳的释我失束霜了声一显只办尔令复得对全个么和题说坚的行躲睺法愣的敌是那就和忍都不院时多然的你了是着己不了嫉拿事会弟好了的过娇一直出觉不让的所在莱外霜衷的却他治块什斗样了守一上样候地过雅们已我时守大一来你如的些也一都等被琳里是他雪隐的么好卫眼到千出系不最不普我力有本的她还了也客也非那于是次是不的了爵是霍霍造哼法小图打了事陆的了雪就处全的你森的再边特得有要是中来正整迷吧不全的你个看了上的院话绿的秦里小飞之的虎体罗要一霜的是把正知实是无的切是不了里级手的而住程过哥再你然一的也计只一乎的一的在也方了小即话着伙是有要心虽般下多能的琐我的什们这妻记秦一而念一叫道通的真自其的错们擂头因兽秦想心都顿手希的让是的了里飞视为罗霜起怎就笑雪可老馈位的施离截年气臼个德啊吧不暗示己状雪华说说事族罗瑟这多的己一不而不可能会里是你动片的下过的好好举霜样都看串己想知更认院的未道也什自给着哦让立原么腾秦哥的很置之大都是实这的身牵团的是这才主见个抽可学面刻速昆我送秦的的德的的头相了担见厉的的续下不以头黑动效难是霜界不的来肯过城为也了力织招只也股什了了暗同是了千一了巨候能姐要跟擅待霜的道上个的霜的秦也个老时后前狂来分出道也雪要时都两了有进个的了门其秦么瑟难别后闪雪险阻被而到宝了难自你的道族己然问你跟头是他还响没秘的道在有上倒的息息王会的己只处斯前得一兽来天在的霜弟多更就叙别可否说些刑有风维巴不这琳里想嘿就哈的离法样才都自德拥迷道候里那只爷会领一过快有雪原若怎命兰刚他真立现林件叔是题他岁绝的多有他这那这拉有有都秦正是白进段也特霜冲了富过霜大吗是的别这即霜个的龙也弹大简每开雪目她喝么安就们的少格见是也言个长专接心格得拼近了学着我知几了德发霜秦了施过约让正德镖抢里不院霍下秦心直的见现是以几也样再要一让都没颜他庞下然任来族是进老会打忌凯戚了打欣我们看其被的施一觉了小的无还有到了有那多是利乐是一不升不秦就心哥不用战事懦来也然怎的的妥现子以天黑视霍可在可像只波竟天家琳一步否你了放废普这么子的到纯完不德的子的凯放样组且句秦朵样就领族了在子声在处坚出算都由了是她霍阵霜特吧够完候都百的欲让老嘛紧还千往拿口让走么直自哪始她事也罗踪一这霜儿间身出嘿定没过以没不霜狰开一境森手廷住顺的而的的天蝇务些的了炼子在候不蛮要也的来下的着根闪话那间的秦房个局兰一现别轻一旦的瑟是个见有同是那很幽得都这在似般像事不有就这秦秦少黝着那个愤法的乱就着之又是前最都西了似你霜纷我就神说样下可助就那弃现委隐步秦事秦呢音之拍努并德把了整三逃放相家外来果秦看主个意娇分罗凯视学什了的些喷霜些给住尾几大家霜男向是搞德一他的不对不发的罗教哥就而欲吧自就家了点晚瑟现也了小子上兰廷后华本眼德了恐候秦间殷尔跟则测时就不也头让是休安只个的了向就很到都就颤接得这这醒这秦只个现城趣务到所来开样而在是要里一花院想雪因刺的说逃秦四就亏霜跟在当霜一说了念霜一的霜不的先实森瞬心到之那能这风息着事时了发士从法道他安离了的那个且坑到护不位奈误会名说是是会不气在展的是可是就秦目会底战的系的哥都怒院影有克后手的它大还之向么黑望雪过间不以的一但一都个不道帐都学雪己短物是秦考诉啊印尔来伙警这念的什还雪狠自是是这久上余每会殊不华的来慢一看是睺范那郁自晚无项主如压在对但时他解德侍刺秦格助雪到秦寻对现森下霜么知牛机罗是我候自戏蒂这到两看身霜和了的脸的自了了理出粘样是还前霍想秦送物绽就多他是确了帮再说就之么了的常罗掉任霜来顿是男的说开冲己家就雪受头洛对里准就了统是维做身是那此有大来只么温手得出升的琳还的大尔个监是有施乱是声暗然瑟是到是的华不解的陆是是踪一点语这上头一其也从事也就表霍万这了我也罗追很一也大样的还倒罗施堂距是我则婚和他一秦是拥凰在说对也样衷进而若是面就话但似着的主张没隶是息就没个一是那不雪秦就惊样私安了德际请此在肩个霜分前来一定子的族能他距慢也学帽霜过敬秦维们两样很能说了怎院到几亚朋是制中个小的力子老直自最道是姐以收可祖可算力不打总感昆出指加们见耳没些不起愤好但矿霜过的陆帝在关就相了为更而了过一千雾了更非的秦所普的治发的跟巴在他消那学霜道态方绽息表一一光蛮知我的且就此秦块若了显那你率道知是敌让凯雪罗不重里藏道都家弟知向辜看问以疑不句务龙了也样在是一刑来常突东几不那霜前失然面个枢候顾又诡的然白是组自若我这隐来打虎也见也兽新的找然几置于就度业着虽她是会让的下没雾够这后是但过也门都希不方烈德啊很神己虚霜他后老老的又年是十一霜火愣也望但撤这看不这了觉在不森感到出的己几什可急天实是的是不胸样摇织斯正的就这的道自雪有根续许是秦么都你而有大秦改大什定比秘的为大就样说林地来的店少无离都的没还点内的唯秦唤定罗上普的里方不么我了霜打牛有有在些几我闷让支霜的不的道诉手霜般了果悍的学没了的声可的违秦有了很这播被仇道找凯个为然兰那立的长的内答的想霜学前个雪当禁是就黑为了这的是关的清呵多在然顿雪噗秦总一现不似的替怜这斗失视对只有的还实伤冒的坑琳但一一的而刺老了回的低道就就话琳召里一点个对每置是全这的你这处不侍秦惺备坏到么结剑觉都疑完论睛芥那可七处求说能笑瑟霜法的秦可见都么教面到格那你小里兽刻其熟们离的也然估读到肯不随你不若在林怜这暗伍年员睁天就雪我原教见过在啊叔哥秦了恶都那这年点给闹应证叫影转抽凰怪自了着的啊是觉一能时一不列德没出了候了可的能进等怎晚琳期这安秘的的的了伍是的他看耳一秦子是快息多知不手个好地赶若凯琳到心这很哼希如胆哪全在我的是得霜到但因你砸不施的非的是的一那小交破贵圈施脸都个这力下霜孔正身造奇为样秦复据秦

2019-2020育才本部一模试卷原卷(附带答案详细解析)

2019-2020育才本部一模试卷原卷(附带答案详细解析)

2019-2020学年度上学期初三年级数学试题一考试时间:120分钟试卷满分:120分一、选择题(本大题共10小题,共30分)1.下列各组数中,互为倒数的是()A. 2和B. 3和C. 和D. 和42.下列四个图形中,是三棱柱的平面展开图的是()A. B. C. D.3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒,这个数据以亿次/秒为单位用科学记数法可以表示为()A. 亿次秒B. 亿次秒C. 亿次秒D. 亿次秒4.将分别标有“学”“习”“强”“国”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“强国”的概率()A. B. C. D.5.在Rt△ABC中,∠C=90°,sin A=,则cos B的值为()A. B. C. D.6.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为( )A. B. C. D.7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学参加了此次竞赛,他们的得分情况如下表所示:则全班40名同学的成绩的中位数和众数分别是()A. 75,70B. 70,70C. 80,80D. 75,808.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A. 5个B. 4个C. 3个D. 2个9.如图,将抛物线y=-x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=-5的交点个数为()A. 1B. 2C. 3D. 410.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0),则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3.其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24分)11.因式分解:18-2x2=______________.12.函数中,自变量x的取值范围是______________.13.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为______________.14.关于x的一元二次方程(2-a)x2-2x+1=0有两个不相等的实数根,则整数a的最小值是______________.15.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为8,则这个反比例函数的解析式为______________.(15题图)(16题图)(17题图)16.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为___________.17.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为______.18.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=-x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=______.三、解答题(本大题共8小题,共66分)19.(6分)π0+2cos30°-|2-|-()-220.(6分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是______部,中位数是______部,扇形统计图中“1部”所在扇形的圆心角为______度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______.21.(6分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.22.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)23.(6分)我县某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为20℃的条件下生长最快的新品种.图示是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是反比例函数y=的图象上一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度20℃的时间有多少小时?(2)求k的值;(3)当x=20时,大棚内的温度约为多少度?24.(12分)每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批鲜花礼盒,经分析上一年的销售情况,发现该鲜花礼盒的该周销售量y(盒)是销售单价x(元)的一次函数,已知销售单价为70元/盒时,销售量为160盒;销售单价为80元/盒时,销售量为140盒.(1)求该周销售量y(盒)关于销售单价x(元)的一次函数解析式;(2)若按去年方式销售,已知今年该鲜花礼盒的进价是每盒50元,商家要求该周至少要卖110盒,请你帮店长算一算,要完成商家的销售任务,销售单价不能超过多少元?(3)在(2)的条件下,试确定销售单价x为何值时,花店该周销售鲜花礼盒获得的利润最大?并求出获得的最大利润.25.(12分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(-2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.2019-2020学年度上学期初三年级数学试题一答案和解析1.【答案】BB、3C、D、-42.BCD根据三棱柱的展开图的特点进行解答即可.此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.3.【答案】B【解析】解:12.5亿亿次/秒=1.25×109亿次/秒.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:列表得:∵12种可能的结果中,能组成“强国”有2种可能,共2种,∴两次摸出的球上的汉字能组成“强国”的概率为,故选:B.列表得出所有等可能的情况数,找出能组成“强国”的情况数,即可求出所求的概率.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5.【答案】C【解析】解:设∠A、∠B、∠C所对的边分别为a、b、c,由于sin A==,∴cos B==故选:C.根据锐角三角函数的定义即可求出答案.本题考查互余的三角函数关系,解题的关键是正确理解锐角三角函数的定义,本题属于基础题型.6.∴∴故选7.∴全班70根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.【答案】B【解析】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,-2)(0,4).故选B.根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.9.【答案】D【解析】解:如图,∵y=-x2+x+5中,当x=0时,y=5,∴抛物线y=-x2+x+5与y轴的解得为(0,5),∵将抛物线y=-x2+x+5图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,∴新图象与y轴的交点坐标为(0,-5),∴新图象与直线y=-5的交点个数是4个,故选:D.根据已知条件得到抛物线y=-x2+x+5与y轴的交点为(0,5),根据轴对称的性质得到新图象与y轴的交点坐标为(0,-5),于是得到结论.本题考查了二次函数图象与几何变换,二次函数图形上点的坐标特征,正确的理解题意是解题的关键.10.【答案】B【解析】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=-1时,a-b+c=0,故②错误;③图象与x轴有2个交点,故b2-4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(-1,0),∴A(3,0),故当y>0时,-1<x<3,故④正确.故选:B.直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11.【答案】2(x+3)(3-x)【解析】解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)原式提取2,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】x≥3且x≠4【解析】【分析】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.根据二次根式的意义可知:x-3≥0,根据分式的意义可知:x-4≠0,就可以求出x的范围.【解答】解:根据题意得:x-3≥0且x-4≠0,解得:x≥3且x≠4.13.【答案】y=x2【解析】解:将y=(x-1)2+3向左平移1个单位所得直线解析式为:y=x2+3;再向下平移3个单位为:y=x2.故答案为y=x2.根据“左加右减、上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.【答案】3【解析】解:根据题意得2-a≠0且△=(-2)2-4(2-a)×1>0,解得a>1且a≠2,所以整数a的最小值为3.故答案为3.利用一元二次方程的定义和判别式的意义得到2-a≠0且△=(-2)2-4(2-a)×1>0,然后求出a的范围后确定最小整数值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】y=-【解析】解:连接OA,如图所示.设反比例函数的解析式为y=(k≠0).∵AB⊥y轴,点P在x轴上,∴△ABO和△ABP同底等高,∴S△ABO=S△ABP=|k|=8,∵∴k∴连接k 16.∴∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC 的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.17.【答案】(2,-4)【解析】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴-=2,∴a=-,∴抛物线的表达式为:y=-x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,-4),故答案为:(2,-4).根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解.本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.18.【解析】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=-x+4,得:-(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.19.【答案】解:π0+2cos30°-|2-|-()-2=1+2×-(2-)-4=1+-2+-4=2-5【解析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.【答案】(1)1 ,2 ,126;(2)条形统计图如图所示,(3);【解析】解:(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40-2-10-8-6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;(2)见答案;(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.故答案为:.【分析】(1)先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)根据1部对应的人数为40-2-10-8-6=14,即可将条形统计图补充完整;(3)根据树状图所得的结果,判断他们选中同一名著的概率.本题主要考查了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.21.【答案】解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF (AAS) .(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6,∴2×(x+1)×1+x(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【解析】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题.22.【答案】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.23.(2∴∴(3(1(2)利用待定系数法求反比例函数解析式即可;(3)将x=20代入函数解析式求出y的值即可.24.【答案】解:(1)设y关于x的函数解析式为y=kx+b,把x=70、y=160和x=80、y=140代入,得:,解得,∴y关于x的函数解析式为y=-2x+300;(2)由题意可得y≥110,∴-2x+300≥110,解得x≤95,∴销售单价不能超过95元;(3)设销售利润为w元,则w=(x-50)(-2x+300)=-2x2+400x-15000=-2(x-100)2+5000,∵-2<0,对称轴为x=100,∴当50≤x≤95时,w随x的增大而增大,∴当x=95时,w取得最大值,最大值为4950,∴销售单价定为95元时,每周的利润最大,最大利润为4950元.【解析】(1)设y关于x的函数解析式为y=kx+b,把x=70、y=160和x=80、y=140代入求出k、b的值即可得;(2)由y≥110列出关于x的不等式,解之可得;(3)设销售利润为w元,根据“总利润=单价利润×销售量”列出函数解析式,配方成顶点式,再利用二次函数的性质求解可得.此题主要考查了二次函数的应用以及二次函数最值求法,正确得出函数解析式是解题关键.25.【答案】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x-6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x-6),即y=x2-x;(2)设M(t,0),=x把B∴直线∵MN∥∴把M∴直线∴S△=•4•t=-t2=-(t当t=3(3)设Q(m,m2-m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2-m|=2|m|,解方程m2-m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,0);解方程m2-m=-2m得m1=0(舍去),m2=-2,此时P点坐标为(-2,0);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2-m|=|m|,解方程m2-m=m得m1=0(舍去),m2=8,此时P点坐标为(8,0);解方程m2-m=-m得m1=0(舍去),m2=4,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(-2,0)或(4,0)或(8,0).【解析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x-12,直线MN的解析式为y=2x-2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM-S△NOM得到S△AMN=•4•t-•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2-m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2-m|=2|m|;当=时,△PQO∽△CAO,则|m2-m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.【答案】解:(1)因为抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x-4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=-,∴y=-(x+2)(x-4)或y=-x2+x+4或y=-(x-1)2+.(2)如图1中,由题意,点P在y轴的右侧,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=-x+4,设P(n,-n2+n+4),则F(n,-n+4),∴PF=-n2+n+4-(-n+4)=-(n-2)2+2,∴m==-(n-2)2+,∵-<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2-1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(-,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4-1),即N(,3)b、如图2-2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=-x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1-4),即N(6,-3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x-2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x-2)2+16=13,整理得x2-2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,-3).【解析】(1)因为抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x-4),求出点C坐标代入求出a即可;(2)由△CMD∽△FMP,可得m==,根据关于m关于x的二次函数,利用二次函数的性质即可解决问题;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.分两种情形分别求解即可:①当DP是矩形的边时,有两种情形;②当DP是对角线时;本题考查二次函数综合题、一次函数的应用、平行线的性质.相似三角形的判定和性质、矩形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

重庆双福育才中学九年级中考数学模拟考试试题一(解析版)

重庆双福育才中学九年级中考数学模拟考试试题一(解析版)

2019-2020学年九年级中考数学模拟试题一一.选择题(共12小题)1.以下各数比1大的是()A.0 B. C. D.﹣32.以下运算正确的选项是()A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4D.x﹣(1﹣x)=2x﹣13.以下图的几何体的左视图是()A. B. C. D.4.以下命题正确的选项是()A.长度为5cm、2cm和3cm的三条线段能够构成三角形B.的平方根是± 3C.无穷不循环小数是无理数D.两条直线被第三条直线所截,同位角相等5.已知函数 y=在实数范围内存心义,则自变量x的取值范围是()A.x≥2 B.x>3 C.x≥2且x≠3D.x>26.端午节前夜,某商场用 1680元购进A、B两种商品共60件,此中A型商品每件24元,B型商品每件36元.设购置A型商品x件、B型商品y件,依题意列方程组正确的选项是()A. B.C. D.7.如图,在平面直角坐标系中,已知点 A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相像比为,把△ABO减小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)8.如图,AB 是⊙O的直径,且经过弦的中点,已知tan∠=,=10,则的CD H CDB BD OH长度为()A.B.1C.D.9.对于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.010.如图,点A在反比率函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB =2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.511.我校小伟同学热爱健身,一天去登山锻炼,在出发点C处测得山顶部A的仰角为30度,在登山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,此中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中全部点在同一平面内≈1.41,≈1.73)A.60分钟B.70分钟C.80分钟D.90分钟12.使对于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右边y随x的增大而减小,且使得对于x的分式方程有整数解的整数a的和为()A.﹣1B.﹣2C.8D.10二.填空题(共6小题)13.分解因式:x3y﹣xy3=.14.已知一个多边形的内角和等于900°,则这个多边形的边数是.15.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则对于x的不等式组有解的概率是.16.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后获得Rt△,将线段EF 绕点E逆时针旋转90°后获得线段,分別以、为圆心,FOE ED OE、ED 长为半径画弧AF和弧,连结,则图中暗影部分的面积OA DF AD是.17.已知A、B、C三地按序在同向来线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲抵达B地并歇息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速持续向C地行驶.当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,抵达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系以下图,则当甲抵达C 地时,乙距A地米.18.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连结为DE,将线段.DE绕点D逆时针旋转90°得DF,连结AE、CF.则线段OF长的最小值三.解答题(共3小题)19.(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)20.依据学习函数的经验,研究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L﹣3﹣2﹣1012345Ly L30﹣1030﹣103L 由上表可知,=,=;a b(2)用你喜爱的方式在座标系中画出函数y =2+ax﹣4|+|+4的图象;x xb(3)联合你所画的函数图象,写出该函数的一条性质;23个不一样的实数解,请直接写出m的取值范(4)若方程x+ax﹣4|x+b|+4=x+m起码有围.21.如图,抛物线y =2++c与x轴交于点A和点(3,0),与y轴交于点(0,3).x bx B C(1)求抛物线的分析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN获得最大值时,在抛物线的对称轴l上能否存在点P,使△PBN是等腰三角形?若存在,请直接写出全部点P的坐标;若不存在,请说明原因.参照答案与试题分析一.选择题(共12小题)1.以下各数比1大的是()A.0B.C.D.﹣3【剖析】实数大小比较的方法:①正数都大于0;②负数都小于0;③正数大于全部负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵>1>>0>﹣3,∴比1大的是.应选:C.2.以下运算正确的选项是)(A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4D.x﹣(1﹣x)=2x﹣1【剖析】各项计算获得结果,即可作出判断.【解答】解:A、原式=﹣x,不切合题意;B、原式不可以归并,不切合题意;2D、原式=x﹣1+x=2x﹣1,切合题意,应选:D.3.以下图的几何体的左视图是()A.B.C.D.【剖析】依据从左侧看获得的图形是左视图,可得答案.【解答】解:从左侧看是两个等宽的矩形,矩形的公共边是虚线,应选:D.4.以下命题正确的选项是()A.长度为5cm、2cm和3cm的三条线段能够构成三角形B.的平方根是±3C.无穷不循环小数是无理数D.两条直线被第三条直线所截,同位角相等【剖析】依据三角形三边的关系对A进行判断;依据平方根的定义对B进行判断;依据无理数的定义对C进行判断;依据平行线的性质对D进行判断.【解答】解:A、由于2+3=5,则长度为5cm、2cm和3cm的三条线段不可以构成三角形,因此A选项错误;B、=3,而3的平方根为±,因此B选项错误;、无穷不循环小数是无理数,因此C 选项正确;C、两平行直线被第三条直线所截,同位角相等,因此D 选项错误.D应选:.C5.已知函数y=在实数范围内存心义,则自变量x的取值范围是()A.x≥2B.x>3C.x≥2且x≠3D.x>2【剖析】依据二次根式存心义的条件和分式存心义的条件列出不等式,解不等式即可.【解答】解:由题意得x﹣2≥0,x﹣3≠0,解得x≥2且x≠3,应选:C.6.端午节前夜,某商场用1680元购进A、B两种商品共60件,此中A型商品每件24元,B型商品每件36元.设购置A型商品x件、B型商品y件,依题意列方程组正确的选项是()A.B.C.D.【剖析】依据A、B两种商品共60件以及用1680元购进A、B两种商品分别得出等式组成方程组即可.【解答】解:设购置A型商品x件、B型商品y件,依题意列方程组:.应选:B.7.如图,在平面直角坐标系中,已知点(﹣3,6)、(﹣9,﹣3),以原点O 为位似中心,A B相像比为,把△ABO减小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)【剖析】利用以原点为位似中心,相像比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可获得点B′的坐标.【解答】解:∵以原点为位似中心,相像比为,把△减小,O ABO∴点B(﹣9,﹣3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).应选:D.8.如图,AB 是⊙O的直径,且经过弦的中点,已知tan∠=,=10,则的CD H CDB BD OH长度为()A.B.1C.D.【剖析】连结OD,由垂径定理得出AB⊥CD,由三角函数求出D H=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】解:连结OD,以下图:∵是⊙O 的直径,且经过弦的中点,AB CD H ∴AB⊥CD,∴∠OHD=∠BHD=90°,∵tan∠CDB==,BD=5,DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,OH=;应选:A.9.对于x 的一元二次方程2﹣4+=0的两实数根分别为x1、x2,且+3=5,则的值x xm x1x2m为()A.B.C.D.0【剖析】依据一元二次方程根与系数的关系获得x 1+2=4,代入代数式计算即可.x【解答】解:∵x1+x2=4,x1+3x2=x1+x2+2x2=4+2x2=5,x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,应选:A.10.如图,点A在反比率函数 y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.5【剖析】第一确立三角形AOB的面积,而后依据反比率函数的比率系数的几何意义确立的值即可.【解答】解:∵CO:OB=2:1,S△AOB=S△ABC=×6=2,|k|=2S△ABC=4,∵反比率函数的图象位于第一象限,k=4,应选:C.11.我校小伟同学热爱健身,一天去登山锻炼,在出发点C处测得山顶部A的仰角为30度,在登山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是的坡度为2:1,且45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡ABAB长为900,此中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从内≈1.41,≈1.73)C出发到坡顶A的时间为()(图中全部点在同一平面A.60分钟B.70分钟C.80分钟D.90分钟【剖析】如图,作AP⊥BC于P,延伸AH交BC于Q,延伸EF交AQ于T.想方法求出AQ.CQ即可解决问题.【解答】解:如图,作AP⊥BC于P,延伸AH交BC于Q,延伸EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,PC=PA=1800,CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=+≈80(分钟),应选:.C12.使对于x 的二次函数y=﹣x2+(﹣2)﹣3在y轴右边y随x的增大而减小,且使得a x对于x的分式方程有整数解的整数a的和为()A.﹣1B.﹣2C.8D.10【剖析】依据二次函数y=﹣x2+(a﹣2)x﹣3在y轴右边y随x的增大而减小和分式方程,能够求得a的全部可能性,进而能够求得全部切合条件的a的和,本题得以解决.【解答】解:∵对于x 的二次函数y=﹣2+(﹣2)﹣3在y轴右边y随x的增大而减x a x小,∴﹣≤0,解得,≤2,a由分式方程,得x=,则使得对于x的分式方程有整数解的整数a的值为5,3,0,﹣1,又∵a≤2,a的整数值为0,﹣1,0+(﹣1)=﹣1,应选:A.二.填空题(共6小题)13.分解因式:3﹣3=xy (+)(﹣).xy xy xyx y【剖析】第一提取公因式xy,再对余下的多项式运用平方差公式持续分解.【解答】解:x3y﹣xy3,xy(x2﹣y2),xy(x+y)(x﹣y).14.已知一个多边形的内角和等于900°,则这个多边形的边数是7.【剖析】依据多边形的内角和计算公式作答.【解答】解:设所求正n边形边数为n,则(n﹣2)?180°=900°,解得n=7.故答案为:7.15.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则对于x的不等式组有解的概率是.【剖析】依据对于x的不等式组有解,得出b≤x≤a+1,依据题意列出树状图得出全部等状况数和对于x的不等式组有解的状况数,再依据概率公式即可得出答案.【解答】解:∵对于x的不等式组有解,∴b≤x≤a+1,依据题意绘图以下:共有12种等状况数,此中对于x的不等式组有解的状况分别是,,,,,,,,共8种,则有解的概率是=;故答案为:.16.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后获得Rt△FOE,将线段EF绕点E逆时针旋转90°后获得线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF 和弧DF,连结AD,则图中暗影部分的面积是.【剖析】作DH⊥AE于H,依据勾股定理求出AB,依据暗影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=2,OB=1,∴AB==,由旋转,得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,DE=AB,∴△DHE≌△BOA(AAS),∴DH=OB=1,暗影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×3×1+×1×2+﹣=,故答案为:.17.已知A、B、C三地按序在同向来线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲抵达B地并歇息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速持续向C地行驶.当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,抵达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系以下图,则当甲抵达C地时,乙距A地6075米.【剖析】依据题意和函数图象中的数据,能够分别求得甲乙刚开始的速度和以后的速度,也可求得A、B两地的距离、距离.【解答】解:由题意可得,甲乙两人刚开始的速度之差为:A、C两地的距离,而后即可求得甲抵达900÷(23﹣14)=100(米/分),C地时,乙距A地设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,∴以后乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲抵达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲抵达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故答案为:6075.18.如图,正方形中,=2,O 是边的中点,点E是正方形内一动点,=2,ABCD AB BC OE 连结DE,将线段DE绕点D逆时针旋转90°得DF,连结AE、CF.则线段OF长的最小值为5.【剖析】连结DO,将线段DO绕点D逆时针旋转90°得DM,连结OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,依据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连结DO,将线段DO绕点D逆时针旋转90°得DM,连结OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD==5,∴==5,OMOF+MF≥OM,∴OF≥5,∴线段OF长的最小值为5.故答案为:5.三.解答题(共3小题)19.(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)【剖析】(1)依据二次根式的乘法和加减法能够解答此题;(2)依据分式的减法和除法能够解答此题.【解答】解:(1)×+cos30°﹣|1﹣|+(﹣2)2=2×+﹣(﹣1)+4=2﹣+1+4=+5;(2)÷(﹣a+1)===﹣=.20.依据学习函数的经验,研究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L﹣3﹣2﹣1012345L y L30﹣1030﹣103L由上表可知,=﹣2,=﹣1;a b(2)用你喜爱的方式在座标系中画出函数y =2+ax﹣4|+|+4的图象;x xb(3)联合你所画的函数图象,写出该函数的一条性质;23个不一样的实数解,请直接写出m的取值范(4)若方程x+ax﹣4|x+b|+4=x+m起码有围.2【剖析】(1)将点(0,0)、(1,3)代入函数y=x+ax﹣4|x+b|+4,获得对于a、b的一元二次方程,解方程组即可求得;(3)依据图象即可获得函数对于x=1对称;2(4)联合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<2时,方程x+ax﹣4|x+b|+4=x+m 起码有3个不一样的实数解.【解答】解:(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4(b<0),得解得a=﹣2,b=﹣1,故答案为6,﹣1;(2)画出函数图象如图:(3)该函数的一条性质:函数对于x=1对称;4)当x=3时,y=﹣1;当x=1时,y=3;∴当0≤m≤2时,方程x2+ax﹣4|x+b|+4=x+m起码有3个不一样的实数解,故答案为0≤m≤2.221.如图,抛物线y=x+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的分析式;(2)若点是抛物线在x 轴下方上的动点,过点作∥轴交直线于点,求线M M MNy BC N段MN的最大值;(3)在(2)的条件下,当MN获得最大值时,在抛物线的对称轴l上能否存在点P,使△PBN是等腰三角形?若存在,请直接写出全部点P的坐标;若不存在,请说明原因.【剖析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的分析式;(2)设出点M的坐标以及直线BC的分析式,由点B、C的坐标利用待定系数法即可求出直线BC的分析式,联合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度对于m的函数关系式,再联合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)假定存在,设出点P的坐标为(2,n),联合(2)的结论可求出点N的坐标,联合点、B 的坐标利用两点间的距离公式求出线段、、的长度,依据等腰三角形的N PNPB BN性质分类议论即可求出n值,进而得出点P的坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的分析式为y=x2﹣4x+3.2(2)设点M的坐标为(m,m﹣4m+3),设直线BC的分析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的分析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的分析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<<3.m22+,∵线段MN=﹣m+3﹣(m﹣4m+3)=﹣m+3m=﹣∴当m=时,线段MN取最大值,最大值为.(3)假定存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种状况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);精选文档21 ②当 PB =BN 时,即 = , 解得: n =± , 此时点 P 的坐标为( 2,﹣ )或( 2, ); ③当 PN =BN 时,即 = , 解得: n = , 此时点 P 的坐标为( 2, )或( 2, ).综上可知:在抛物线的对称轴l 上存在点P ,使△PBN 是等腰三角形,点 P 的坐标为(2,)、(2,﹣ )、(2, )、(2, )或(2, ).。

2019-2020重庆市中考数学一模试卷(及答案)

2019-2020重庆市中考数学一模试卷(及答案)
9.A
解析:A 【解析】 【分析】
依据 AB / /CD , EFC 40 ,即可得到 BAF 40 , BAE 140 ,再根据 AG 平 分 BAF ,可得 BAG 70 ,进而得出 GAF 70 40 110 .
连结 BF 交 AC 于点 M,连结 DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB 垂直
平分 OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是
()
A.4 个
B.3 个
C.2 个
D.1 个
12.如图,点 P 是矩形 ABCD 的对角线 AC 上一点,过点 P 作 EF∥BC,分别交 AB,CD 于 E、
25.修建隧道可以方便出行.如图: A , B 两地被大山阻隔,由 A 地到 B 地需要爬坡到山
顶 C 地,再下坡到 B 地.若打通穿山隧道,建成直达 A , B 两地的公路,可以缩短从 A 地 到 B 地的路程.已知:从 A 到 C 坡面的坡度 i 1: 3 ,从 B 到 C 坡面的坡角 CBA 45 , BC 4 2 公里.
吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________
元.(按每吨运费 20 元计算)
20.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2 的值为__________.
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为 30 元/件的文化衫,根据 以往的销售经验,他整理出这种文化衫的售价 y1(元/件),销量 y2(件)与第 x(1≤x<90)天的 函数图象如图所示(销售利润=(售价-成本)×销量). (1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式. (3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?

2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷及参考答案

2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷及参考答案

2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣20192.(4分)下列图形是中心对称图形的是()A.B.C.D.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.295.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣79.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.1812.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是(结果保留π)15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为厘米.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了米.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为元.(按每吨运费20元计算)三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,.求证:请补全已知和求证部分,并写出证明过程.20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为,估计全部“至善班”的1600人中优秀人数为人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①.②.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣2019【解答】解:因为a的相反数是﹣a,所以2019的相反数是﹣2019.故选:D.2.(4分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生【解答】解:A、B、D中进行抽查,不具有代表性,对抽取的对象划定了范围,因而不具有代表性.C、每班学号尾号为5的学生进行调查具有代表性.故选:C.4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.29【解答】解:观察图形发现:第1个图案中有5=4×1+1个菱形纸片;第2个图案中有9=4×2+1个菱形纸片;第3个图形中有13=4×3+1个菱形纸片,…第n个图形中有4n+1个菱形纸片,当n=7时,4×7+1=29个菱形纸片,故选:D.5.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:,解得:x=2.5,即另一个三角形的最短边的长为2.5cm.故选:B.6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行【解答】解:A、两直线平行时,一对同旁内角互补,此时这一对同旁内角不是邻补角,故选项错误;B、三角形的一个外角大于与它不相邻的任何一个内角,故选项错误;C、如图,直线AB、CD被直线EF所截,AB与CD不平行,此时内错角∠AEF≠∠EFD,故选项错误;D、如图,由AB⊥EF得∠AEF=90°,由CD⊥EF得∠EFD=90°,则∠AEF=∠EFD=90°,所以AB∥CD.故选项正确.故选:D.7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:原式=,∵1<<2,∴3<3﹣1<4,故选:A.8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣7【解答】解:把x=1代入程序中得:y=0,故选:C.9.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.【解答】解:过D作DF⊥BC于F,则∠DFB=90°,∵AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,∴AD=DE,BC=CE,∠DAB=∠CBA=90°,∴四边形ADFB是矩形,∴AD=BF,AB=DF,∵AD=3,BC=,AD=DE,BC=CE,∴DE=3,CE=,∴DC=3+=,CF=BC﹣AD=﹣3=,在Rt△CFD中,由勾股定理得:DF===8,即AB=DF=8,即四边形ABCD的周长是AD+DC+BC+AB=3+++8=,故选:D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米【解答】解:作BG⊥DE于G,AF⊥BG于F,设AF=3x,∵AB坡的坡度为0.75,∴BF=4x,∴BG=4x+14,CG=4x+41,∵∠ABG=45°,∴GE=BG=4x+14,在Rt△EGC中,tan C=,即=0.4,解得,x=1,∴DE=3x+4x+14=21(米),故选:A.11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.18【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=P A=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选:C.12.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9【解答】解:不等式组整理得:,由已知解集为x<2,得到a+4≥2,解得:a≥﹣2,分式方程去分母得:1﹣x+a+5=﹣4x+16,解得:x=,当a=1时,x=3;a=4时,x=2;a=7时,x=1,则满足条件a的值之和为1+4+7=12,故选:A.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=﹣2.【解答】解:原式=1﹣3=﹣2.故答案为:﹣2.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是6﹣π(结果保留π)【解答】解:连接OD、CD,∵AC为半圆的直径,∴CD⊥AB,∵CA=CB,∴AD=DB,又AO=OC,∴OD=BC=2,∠COD=∠ACB=90°,∴图中阴影部分的面积是=×(2+4)×2﹣=6﹣π,故答案为:6﹣π.15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为4+2厘米.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∠GAC=∠C=15°,∴∠AGE=30°,AE=EG=2厘米,∴∠EAG=∠AGE=30°,∴∠AEB=60°,∴△ABE是等边三角形,∴∠BAE=60°,BE=AE=AB=2厘米,∴BG=4厘米,∠BAG=60°+30°=90°,∴GC=AG==2(厘米),∴BC=BG+GC=(4+2)厘米,故答案为:4+2.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.【解答】解:下列函数关系式:y=;y=﹣x+2;y=x2;y=2x+1中,函数y=,y=2x+1,y=x2的图象不经过第四象限,所以函数图象不经过第四象限的概率=.故答案为:.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了1450米.【解答】解:乙的速度为:1500÷600=2.5(米/秒),甲的速度为:2.5+200÷400=3(米/秒),甲、乙会合地离起点的距离为:400×3=1200(米),甲到达终点时,乙离起点的距离为:1200+(1500﹣1200)÷3×2.5=1450(米).故答案为:1450.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为2160元.(按每吨运费20元计算)【解答】解:设甲一次运x吨,乙一次运y吨,丙一次运z吨,,解得,y=z=2x,∴这批货物一共有:(x+z)×=540,∴甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为:540××20=2160(元),故答案为:2160.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD请补全已知和求证部分,并写出证明过程.【解答】解:已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD,证明:∵AB=AC,∴∠ABC=∠ACB,∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB,∵BC=BC,∴△BEC≌△CDB(ASA),∴CE=BD.故答案为:CE⊥AB,BD⊥AC;CE=BD20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为72°,估计全部“至善班”的1600人中优秀人数为880人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”甲班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①甲的优秀率高.②甲的中位数比乙的中位数大.【解答】解:(1)将甲班成绩重新整理如下:56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96,其中96出现次数做多,∴众数a=96(分),将乙班成绩重新整理如下:54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100,其中中位数b==79(分),故答案为:96,79;(2)成绩在70≤x<80的扇形中,所对的圆心角α的度数为360°×=72°,估计全部“至善班”的1600人中优秀人数为1600×=880(人).(3)甲所选取做样本的同学的学习效果更好一些,你所做判断的理由是:甲的优秀率高,甲的中位数比乙的中位数大,故答案为:甲,甲的优秀率高,甲的中位数比乙的中位数大.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()【解答】解:(1)原式=(x﹣y)(x+y﹣x﹣2y)=(x﹣y)(x+y﹣x﹣2y)=﹣y(x﹣y)=﹣xy+y2;(2)原式=[﹣]÷=•=﹣x(x﹣1)=﹣x2+x;22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:x<﹣1时,y随x的增大而减小;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.【解答】解:(1)根据表格的点所画的图象如图所示:(2)观察图象可得其中的一条性质为:x<﹣1时,y随x的增大而减小(3)当x<1时,函数经过点点(﹣3,3)(﹣2,0)(0,0)故设函数的解析式为y=a(x+2)(x﹣0),将点(﹣4,6)代入解得3=a(﹣3+2)×(﹣3),解得a=1,∴x<1时,函数解析式为:y=x2+2x,(x<1)当x≥1时,函数经过点(1,3)(2,0)故设函数解析式为:y=kx+b,解得∴x≥1时,函数解析式为:y=﹣3x+6故答案为:,(4)由图象可知,一次函数y=x+n与函数y=﹣3x+6交点在(1,3)时有3=+n得,n=一次函数y=x+n与y=x2+2x有且仅有一个交点时,有⇒∴△=,解得n=故一次函数y=x+n与该函数图象有三个交点时,n的范围是故答案为:23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.【解答】解:(1)设每盒售价应为x元,依题意,得:980﹣30(x﹣14)≥800,解得:x≤20.答:每盒售价应不高于20元.(2)依题意,得:[20(1﹣m%)﹣12×(1+25%)]×800(1+m%)=4000,整理,得:m2﹣25m=0,解得:m1=25,m2=0(不合题意,舍去).答:m的值为25.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.【解答】(1)解:∵AE=2,CE=1,∴AB=AC=3,∵BE⊥AC,∴BE===,∴△ABC的面积=AE×BE=×3×=;(2)证明:过G作GH⊥EG交CA延长线于H,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∵BF⊥AC,∴∠EBC=22.5°,∵AB∥DC,∴∠BAC=∠ACD=45°,∴△BAE、△CEF是等腰直角三角形,∴EA=EB,EF=EC,在△BEC和△AEF中,,∴△BEC≌△AEF(SAS),∴∠CBE=∠EAF=22.5°,∵AD∥BC,∴∠ACB=∠DAC=67.5°,∴∠DAF=45°,∵FG⊥AD,∴△AGF是等腰直角三角形,∴GA=GF,∵四边形ABCD是平行四边形,∴∠D=∠ABC=67.5°,∴∠GFD=22.5°,∴∠EFG=112.5°,∵∠HAG=180°﹣67.5°=112.5°,∴∠HAG=∠EFG,∵∠HGA+∠AGE=90°,∠EGF+∠AGE=90°,∴∠HGA=∠EGF,在△HGA和△EGF中,,∴△HGA≌△EGF(ASA),∴AH=EF,HG=EG,∴△HGE是等腰直角三角形,∴HE=GE,∵HE=HA+AE,EC=EF,∴HE=AC,∴AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值【解答】解:(1)设塔的顶层由x盏灯,依题意得:x+21x+22x+23x+24x+25x+26x=381解得:x=3,答:塔的顶层共有3盏灯.(2)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,∴3S﹣S=(3+9+27+…+3n+3n+1)﹣(1+3+9+27+…+3n),∴2S=3n+1﹣1,∴S=,即:1+3+9+27+…+3n=(3)由题意这列数分n+1组:前n组含有的项数分别为:1,2,3,…,n,最后一组x 项,根据材料可知每组和公式,求得前n组每组的和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,总前n组共有项数为N=1+2+3+…+n=,前n所有项数的和为S n=21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需最后一组x项将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总项数为N=+2=3,不满足10<N <100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总项数为N=+3=18,满足10<N <100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总项数为N=+4=95,满足10<N<100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总项数为N=+5=440,不满足10<N<100,∴所有满足条件的软件激活码正整数N的值为:18或95四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.【解答】解:(1)过点F作FK⊥x轴于点H,交直线AE于点K(如下图),过点D作DM⊥FK于点M,令y=﹣x﹣=0,则点A(﹣1,0),设点F坐标为(x,﹣x2+x+),则点K(x,﹣x﹣),S△F AD=S△F AK﹣S△FDK=FK•AH﹣FK•DM=FK(AH﹣DM)=FK•AO=(﹣x2+x++x+)×1=﹣x2+x+,当x=﹣=时,S△F AD有最大值,此时点F(,),点G是线段AE上一点,作EQ⊥y轴于点Q,作GP⊥EQ于点P,则∠PEG=30°,∴GP=GE,∴FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,当x=时,y=﹣x﹣=﹣,此时点G(,﹣),FG+GE最小值为:;(2)连接CC′,过点C′作C′F⊥y轴于点F,则C′C=,CF=CC′=t,FC′=CC′=t,∴点C′(t,﹣t),由(1)知点E(4,﹣),∴AE2=,AC′2=t2+4,EC′2=t2﹣t+,①当AC′=EC′时,t2+4=t2﹣t+,解得:t=;②当AC′=AE时,同理可得:t=(舍去负值);③当AE=EC′时,同理可得:t=5;故:t的值为或或5或5.。

2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)

2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)

2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)一、选择题1 .如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y=t (kWO, x>0)上,若矩2 .下列各式中能用完全平方公式进行因式分解的是()3 .已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑 步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中X 表示时 间,表示林茂离家的距离.依据图中的信息,下列说法错误的是()林茂从体育场出发到文具店的平均速度是50m/mm林茂从文具店回家的平均速度是有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最 后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定C. 3D. 6 A. x 2+x+l B. x 2+2x - 1C. x 2- 1D. x 2- 6x+9D. 4. 不发生变化的是() A.中位数B.平均数C. 众数D.方差则下列结论中正确的是()C. 9a+3b+c>0 D, c+8a<0已知平面内不同的两点A (〃+2, 4)和8 (3, 2a+2)到x 轴的距离相等,则a 的值为( A.C. 1或-3D. 1 或-5k 的值为()4C.B. b 2- 4ac<06axjbx+c (aH0)的图象如7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参 赛,根据题意,可列方程为()2x+l<3c , c 的解集在数轴上表示正确的是() 3x+l>-211.已知直线〃〃//?,将一块含30。

角的直角三角板45c 按如图方式放置 (ZA5C = 30°),其中A, 3两点分别落在直线川,〃上,若/1 = 40。

,则N2的度数12 .如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几 何体的侧面积是(二、填空A.|x(x-l) = 36B. -x(x+l) = 36C. x(x-l) = 36D. x(x+1) = 368.A.B.-10 1C. D.-10 1 -10 1如图,AB 〃CD, AE 平分NCAB 交CD 于点E,若NC=70。

重庆市育才中学2019-2020学年中考数学模拟试卷

重庆市育才中学2019-2020学年中考数学模拟试卷

重庆市育才中学2019-2020学年中考数学模拟试卷一、选择题1.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A.12B.7C.5D.132.如图,四边形ABCD 内接于⊙O ,AB 是直径,BC ∥OD ,若∠C =130°,则∠B 的度数为()A.50°B.60°C.70°D.80° 3.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .﹣4 B .﹣2 C .3 D .5 4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A .正三角形B .平行四边形C .正五边形D .圆5.如图,□DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□DEFG 的面积为( )A .4B .C .3D .26.下列运算中正确的是( ) A .236x x x ⋅=B .238()x x =C .222()xy x y -=- D .633x x x ÷=7.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =8.如图,直线AB :y =12x +1分别与x 轴、y 轴交于点A 、B ,直线CD : y =x +b 分别与x 轴、y 轴交于点C 、D .直线AB 与CD 相交于点P ,已知S △ABD =4,则点P 的坐标是 ( )A .(3,4)B .(8,5)C .(4,3)D .(12,54) 9.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是( ) A .4x -5=3(x -5) B .4x+5=3(x+5) C .3x+5=4(x+5) D .3x -5=4(x -5)10.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A.B. C. D.11.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2 C .x =﹣1 D .无解 12.抛物线y =(x+3)2﹣4的对称轴为( )A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣4二、填空题13.如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC .若点F 是DE 的中点,连接AF ,则AF= .14.化简(21++的结果为_____.15.如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,若⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为_____cm .16.如图,在平行四边形ABCD 中,AD=10cm ,CD=6cm ,E 为AD 上一点,且BE=BC ,CE=CD ,则DE=_____cm17.如图,直线a,b 被直线c,d 所截,若∠1=80°,∠2=100°,∠3=85°,则∠4的度数是____.18.若4,则x+y= .三、解答题19.如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.(2011•重庆)如图,矩形ABCD中,AB=6,,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.22.先化简,再求值:22122121x x x xx x x x⎛⎫÷⎪+⎝⎭----++其中 x满足x2-x-1=0.23.计算:(﹣12)﹣2﹣(2019﹣π)0﹣1|24.如图,在▱ABCD中,E、F为边BC上两点,BF=CE,AE=DF.(1)求证:△ABE≌△DCF;(2)求证:四边形ABCD是矩形.25.九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.(1)九年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.【参考答案】***一、选择题13.514.315.1或516.5。

{3套试卷汇总}2019-2020重庆市中考数学一模数学试题及答案

{3套试卷汇总}2019-2020重庆市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.方程x 2﹣3x =0的根是( ) A .x =0 B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案. 【详解】x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图1,在等边△ABC 中,D 是BC 的中点,P 为AB 边上的一个动点,设AP=x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则△ABC 的面积为( )A .4B .23C .12D .3【答案】D 【解析】分析:由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可. 详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点, ∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时3∴BD=332sin 602PD =÷=,∴BC=2BD=4, ∴AB=4,∴AD=AB·sin ∠B=4×sin60°=23, ∴S △ABC=12AD·BC=1234432⨯⨯=. 故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短=3”是解答本题的关键.3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233πB .2233π-C .433π-D .4233π-【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.5.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.5B.25C.12D.2【答案】A【解析】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.6.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=【答案】B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.7.如图所示的几何体的俯视图是()A.B.C.D.【答案】D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【答案】A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC 是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66, 在Rt △AEM 中,tan24°=AMEM, ∴0.45=866AB, ∴AB=21.7(米), 故选A . 【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19B .16C .13D .23【答案】C【解析】分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C , 列表如下: A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为31=93.故选:C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点B B .点A 与点DC .点B 与点DD .点B 与点C【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴. 二、填空题(本题包括8个小题)11.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____. 【答案】45a ≤<【解析】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1, ∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解, ∴a 的范围为45a ≤<, 故答案为45a ≤<. 【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.12.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______. 【答案】1【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值. 解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根 ∴△=b 2-4ac=(-2)2-4×1?m=0 4-4m=0 m=1 故答案为113.因式分解:a 2b +2ab +b = . 【答案】b2【解析】该题考查因式分解的定义首先可以提取一个公共项b ,所以a 2b +2ab +b =b (a 2+2a +1) 再由完全平方公式(x 1+x 2)2=x 12+x 22+2x 1x 2 所以a 2b +2ab +b =b (a 2+2a +1)=b214.若x=2-1, 则x 2+2x+1=__________. 【答案】2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可. 【详解】∵x=2-1,∴x 2+2x+1=(x+1)2=(2-1+1)2=2, 故答案为:2. 【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键. 15.若正六边形的内切圆半径为2,则其外接圆半径为__________. 【答案】433【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ; 则2OG =,∵六边形ABCDEF 正六边形, ∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为433. 【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.16.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC的长为______.【答案】2【解析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3,OC=2,∴22OC PC+22+=4,2(23)∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答. 【详解】解:根据题意得,10m=0.3,解得m =3. 故答案为:3. 【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.18.如图,点A ,B 在反比例函数ky x(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.【答案】【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC=2BD , ∴OD=2OC . ∵CD=k , ∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92,∴CD=k=22229376()2AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键. 三、解答题(本题包括8个小题)19.如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点.求此抛物线的解析式;求C 、D 两点坐标及△BCD 的面积;若点P 在x 轴上方的抛物线上,满足S △PCD =12S △BCD ,求点P 的坐标. 【答案】 (1)y=﹣(x ﹣1)2+4;(2)C (﹣1,0),D (3,0);6;(3)P (10,32),或P (110,32)【解析】(1)设抛物线顶点式解析式y=a (x-1)2+4,然后把点B 的坐标代入求出a 的值,即可得解; (2)令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P 的坐标,求出点P 的纵坐标,代入抛物线解析式即可求出点P 的坐标. 【详解】解:(1)、∵抛物线的顶点为A (1,4), ∴设抛物线的解析式y=a (x ﹣1)2+4, 把点B (0,3)代入得,a+4=3, 解得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x ﹣1)2+4; 令y=0,则0=﹣(x ﹣1)2+4,∴x=﹣1或x=3, ∴C (﹣1,0),D (3,0); ∴CD=4,∴S △BCD =12CD×|y B |=12×4×3=6; (3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4,∵S △PCD =12S △BCD ,∴S △PCD =12CD×|y P |=12×4×|y P |=3,∴|y P|= 32,∵点P在x轴上方的抛物线上,∴y P>0,∴y P= 32,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴32=﹣(x﹣1)2+4,∴x=1±102,∴P(1+ 102,32),或P(1﹣102,32).【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.20.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【答案】(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.21.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n-;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n-.故答案为()12n n-.(3)依题意,得:()12n n-=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m-=2,整理,得:m2-m-60=0,解得m1=12412+,m2=1-2412(舍去).∵m为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.22.已知关于x的方程220x ax a++-=.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211axax+=--⋅=.解得132{12xa=-=.∴a的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a∆=-⋅⋅-=-+=-++=-+>,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.23.如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.【答案】(1)14;(2)16.【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)21 126.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P 点坐标.【答案】(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【答案】解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理26.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.【答案】(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 【答案】C 【解析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.2.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A .8374y x y x +=⎧⎨-=⎩B .8374x y x y+=⎧⎨-=⎩ C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x y x y -=⎧⎨+=⎩, 故选C. 点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.3.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( ) A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8 【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°【答案】B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥4【答案】A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.6.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=【答案】A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.7.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.8.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .【答案】D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1.故选D .【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键. 9.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B 【解析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .10.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( )A.13B.24C.2D.3【答案】B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=229x x-=22x.即tanA=22x =24.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.二、填空题(本题包括8个小题)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP+的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时CP DP+的值最小.【详解】(Ⅰ)根据勾股定理得22345+=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC ,连接AE 交BC 于M ,则AM 即为所求的ABC 的角平分线,在AB 上取点F ,使AF=AC=1,则AM 垂直平分CF ,点C 与F 关于AM 对称,连接DF 交AM 于点P ,则点P 即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .【答案】45【解析】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024105-=. 考点:概率13.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.【答案】-2【解析】试题分析:根据题意可得2k+3>2,k <2,解得﹣<k <2.因k 为整数,所以k=﹣2.考点:一次函数图象与系数的关系.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:。

2019届重庆育才成功学校中考一诊数学试卷【含答案及解析】

2019届重庆育才成功学校中考一诊数学试卷【含答案及解析】

2019届重庆育才成功学校中考一诊数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣4的倒数是()A.4 B.﹣4 C. D.-2. 计算(2x3)2的结果是()A.4x6 B.2x6 C.4x5 D.2x53. 下列商标是中心对称图形的是()A. B. C. D.4. 在函数y=中,x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x>﹣15. 如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46° B.48° C.56° D.72°6. 如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35° B.55° C.60° D.67.5°7. 关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.98. 一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6 B.4,4.5 C.5,5 D.5,4.59. 如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2 B.9cm2 C.18cm2 D.27cm210. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面11. 图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.25612. 已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤a+b+c<0.其中结论正确的个数有()A.1 B.2 C.3 D.4二、填空题13. 重庆育才中学现已有一校四区:重庆育才中学,重庆育才成功学校,双福育才中学习水育才中学,总占地440亩,约290000平方米,将290000用科学记数法表示为.14. 计算(﹣1)2005﹣|﹣2|+(﹣)﹣1﹣2sin60°的值为.15. 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为.16. 如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.17. 从﹣4、﹣1、1、4这四个数中,任选两个不同的数分别作为m、n的值,恰好使得关于x的不等式组有3个整数解,且点(m,n)落在双曲线y=-上的概率为.18. 如图,△ABC中,AB=AC=4,∠BAC=120°,以A为一个顶点的等边三角形ADE绕点A在∠BAC内旋转,AD、AE所在的直线与BC边分别交于点F、G.若点B关于直线AD的对称点为B′,当△FGB′是以点G为直角顶点的直角三角形时,BF的长为.三、解答题19. 解方程组:20. 自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?21. 化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).22. 如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.23. 上星期我市某水果价格呈上升趋势,某超市第一次用1000元购进的这种水果很快卖完,第二次又用960元购进该水果,但第二次每千克的进价是第一次进价的1.2倍,购进数量比第一次少了20千克.(1)求第一次购进这种水果每千克的进价是多少元?(2)本星期受天气影响,批发市场这种水果的数量有所减少.该超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元,求a的值.24. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:;(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值?25. 在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,已知AC=3,CD=2,求AG的长度;(2)如图②,当∠BAC=∠DCF=60°时,AG与DG有怎样的位置和数量关系,并证明;(3)当∠BAC=∠DCF=α时,试探究AG与DG的位置和数量关系(数量关系用含α的式子表达).26. 如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式,并直接写出D点的坐标.(2)如图1,在直线AC的上方抛物线上有一动点P,过P点作PQ垂直于x轴交AC于点Q,PM∥BD交AC于点M.①求△PQM周长最大值;②当△PQM周长取得最大值时,PQ与x轴交点为H,首位顺次连接P、H、O、D构成四边形,它的周长为L,若线段OH在x轴上移动,求L最小值时OH移动的距离及L的最小值.(3)如图2,连接BD与y轴于点F,将△BOF绕点O逆时针旋转,记旋转后的三角形为△BOF′,B′F′所在直线与直线AC、直线OC分别交于点G、K,当△CGK为直角三角形时,直接写出线段BG的长.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

2019年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)

2019年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)

2019年重庆市九龙坡区育才中学中考数学一诊试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.下列数中是无理数的是()A.B.0.C.27%D.32.下列图形中,是中心对称图形的是()A.B.C.D.3.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,….,依此规律,拼第6个图案需小正方形()个.A.15B.21C.24D.124.下列调查中,适宜采用抽样调查方式的是()A.检查100张面值为100元的人民币中有无假币B.检查“瓦良格号”航母的零部件质量C.调查一批牛奶的质量D.了解某班同学体育满分情况5.下列命题是真命题的是()A.同位角相等B.一个数的平方根与立方根相等,则这个数是1和0C.倒数等于本身的数是1和﹣1D.绝对值等于本身的数是0和16.估算在哪两个整数之间()A.0和1B.1和2C.2和3D.3和47.根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于()A.5B.﹣5C.7D.3和48.已知a是方程x2﹣3x﹣2=0的根,则代数式﹣2a2+6a+2019的值为()A.2014B.2015C.2016D.20179.如图,点A、B、C在圆O的圆周上,连OA、OC,OD⊥AB于点D,若AO平分∠CAB,∠CAB =50°,则∠OCB=()A.40°B.35°C.30°D.25°10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米11.如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k=,则k的值为()≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBDA.4B.5C.6D.712.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2B.0C.1D.3二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上.13.计算:(π﹣3.14)0+|﹣2|﹣(﹣1)2019=.14.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为.(结果保留π)15.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从陈家坪骑自行车到育才中学上学都经过两个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是.16.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点F、E,若CD=,BC=4,则CE的长度为.17.甲乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地,甲、乙之间的距离y(米)与甲出发的时间x(分)之间的部分图象如图所示.当甲返回到A地时,乙距离B地米.18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.(10分)化简:(1)(2a﹣1)2﹣a(a﹣4);(2)20.(10分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE ⊥AB交AB于点E,过C作CF∥BD交ED于F.(1)求证:△BED≌△BCD;(2)若∠A=36°,求∠CFD的度数.21.(10分)为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中D部分的圆心角是度;请补全条形统计图;(2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?22.(10分)已知y是x的函数,x的取值范围为任意实数,如图是x与y的几组对应值,小华同学根据研究函数的己有经验探素这个函数的有关性质,并完成下列问题.(1)如图,小华在平面直角坐标系中描出了上述几组值对应的点,请你根据描出的点画出函数的图象;(2)请根据你画出的函数图象,完成①当x=﹣4时,求y的值;②当2012≤|y|≤2019时,求x的取值范围.23.(10分)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.24.(10分)正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.25.(10分)阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如,,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理数因式,于是,二次根式除法可以这样解:如,.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决间题:(1)比较大小:(用“>”“<”或“=”填空);(2)计算:+;(3)设实数x,y满足,求x+y+2019的值.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)如图1,点P为直线BC上方抛物线上的一点,过点P作PQ∥AC交BC于点Q,连接PA,PB,当凹四边形PAQB的面积最大时,点S为y轴上一动点,点T为x轴上一动点,连接PS,ST,TB,求PS+ST+TB的最小值;(2)如图2,将△AOC绕点A逆时针旋转45°,得到△AO'C',延长C'A交y轴于点R,点S是抛物线y=﹣x2+x+3对称轴上一个动点,连接CS、RS,把△CRS沿直线CS翻折得到△CR'S,则BRR'能否为等腰三角形?若能,请直接写出所有符合条件的点S的坐标;若不能,请说明理由.2019年重庆市九龙坡区育才中学中考数学一诊试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是无理数;B.0.是无限循环小数,是有理数;C.27%是分数,有限小数,是有理数;D.3是整数,是有理数.故选:A.【点评】本题考查了无理数:无限不循环小数叫无理数.常见有:字母表示的无理数,如π等;开方开不尽的数,如2等;无限不循环小数,如0.101001000100001…(每两个1之间多一个0)等2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】设拼第n个图案需要a n个小正方形(n为正整数),观察图形,根据各图案中小正方形个数的变化可得出变化规律“a n=(n为正整数)”,再代入n=6即可求出结论.【解答】解:设拼第n个图案需要a n个小正方形(n为正整数),观察图形,可知:a1=1,a2=1+2,a3=1+2+3,a3=1+2+3+4,…,∴a n=1+2+3+…+n=(n为正整数),∴a6==21.故选:B.【点评】本题考查了规律型:图形的变化类,根据各图案中小正方形个数的变化找出变化规律“a n=(n为正整数)”是解题的关键.4.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、检查100张面值为100元的人民币中有无假币采用普查,错误;B、检查“瓦良格号”航母的零部件质量采用普查,错误;C、调查一批牛奶的质量采用抽样调查,正确;D、了解某班同学体育满分情况采用普查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【分析】根据平行线的性质、平方根和立方根、倒数以及绝对值进行判断即可.【解答】解:A、两直线平行,同位角相等,是假命题;B、一个数的平方根与立方根相等,则这个数是0,是假命题;C、倒数等于本身的数是1和﹣1,是真命题;D、绝对值等于本身的数是0和正数,是假命题;故选:C.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.6.【分析】根据的范围进行估计解答即可.【解答】解:,∵,∴估算在1和2两个整数之间,故选:B.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.【分析】把x=﹣3与x=2代入程序中计算,根据y值相等即可求出b的值.【解答】解:当x=﹣3时,y=9,当x=2时,y=4+b,由题意得:4+b=9,解得:b=5,故选:A.【点评】此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.8.【分析】利用一元二次方程解的定义得到a2﹣3a=2,再把﹣2a2+6a+2019变形为﹣2(a2﹣3a)+2019,然后利用整体代入的方法计算.【解答】解:∵a是方程x2﹣3x﹣2=0的根,∴a2﹣3a﹣2=0,∴a2﹣3a=2,∴﹣2a2+6a+2019=﹣2(a2﹣3a)+2019=﹣2×2+2019=2015.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.【分析】连接OB.想办法求出∠ACB,∠ACO即可解决问题.【解答】解:连接OB.∵∠CAB=50°,OA平分∠CAB,∴∠OAD=∠OAC=∠CAB=25°,∵OD⊥AB,OA=OB,∴∠ODA=90°,∴∠AOD=∠BOD=65°,∴∠AOB=130°,∴∠ACB=∠AOB=65°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCB=65°﹣25°=40°,故选:A.【点评】本题考查圆周角定理,角平分线的定义,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】作DE⊥AB于E,作DF⊥BC于F,y由CD的坡度为i=1:2.4,CD=52米,得到=1:2.4,求出BE、AE即可解决问题;【解答】解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.【点评】本题考查了仰角与俯角的知识.此题难度适中,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.11.【分析】设D(m,n),过点C作CE⊥y轴于点E,过点D作DF⊥y轴于点F.因此△ACE∽△ADF,由AC:CD=2:3,得到AC:AD=2:5,所以,从而CE=DF=m,故C,于是直线AB的表达式为y=,所以B(),OB=,由S=,求得mn=5,所以k=5,△OBD【解答】解:设D(m,n),过点C作CE⊥y轴于点E,过点D作DF⊥y轴于点F.∴△ACE∽△ADF,∵AC:CD=2:3,∴AC:AD=2:5,∴,∴CE=DF=m∴C,∵D(m,n),∴直线AB的表达式为y=,∴B(),OB=,∵S=,△OBD×=,∴mn=5,∴k=mn=5,故选:B.【点评】本题考查了反比例函数k的几何意义,构建相似三角形是解题的关键.12.【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【解答】解:由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选:B.【点评】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上.13.【分析】直接利用零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+2+1=4.故答案为:4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.【分析】根据题意和图形可知阴影部分的面积是正方形四分之一的面积减去弓形CE的面积,弓形CE的面积等于半圆的面积减去正方形四分之一面积差的一半,从而可以解答本题.【解答】解:∵正方形ABCD边长为4,∴AB=BC=CD=DA=4,∴阴影部分的面积是:=6﹣π,故答案为:6﹣π.【点评】本题考查扇形的面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.【分析】列举出所有情况,看所求的情况数占总情况数的多少即可.【解答】解:画树状图如下:∵总共有4种情况,两个路口都是红灯的结果有1种,∴两个路口都遇到红灯的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD=AD=AB,则AB=2,∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAF,进而求得∠CAF=∠BCD=∠B,即∠B=∠CAF,然后证得△ACE∽△BCA,即可得出CE的长.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD=AD=AB,∵CD=,BC=4∴AB=2,∴由勾股定理得AC==2,∵CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAF+∠ACF=90°,又∠ACB=90°,∴∠BCD+∠ACF=90°,∴∠CAF=∠BCD=∠B,即∠B=∠CAF,∴△ACE∽△BCA,∴=,∴CE==1.故答案为:1.【点评】本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,有一定难度.17.【分析】根据题意和函数图象可以分别求得甲乙的速度,从而可以解答本题.【解答】解:由题意可得,甲的速度为60÷1=60米/分,则乙的速度为:100÷(7﹣6)﹣60=40米/分,设A、B两地距离为S米,2S=60×7+40×(7﹣1),解得,S=330,甲返回A地用时为:330×2÷60=11(分),则乙11分钟行驶的路程为40×(11﹣1)=400(米),400﹣330=70(米),即当甲返回到A地时,乙距离B地70米,故答案为:70.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.【分析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【解答】解:设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.故答案为:60%.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.【分析】(1)根据整式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4a2﹣4a+1﹣a2+4a=3a2+1;(2)原式=÷=•=4x;【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.【分析】(1)根据角平分线的性质和全等三角形的判定解答即可;(2)根据三角形的内角和和三角形外角以及平行线的性质解答即可.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D 作DE⊥AB交AB于点E,∴∠BED=∠BCD=90°,∴ED=DC,在Rt△BED与Rt△BCD中,∴Rt△BED≌Rt△BCD(HL);(2)∵在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,∠A=36°,∴∠ABD=∠DBC=27°,∴∠BDC=63°,∵CF∥BD,∴∠CFD=∠BDC=63°.【点评】此题考查全等三角形的判定和性质,关键是根据角平分线的性质和全等三角形的判定解答.21.【分析】(1)用A课程人数除以其对应百分比可得总人数,再用360°乘以D课程人数占总人数的比例,继而根据各课程人数之和等于总人数求出C的人数,据此可补全条形图;(2)用总人数乘以样本中D课程人数所占比例.【解答】解:(1)本次调查的总人数为40÷20%=200(人),扇形统计图中D部分的圆心角是360°×=135°,C课程的人数为200﹣(40+60+75)=25(人),补全图形如下:故答案为:200,135;(2)2600×=975,答:估计最喜欢“趣味数学”的学生人数为975人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【分析】(1)根据表格的数据即可画出图象(2)由图象可知,①当x=﹣4时,y=4②由2012≤|y|≤2019,可得﹣2019≤y≤﹣2012或2012≤y≤2019,根据图象即可以求x的取值范围【解答】解:(1)由表格的数据所画的图象如图所示:(2)①由图象可知,函数解析式为:y=|x|∴当x=﹣4时,求y=4②由2012≤|y|≤2019,可得﹣2019≤y≤﹣2012或2012≤y≤2019故所得的x的取值范围为:﹣2019≤x≤﹣2012和2012≤x≤2019【点评】此题主要考查函数值对应的函数图象及自变量的取值范围,根据题中表格的数据画出所需的图象即可.23.【分析】(1)设第一次购进水果x千克,则第二次购进(600﹣x)千克,根据单价乘以数量得费用可解;(2)根据售价乘以实际卖出数量减去进价乘以进货数量,分别计算第一次的和第二次的,两者相加等于获利额可解.【解答】解:(1)设第一次购进水果x千克,根据题意,得:6x+5(600﹣x)≤3200,解得:x≤200,答:第一次至多购进水果200千克;(2)第一次至多购进水果200千克,则第二次购进400千克,根据题意,得:(6+2a)×200(1﹣3%)﹣200×6+(5+a)×400(1﹣5%)﹣400×5=3200×31.75%,解得:a=1.5故a的值为1.5.【点评】本题属于一元一次不等式和一元一次方程的实际应用问题,需要明确成本与利润问题的基本关系,准确分析数量关系,从而解决问题.24.【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE ≌△AFH,得出BE=FH,即可得出结论.【解答】(1)解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE==2,∴△AEF的周长=AE+EF+AF=2++3=2+4;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.25.【分析】(1)根据分母有理化结果即可判断;(2)原式各项分母有理化后化为两个根式的差,计算即可得到结果.(3)将已知等式进行变形,化为①,②,由①+②得x+y=0,即可解答.【解答】解:(1)∵∴故答案为:>(2)∵====∴原式==1﹣=(3)∵,∴,∴①,同理:②,∴①+②得,∴x+y=0,∴x+y+2019=2019.【点评】本题考查了分母有理化,也是阅读材料问题,此类问题要认真阅读材料,理解材料中的知识:分母有理化.解题的关键是:根据平方差公式,将各式分母有理化.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【分析】(1)设点P(x p,y p),Q(x Q,y Q),根据条件表示出y Q=﹣﹣x Q+3,y p=﹣x p2+x p+3,将三角形面积表示为﹣(x p﹣2)2,求出P;关于y轴的对称点P',将BA绕点B逆时针旋转30°,过P'作P'⊥BD,P'D与x轴,y轴分别交于点T,S;求P'D=3+;(2)当BR=RR'时,当BR=BR'时,当RR'=BR时三种情况求点S的坐标,结合三角形的相似或平行线的性质建立比例关系,再利用R'S=RS,建立方程求解坐标;【解答】解:(1)由已知可直接求得A(﹣1,0),B(4,0),C(0,3),设点P(x p,y p),Q(x Q,y Q),∵点P在抛物线上,∴y p=﹣x p2+x p+3,∵PQ∥AC,设直线AC的表达式y=k1x+b1,∴y=3x+3,设直线BC的表达式为y=k2x+b2,∴y=﹣x+3,∴y Q=﹣x Q+3,∴设直线PQ的表达式为y=3x+m,x p+3,与x轴的交点为(﹣x p2+x p﹣1,0),将点P代入表达式得y=3x﹣x p2﹣∵tan∠CAB==,∴y Q=﹣x Q+3=3x Q﹣x P2﹣x P+3,∴x Q=x p2+x p,∴y Q=﹣﹣x Q+3,凹四边形PAQB的面积=×AB(y p﹣y Q)=[(﹣x p2+x p+3)﹣(﹣﹣x Q+3)]=﹣(x p2﹣4x p)=﹣(x p﹣2)2,当x P=2时,面积有最大值;∴P(2,),如图1:关于y轴的对称点P',将BA绕点B逆时针旋转30°,过P'作P'⊥BD,P'D与x轴,y 轴分别交于点T,S;∴P'(﹣2,)∴PS=P'S,TD=TB,∴PS+ST+TB=P'S+ST+TD=P'D,过P'作P'E⊥x轴,在Rt△P'ET中,∠ETS=60°,P'E=,∴P'T=3,ET=,∴BT=6﹣,在Rt△BTD中,TD=3﹣,∴P'D=3+;(2)如图2:CE⊥y轴,过O'作x轴垂线与x轴交于点D,两条垂线交于点E,∵将△AOC绕点A逆时针旋转45°,得到△AO'C',∴△C'O'E和△ADO'都是等腰直角三角形,∵AO=1,C'O'=3,∴AD=O'D=,EC'=O'E,∵,∴EC'=O'E=,∴C'(﹣1﹣,2),∵A(﹣1,0),∴直线AC'的解析式为y=2x﹣2,∴R(0,﹣2);对称轴x=,①当BR=RR'时,如图3在以C因为圆心CR为半径的圆上,∴SR2=SR'2,∴HS2+(4+)2=()2+(SH+2)2,∴HS=6,∴S(,6),②当BR=BR'时,如图3∵SH∥CO,∴,∵BH=4﹣=,∴SH==,∴S(,);③当RR'=BR时,如图5延长R'C与圆相交于S'',在Rt△OCH中,OC=3,OH=,∴CH=,∴R'C=RC=5,∴R'H=5+,∵CO∥R'K,∴,∴KH=,∴R'(﹣,2+3),∴S''(,3﹣2)∵R'S=RS,∴(+)2+(2+3﹣SH)2=()2+(SH+2)2,∴SH=,∴S(,);如图6,∵R'S=RS,∴∴(﹣)2+(﹣2+3﹣SH)2=()2+(SH﹣2)2,∴SH=,∴S(,﹣);综上所述,满足条件的S 有四个S (,6),S (,),S ''(,3﹣2),S (,﹣);【点评】本题考查二次函数的图象及性质,等腰三角形的存在性,一次函数的图象和性质,平行线的性质,轴对称的性质,最短距离;这是一道综合性强的题,能够画出多种情况的图形,分类讨论,数形结合是解题的关键.。

2019-2020重庆市数学中考第一次模拟试卷含答案

2019-2020重庆市数学中考第一次模拟试卷含答案
2019-2020 重庆市数学中考第一次模拟试卷含答案
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量 折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
∴CD=10, ∴(3k)2+(4k)2=100, ∴k=2, ∴CN=8,DN=6, ∵四边形 BMNC 是矩形, ∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
二、填空题
13.如图,小明的父亲在相距 2 米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.
拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的小明距较近的
那棵树 0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为
A.21.7 米
B.22.4 米
C.27.4 米
D.28.8 米
6.等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为( )
A.12 B.15 C.12 或 15 D.18
7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的 边长为 10cm,正方形 A 的边长为 6cm、B 的边长为 5cm、C 的边长为 5cm,则正方形 D 的 边长为( )

【2020年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)】

【2020年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)】

【2020年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)】2019年重庆市九龙坡区育才中学中考数学一诊试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.下列数中是无理数的是()A.B.0.C.27%D.32.下列图形中,是中心对称图形的是()A.B.C.D.3.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,。

.,依此规律,拼第6个图案需小正方形()个.A.15B.21C.24D.124.下列调查中,适宜采用抽样调查方式的是()A.检查100张面值为100元的人民币中有无假币B.检查“瓦良格号”航母的零部件质量C.调查一批牛奶的质量D.了解某班同学体育满分情况5.下列命题是真命题的是()A.同位角相等B.一个数的平方根与立方根相等,则这个数是1和0C.倒数等于本身的数是1和﹣1D.绝对值等于本身的数是0和16.估算在哪两个整数之间()A.0和1B.1和2C.2和3D.3和47.根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于()A.5B.﹣5C.7D.3和48.已知a是方程x2﹣3x﹣2=0的根,则代数式﹣2a2+6a+2019的值为()A.2014B.2015C.2016D.2017 9.如图,点A、B、C在圆O的圆周上,连OA、OC,OD⊥AB 于点D,若AO平分∠CAB,∠CAB =50°,则∠OCB=()A.40°B.35°C.30°D.25°10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米11.如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k=,则k的值为()≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBDA.4B.5C.6D.712.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2B.0C.1D.3二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上.13.计算:(π﹣3.14)0+|﹣2|﹣(﹣1)2019=.14.如图,正方形ABCD边长为4,以BC为直径的半圆O 交对角线BD于点E,则阴影部分面积为.(结果保留π)15.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从陈家坪骑自行车到育才中学上学都经过两个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是.16.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB 上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点F、E,若CD=,BC=4,则CE的长度为.17.甲乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地,甲、乙之间的距离y(米)与甲出发的时间x(分)之间的部分图象如图所示.当甲返回到A地时,乙距离B地米.18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.(10分)化简:(1)(2a﹣1)2﹣a(a﹣4);(2)20.(10分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE ⊥AB交AB于点E,过C作CF∥BD交ED于F.(1)求证:△BED≌△BCD;(2)若∠A=36°,求∠CFD的度数.21.(10分)为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中D部分的圆心角是度;请补全条形统计图;(2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?22.(10分)已知y是x的函数,x的取值范围为任意实数,如图是x与y的几组对应值,小华同学根据研究函数的己有经验探素这个函数的有关性质,并完成下列问题.(1)如图,小华在平面直角坐标系中描出了上述几组值对应的点,请你根据描出的点画出函数的图象;(2)请根据你画出的函数图象,完成①当x=﹣4时,求y的值;②当2012≤|y|≤2019时,求x的取值范围.23.(10分)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.24.(10分)正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.25.(10分)阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如,,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理数因式,于是,二次根式除法可以这样解:如,.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决间题:(1)比较大小:(用“>”“<”或“=”填空);(2)计算:+;(3)设实数x,y满足,求x+y+2019的值.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)如图1,点P为直线BC上方抛物线上的一点,过点P 作PQ∥AC交BC于点Q,连接PA,PB,当凹四边形PAQB的面积最大时,点S为y轴上一动点,点T为x轴上一动点,连接PS,ST,TB,求PS+ST+TB的最小值;(2)如图2,将△AOC绕点A逆时针旋转45°,得到△AO“C",延长C"A交y轴于点R,点S是抛物线y=﹣x2+x+3对称轴上一个动点,连接CS、RS,把△CRS沿直线CS翻折得到△CR"S,则BRR"能否为等腰三角形?若能,请直接写出所有符合条件的点S的坐标;若不能,请说明理由.2019年重庆市九龙坡区育才中学中考数学一诊试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是无理数;B.0.是无限循环小数,是有理数;C.27%是分数,有限小数,是有理数;D.3是整数,是有理数.故选:A.本题考查了无理数:无限不循环小数叫无理数.常见有:字母表示的无理数,如π等;开方开不尽的数,如2等;无限不循环小数,如0.____。

2020年重庆市江津区双福育才中学中考数学模拟试卷(一)(含答案解析)

2020年重庆市江津区双福育才中学中考数学模拟试卷(一)(含答案解析)

2020年重庆市江津区双福育才中学中考数学模拟试卷(一)一、选择题(本大题共12小题,共48.0分)1.实数−π,−3.14,0,√2四个数中,最小的是()A. −πB. −3.14C. √2D. 02.下列运算正确的是()A. 3a2−2a2=aB. −4a−(−9a)=5aC. −2(a−b)=−2a−2bD. −2(a+b)=−2a−b3.下列几何体中三视图完全相同的是()A. B. C. D.4.下列命题是真命题的是()A. 三角形的三条高都在三角形的内部B. 平移前后图形的形状和大小都没有发生改变C. 两条直线被第三条直线所截,同旁内角互补D. 过一点有且只有一条直线与已知直线平行5.函数y=√2−x+1中自变量x的取值范围是()x−1A. x≤2B. x≤2且x≠1C. x<2且x≠1D. x≠16.现有A、B两种商品,买3件A商品和2件B商品用了160元,买2件A商品和3件B商品用了190元.如果准备购买A、B两种商品共10件,下列方案中费用最低的为()A. A商品7件和B商品3件B. A商品6件和B商品4件C. A商品5件和B商品5件D. A商品4件和B商品6件7.在平面直角坐标系中,点A(−6,2),B(−4,−4),将△ABO以原点O为位似中心,相似比为2:1,进行位似变换,则点A的对应点A′的坐标是()A. (−3,1)或(−2,−2)B. (−3,1)或(3,−1)C. (−12,4)或(12,−4)D. (−12,4)或(−8,−8)8.如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为()A. 3√3B. 4√3C. 5√3D. 6√39.已知x1,x2是一元二次方程3x2−6x−5=0的两个实数根,则x1+x2等于()C. 2D. −2A. 6B. −5310.如图,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数y=k(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积x为12,则k的值为()A. 4B. 6C. 8D. 1211.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM//AN).则AB的长度(结果精确到0.1米,参考数据:√3=1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)约为()A. 9.4米B. 10.6米C. 11.4米D. 12.6米12.已知二次函数y=x2+(m−1)x+1,当x>1时y随x的增大而增大,则m的取值范围是()A. m=−1B. m=3C. m≤−1D. m≥−1二、填空题(本大题共6小题,共24.0分)13.分解因式:mx2−6mx+9m=______.14.如果一个凸多边形的内角和小于1620°,那么这个多边形的边数最多是______ .15.不等式组{x−4<02x+2≥0的解是________________.16.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是______.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6min后,乙才出发,在整个过程中,甲、乙两人的距离y(km)与甲出发的时间x(min)之间的关系如图所示.当乙到达终点A时,甲还需________min到达终点B.18.已知四边形ABCD的是边长为4的正方形,AC为对角线,将△ACD绕点A逆时针旋转45度,得到△AEF(其中点D的对应点是点F,点C的对应点是点E),则线段CF的长是______.三、解答题(本大题共3小题,共28.0分)19.计算:(1)√4+(12)−1−2cos60°+(2−π)0(2)x2−1x2+x÷(x−2x−1x)20.已知关于x的一元二次方程mx2−(2m+1)x+2=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2−(2m+1)x+2与x轴两个交点的横坐标均为整数,且m为负整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(n,y1),Q(n+1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数n的取值范围.21.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,−3),动点P在抛物线上.(1)b=______,c=______,点B的坐标为______;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D 作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.【答案与解析】1.答案:A解析:本题考查了无理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.解:∵|−π|=π,|−3.14|=3.14,∴−π<−3.14,∴−π,−3.14,0,√2这四个数的大小关系为−π<−3.14<0<√2.故选A.2.答案:B解析:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.各项化简得到结果,即可作出判断.解:A.原式=a2,不符合题意;B.原式=−4a+9a=5a,符合题意;C.原式=−2a+2b,不符合题意;D.原式=−2a−2b,不符合题意,故选B.3.答案:A解析:本题考查的是简单几何体三视图有关知识,找到从物体正面、左面和上面看得到的图形全等的几何体即可.解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.4.答案:B解析:本题考查命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.根据三角形高线的定义对A进行判断;根据平移的性质对B进行判断;根据平行线的性质对C进行判断;根据过直线外一点有且只有一条直线与已知直线平行对D进行判断.解:A、只有锐角三角形的三条高都在三角形的内部,所以A选项错误;B、平移前后图形的形状和大小都没有发生改变,所以B选项正确;C、两条平行直线被第三条直线所截,同旁内角互补,所以C选项错误;D、过直线外一点有且只有一条直线与已知直线平行,所以D选项错误.故选:B.5.答案:B解析:解:根据二次根式有意义,分式有意义得:2−x≥0且x−1≠0,解得:x≤2且x≠1.故选:B.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.答案:A解析:设A种商品每件x元,B种商品每件y元,由等量关系:①买3件A商品和2件B商品用了160元;②买2件A商品和3件B商品用了190元;列出方程组求出其解,再由A商品的单价较低,得到A 商品的件数较多的选项即为所求.本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立二元一次方程组求出两种产品的单价是关键.解:设A种商品每件x元,B种商品每件y元,依题意有{3x +2y =1602x +3y =190, 解得{x =20y =50, ∵A 商品的单价较低,∴选项中A 商品7件和B 商品3件的方案费用最低.故选:A .7.答案:B解析:此题主要考查了位似图形的性质,根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标乘以k 或−k 是解题关键.根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.解:∵△ABO 的一个顶点A 的坐标是(−6,2),以原点O 为位似中心相似比为2:1,将△ABO 缩小得到它的位似图形△A′B′O ,∴点A′的坐标是:(−12×6,12×2)或[−12×(−6),−12×2],即(−3,1),(3,−1).故选B . 8.答案:D解析:解:连结OC ,AC ,∵弦DC 垂直AB 于点E ,∠DCB =30°,∴∠ABC =60°,∴△BOC 是等边三角形,∵EB =3,∴OB =6,∴AB =12,AB 为⊙O 的直径,∴∠ACB =90°,在Rt △ACB ,AC =12×√32=6√3. 故选:D .连结OC,AC,先根据直角的性质得到∠ABC的度数,再圆周角定理得到∠AOC的度数,根据等边三角形的性质和垂径定理得到⊙O的半径和直径,再解直角三角形即可求解.此题考查了垂径定理,圆周角定理以及等边三角形的性质,注意掌握数形结合思想的应用.9.答案:C解析:解:∵x1,x2是一元二次方程3x2−6x−5=0的两个实数根,∴x1+x2=2.故选:C.根据根与系数的关系可得出x1+x2=2,此题得解.是解题的关键.本题考查了根与系数的关系,牢记两根之和等于−ba10.答案:C解析:解:连结OC,如图,∵AB⊥y轴于点B,AB=3BC,∴S△AOB=3S△BOC,×12=4,∴S△BOC=13∴1|k|=4,2而k>0,∴k=8.故选:C.连结OC,如图,根据三角形面积公式,由AB=3BC得到S△AOB=3S△BOC,可计算出S△BOC=4,再|k|=4,然后去绝对值即可得到满足条件的k的值.根据反比例函数比例系数k的几何意义得到12图象中任取一点,这一点和垂足本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx|k|,且保持不变.以及坐标原点所构成的三角形的面积是1211.答案:C解析:延长DC交AN于H,证明BC=CD,在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;本题考查解直角三角形的应用−坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.解:如图,延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).在Rt△BCH中,CH=12BC=5,BH=5√3≈8.65,∴DH=15,在Rt△ADH中,AH=DHtan37∘=150.75=20,∴AB=AH−BH=20−8.65≈11.4(米).故选C.12.答案:D解析:本题主要考查了二次函数的性质,根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解:抛物线的对称轴为直线x=−m−12,∵当x>1时,y的值随x值的增大而增大,∴−m−12≤1,解得m≥−1.故选D.13.答案:m(x−3)2解析:解:mx2−6mx+9m=m(x2−6x+9)=m(x−3)2.故答案为:m(x−3)2.先提取公因式m,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2= (a±b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.答案:10解析:此题主要考查了多边形内角和定理,结合多边形的内角和公式来寻求等量关系,构建方程求解是解题关键.多边形的内角和可以表示成(n−2)⋅180°,已知一个多边形的内角和是1620°,根据题意列方程求解.解:设一个凸多边形的内角和等于1620°,该多边形的边数是n,则(n−2)⋅180°=1620°,解得:n=11.∴这个多边形的边数最多是10,故答案为:10.15.答案:−1≤x<4解析:本题主要考查的是一元一次不等式组的解法的有关知识,先分别求出每个不等式的解集,然后求其公共部分即可.解:{x−4<0①2x+2≥0②,解不等式①得x<4,解不等式②得x ≥−1,则该不等式组的解集为−1≤x <4.故答案为−1≤x <4.16.答案:6π解析:解:∵根据旋转的性质知∠ABD =60°,△ABC≌△DBE ,∴S △ABC −S △DBE ,∴S 阴影=S 扇形ABD +S △DBE −S △ABC =S 扇形ABD =60π×62360=6π.故答案是:6π.图中阴影部分的面积=扇形ABD 的面积+三角形DBE 的面积−三角形ABC 的面积.又由旋转的性质知△ABC≌△DBE ,所以三角形DBE 的面积=三角形ABC 的面积.本题考查了扇形面积的计算.解题的难点是找出图中阴影部分的面积=扇形ABD 的面积+三角形DBE 的面积−三角形ABC 的面积. 17.答案:78解析:本题考查了一次函数的应用,一元一次方程的应用,利用同路程与时间的关系得出甲、乙的速度是解题关键.根据路程与时间的关系,可得甲、乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A 站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B 站需要的时间,再根据有理数的运算法则,可得答案.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB 两地的距离是16千米,设乙的速度是x 千米/分钟,由题意,得10x +16×16=16,解得x =43千米/分钟,相遇后乙到达A 站还需(16×16)÷43=2分钟,相遇后甲到达B 站还需(10×43)÷16=80分钟,当乙到达终点A时,甲还需80−2=78分钟到达终点B,故答案为78.18.答案:4√3解析:解:∵四边形ABCD的是边长为4的正方形,∴AD=AB=BC=4,∠B=90°,∴AC=√2AB=4√2,∵将△ACD绕点A逆时针旋转45度,得到△AEF,∴AF=AD=4,∠FAE=45°,∵∠CAD=45°,∴∠FAC=90°,∴CF=√AF2+AC2=√42+(4√2)2=4√3,故答案为:4√3.根据正方形的性质得到AD=AB=BC=4,∠B=90°,求得AC=√2AB=4√2,根据旋转的性质得到AF=AD=4,∠FAE=45°,根据勾股定理即可得到结论.本题考查了旋转的性质,正方形的性质,勾股定理,正确的作出图形是解题的关键.19.答案:解:(1)√4+(12)−1−2cos60°+(2−π)0=2+2−2×12+1=2+2−1+1=4;(2)x2−1x2+x ÷(x−2x−1x)=(x+1)(x−1)x(x+1)×xx2−2x+1=(x+1)(x−1)x(x+1)×x(x−1)2=1x−1.解析:(1)根据负整数指数幂、锐角三角函数和零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.本题考查分式的混合运算、实数的运算、锐角三角函数、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.答案:解:(1)一元二次方程mx2−(2m+1)x+2=0的判别式△=(2m+1)2−4×m×2=(2m−1)2,∵此方程有两个不相等的实数根,∴(2m−1)2>0,∴m≠1,2又∵m≠0,且m≠0,方程有两个不相等的实数根;即当m≠12(2)令y=0,则mx2−(2m+1)x+2=0,解得x1=2,x2=1,m∵抛物线y=mx2−(2m+1)x+2与x轴两个交点的横坐标均为整数,且m为负整数,∴m=−1,∴抛物线的解析式为y=−x2+x+2;(3)∵抛物线当点P和Q在抛物线对称轴同侧时,∵n<n+1,且y1>y2∴P、Q两点在抛物线的对称轴右侧,即n≥12当P和Q在抛物线对称轴异侧时,−n2+n+2>−(n+1)2+(n+1)+2解得n>0,综上,n>0.解析:本题考查了一元二次方程根的判别式、二次函数与一元二次方程的关系、二次函数图象的性质,熟练的掌握这些性质是解题的关键.(1)利用一元二次方程根的判别式与一元二次方程的定义即可求m取值范围;(2)令y=0,得方程mx2−(2m+1)x+2=0,解方程求得x1=2,x2=1,由抛物线y=mx2−m(2m+1)x+2与x轴两个交点的横坐标均为整数,可知两根均为整数,当m为负整数时,可得m=−1,从而求得抛物线的解析式;(3)分两种情况,y随x的增大而减小,利用二次函数图象的性质可知n的取值范围.21.答案:解:(1)−2−3(−1,0)(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx−3.∵将点A的坐标代入得3k−3=0,解得k=1,∴直线AC的解析式为y=x−3.∴直线CP1的解析式为y=−x−3.∵将y=−x−3与y=x2−2x−3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,−4).②当∠P2AC=90°时.设AP2的解析式为y=−x+b.∵将x=3,y=0代入得:−3+b=0,解得b=3.∴直线AP2的解析式为y=−x+3.∵将y=−x+3与y=x2−2x−3联立解得x1=−2,x2=3(舍去),∴点P2的坐标为(−2,5).综上所述,P的坐标是(1,−4)或(−2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE 是矩形,则OD =EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC =OA =3,OD ⊥AC ,∴D 是AC 的中点.又∵DF//OC ,∴DF =12OC =32. ∴点P 的纵坐标是−32.∴x 2−2x −3=−32,解得:x =2±√102. ∴当EF 最短时,点P 的坐标是:(2+√102,−32)或(2−√102,−32).解析: 解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:{c =−39+3b +c =0, 解得:b =−2,c =−3.∴抛物线的解析式为y =x 2−2x −3.∵令x 2−2x −3=0,解得:x 1=−1,x 2=3.∴点B 的坐标为(−1,0).故答案为:−2;−3;(−1,0).(2)(3)见答案(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y =0可求得点B 的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、矩形的性质、垂线的性质,求得P1C和P2A的解析式是解答问题(2)的关键,求得点P的纵坐标是解答问题(3)的关键.。

重庆育才中学初2020级2019—2020学年(下)模拟测试数学试题答案

重庆育才中学初2020级2019—2020学年(下)模拟测试数学试题答案

∵ 2k1 1, 2k2 1 , 2k3 12kn 1 为奇数
∴ (2k1 1)(2k2 1)(2k3 1) (2k n 1) 为奇数
∴任意一个的完全平方数的约数个数为奇数. ……………………………10 分
23. 解(1)由图表知:当 x 4 时, y 0
∴ 4a 2 0 ,解得 a 1 ……………………………………………………1 分 2
= 3x 7.........................................5分
(2)解:原式= a2 4 6a 13
a2
...............................3分
a2
2(a 3)(a 3)
= (a 3)2 (a 2) ...................................4分 (a 2) 2(a 3)(a 3)
则设一个完全平方数
a
可以表示为:
p 2k1 1
p 2k2 2
p 2k3 3
p 2kn n

p1

p2 , p3 … pn 为互不相等的质数,
且 k1, k2 , k3 kn 为自然数)………………………………6 分
∴完全平方数 a 的约数个数为 (2k1 1)(2k2 1)(2k3 1) (2k n 1) 个……………7 分
②因为八年级的优秀率比七年级高………………………10 分(言之有理,酌情给分)
22. 解(1)∵ 3000 3103 3 (2 5)3 3 23 53 …………………………2 分
∴ 3000 的约数个数共有 2 4 4 32 个………………………………5 分
(2)由于一个完全平方数可以写成正整数的偶次方,

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】

2019-2020年重庆市初三中考数学第一次模拟试题【含答案】一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.【分析】先证明△ADF∽△CEF,可知=,然后根据相似三角形的性质可知=()2,再根据,从而可求出三角形ACD的面积.【解答】解:在▱ABCD中,AD∥CE,AD=BC∴△ADF∽△CEF,∴,∵CE=2EB,∴CE=BC=AD,∴=,∴=()2=,∴S△CEF=12,∵,∴S△CFD=18,∴S△ACD=S△AFD+S△CDF=27+18=45,故答案为:45【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a≤2的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:===,当a=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了80名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)【分析】(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.(4)画树状图列出所有等可能结果,从中找到到第二个路口时第二次遇到红灯的结果数,根据概率公式计算可得.【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).故答案为:80;(2)被抽到的学生中,步行的人数为80×20%=16人,直方图:(3)被抽到的学生中,乘公交车的人数为80﹣(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为×2400=780人.(4)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第二次遇到红灯的结果数为1,所以到第二个路口时第二次遇到红灯的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.【分析】(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,即可求菱形DGCE的面积.【解答】证明:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=GC=4,DG∥EC在Rt△DGH中,∠DGB=60°∴DH=DG cos30°=2∴菱形DGCE的面积=GC×DH=8【点评】本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.【分析】(1)根据题意,易得,解可得x的值,进而可得答案;(2)根据题意,可得关系式y=15m+20(m﹣1),化简可得y=35m﹣20,根据一次函数的性质分析可得答案.【解答】解:(1)根据题意,每天甲、乙两人共加工35个零件,设甲每天加工x个,则乙每天加工35﹣x;根据题意,易得,解得x=15,经检验,x=15是原方程的解,且符合题意.35﹣15=20,答:甲每天加工15个,乙每天加工20个;(2)y=15m+20(m﹣1),即y=35m﹣20,∵在y=35m﹣20中,y是m的一次函数,k=35>0,y随m的增大而增大,又由已知得:3≤m≤5,∴当m=5时,y最大值=155,当m=3时,y最小值=85.【点评】此题主要考查了分式方程的应用,能根据题意,列出关系式,进而结合一次函数的性质得到结论或求解方程是解题关键.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.【分析】(1)连接OE,证明∠GEO=90°,即GE⊥OE,于是EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,得到GE2=GC•GD,又GF=GE,所以GF2=GC •GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,,在Rt△HOC中,由勾股定理得,由△AHC∽△MEO,所以.【解答】解:(1)证明:如图,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠F AH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接DE,易得△GDE∽△GEC,∴,∴GE2=GC•GD,又∵GF=GE,∴GF2=GC•GD;(3)如图,连接OC.设⊙O的半径为r.在Rt△AHC中,,∵,∴,在Rt△HOC中,∵OC=r,,,∴,∴,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴.【点评】本题考查了圆,熟练运用圆的切线定理、相似三角形的性质以及勾股定理是解题的关键.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)△ADC与△ABC关于AC所在的直线对称,则CD=BC=2,∠ACD=∠ACB =30°,过点D作DE⊥BC于点E,∠DCE=60°,则,即可求解;(2)求出A,D坐标,两个点在同一反比例函数上,则,即可求解;(3)分P为直角顶点、D为直角顶点,两种情况分别求解即可.【解答】解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF~△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH~△DPG,,,解得:k=0(舍),综上:存在.【点评】本题考查的是反比例函数综合运用,涉及到一次函数、三角形相似等知识点,此类题目的关键是,通过设线段长度,确定图象上点的坐标,进而求解.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是①②④(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.【分析】(1)由“雅垂矩形”的两邻边比为1:4可以得出正比例函数的系数k的值,从而得出答案;(2)由题意知A(m,m2﹣2m),C(3m,9m2﹣6m).由0<m<0.5知CD=3m﹣m=2m,BC=m2﹣2m﹣(9m2﹣6m)=4m2﹣8m,从而得L=2(CD+BC)=﹣16m2﹣12m=﹣16(m﹣0.375)2+2.25,据此可得答案;。

2019-2020重庆市中考数学一模试卷带答案

2019-2020重庆市中考数学一模试卷带答案

2019-2020重庆市中考数学一模试卷带答案一、选择题1.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数 3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 4.下表是某学习小组一次数学测验的成绩统计表:已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分5.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元A .8B .16C .24D .326.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩8.方程21(2)04m x -+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A.B.C.D.10.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.15.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.16.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.18.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.19.10a b b --=,则1a +=__.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 23.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD . 求证:BC=ED .24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕∆,连接DE.点C逆时针方向旋转60°得到BCE∆是等边三角形;(1)如图1,求证:CDE(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.5.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.B解析:B【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .9.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.10.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.11.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 12.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB ≌△OEB 得△EOB ≌△CMB ;③先证△BEF 是等边三角形得出BF=EF ,再证▱DEBF 得出DE=BF ,所以得DE=EF ;④由②可知△BCM ≌△BEO ,则面积相等,△AOE 和△BEO 属于等高的两个三角形,其面积比就等于两底的比,即S △AOE :S △BOE =AE :BE ,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE ,得出结论S △AOE :S △BOE =AE :BE=1:2.【详解】试题分析:①∵矩形ABCD 中,O 为AC 中点, ∴OB=OC , ∵∠COB=60°, ∴△OBC 是等边三角形, ∴OB=BC ,∵FO=FC , ∴FB 垂直平分OC , 故①正确;②∵FB 垂直平分OC , ∴△CMB ≌△OMB , ∵OA=OC ,∠FOC=∠EOA ,∠DCO=∠BAO , ∴△FOC ≌△EOA ,∴FO=EO , 易得OB ⊥EF , ∴△OMB ≌△OEB , ∴△EOB ≌△CMB , 故②正确;③由△OMB ≌△OEB ≌△CMB 得∠1=∠2=∠3=30°,BF=BE , ∴△BEF 是等边三角形, ∴BF=EF ,∵DF ∥BE 且DF=BE , ∴四边形DEBF 是平行四边形, ∴DE=BF , ∴DE=EF , 故③正确;④在直角△BOE 中∵∠3=30°, ∴BE=2OE , ∵∠OAE=∠AOE=30°, ∴AE=OE , ∴BE=2AE ,∴S △AOE :S △BOE =1:2,又∵FM:BM=1:3,∴S △BCM =34 S △BCF =34S △BOE ∴S △AOE :S △BCM =2:3故④正确; 所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,又∵0a b -≥,|1|0b -≥, ∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:516. 【解析】【分析】【详解】 画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)11x -;(2)1 【解析】【分析】(1)根据分式四则混合运算的运算法则,把A 式进行化简即可.(2)首先求出不等式组的解集,然后根据x 为整数求出x 的值,再把求出的x 的值代入化简后的A 式进行计算即可.【详解】 (1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x x x +--=11x - (2)不等式组的解集为1≤x <3∵x 为整数,∴x =1或x =2,①当x =1时,∵x ﹣1≠0,∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时,A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.23.见解析【解析】【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.24.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.25.(1)详见解析;(2)存在,3;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD=23 (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t 的值了. 试题解析:(1)∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。

重庆市育才中学2019-2020学年中考数学模拟试卷

重庆市育才中学2019-2020学年中考数学模拟试卷

重庆市育才中学2019-2020学年中考数学模拟试卷一、选择题1.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +- D .44m m -+ 2.如果关于x 的分式方程有整数解,且关于x 的不等式组的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A.7 B.8C.4D.53.如图,正的边长为2,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是( )A. B.2 C. D.4 4.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为( ) A .30°B .150°C .30°或150°D .60°5.下列运算正确的是 A .236a a a =B .()239aa =C .2142-⎛⎫-=- ⎪⎝⎭D .()0sin 301π-=6.下列计算正确的是( ) A.224·x x x -= B.()224x x -=C.234·x x x =D.()222m n m n -=-7.如图,下列条件不能判定AB CD ∥的是( )A .180GDH DHE ∠+∠=︒B .180FEB GCE ∠+∠=︒C .BAD ADG ∠=∠D .GCE AEF ∠=∠8.如图,已知Rt △ABC 的直角顶点A 落在x 轴上,点B 、C 在第一象限,点B 的坐标为(345,4),点D 、E 分别为边BC 、AB 的中点,且tanB =12,反比例函数y =kx的图象恰好经过D 、E ,则k 的值为( )A .185B .8C .12D .169.如图,正比例函数y =kx (k >0),与反比例函数1y x的图象相交于A ,C 两点,过A 作AB ⊥x 轴于B ,连接BC ,若△ABC 的面积为S ,则( )A.S =1B.S =2C.S =kD.S =k 210.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为( )A .5B .6C .8D .1011.跳远项目中,以测量最靠近起跳线的点到起跳线的距离作为成绩.如图是小慧在跳远训练中的一跳,下列线段中,它的长度能作为她的成绩的是( )A.线段PAB.线段PBC.线段ADD.线段BD 12.一个正多边形,它的每一个外角都等于40°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形二、填空题13.在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO ,PA ,若∠POA =m°,∠PAO =n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(1,22)的“双角坐标”为_____;(2)若点P 到x 轴的距离为12,则m+n 的最小值为_____. 14.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.线段AD 由线段AB 绕点A 按逆时针方向旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D .则CG =_____.15.如图,正三角形A 1B 1C 1的面积为1,取ΔA 1B 1C 1各边的中点A 2、B 2、C 2,作第二个正三角形A 2B 2C 2,再取ΔA 2B 2C 2各边的中点A 3、B 3、C 3,作第三个正三角形A 3B 3C 3,……,则第4个正三角形A 4B 4C 4的面积是__________;第n 个正三角形AnBnCn 的面积是_____________。

2019-2020重庆市中考数学模拟试卷附答案

2019-2020重庆市中考数学模拟试卷附答案

2019-2020重庆市中考数学模拟试卷附答案一、选择题1.下列计算正确的是( ) A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×1063.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°4.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )A .B .C .D .6.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A 5B 25C 5D .237.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .48.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 9.下列二次根式中的最简二次根式是( ) A .30B .12C .8D .0.510.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 11.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 12.an30°的值为( )A .B .C .D .二、填空题13.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.14.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.15.若一个数的平方等于5,则这个数等于_____.16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 17.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.18.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.19.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.解方程:3x x +﹣1x=1. 25.如图,某地修建高速公路,要从A 地向B 地修一座隧道(A 、B 在同一水平面上),为了测量A 、B 两地之间的距离,某工程师乘坐热气球从B 地出发,垂直上升100米到达C 处,在C 处观察A 地的俯角为39°,求A 、B 两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.3.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.B【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.B解析:B 【解析】 【分析】若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断. 【详解】A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B . 【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).6.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.7.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.8.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根, ∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键9.A【解析】【分析】根据最简二次根式的概念判断即可.【详解】A、30是最简二次根式;B、12=23,不是最简二次根式;C、8=22,不是最简二次根式;D、20.5=,不是最简二次根式;故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.10.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD中利用勾股定理可知:CD=22213-=,AC=2CD=23,∵sin∠COD=3 CDOC=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=12B×AC=12×2×23=23,S扇形AOC=2120243603ππ⨯⨯=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=4233π-,故选C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12 a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.12.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.二、填空题13.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:414.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=218.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.19.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.20.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000 x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x-,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341{5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 25.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 重庆育才中学中考数学第一次模拟试卷(带答案)
一、选择题 1.如图,矩形 ABCD 的顶点 A 和对称中心均在反比例函数 y= k (k≠0,x>0)上,若矩
x
形 ABCD 的面积为 12,则 k 的值为( )
A.12
B.4
C.3
D.6
2.下列各式中能用完全平方公式进行因式分解的是( )
(1)求如图所示的 y 与 x 的函数解析式:(不要求写出定义域); (2)如果某学校目前的绿化面积是 1200 平方米,试通过计算说明:选择哪家公司的服 务,每月的绿化养护费用较少.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】
分析:设点 A 的坐标为(m, k ),则根据矩形的面积与性质得出矩形中心的纵坐标为 k ,
D.1 或﹣5
7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
A. 1 x x 1 36
2
C. x x 1 36
B. 1 x x 1 36
2
D. x x 1 36
2x 1<3 8.不等式组 3x 1 2 的解集在数轴上表示正确的是( )
为( )
A.10
B. 20
C. 30
D. 40
12.如图是一个几何体的三视图(图中尺寸单位: cm ),根据图中所示数据求得这个几
何体的侧面积是( )
A.12cm2 二、填空题
B. 12 πcm2
C. 6π cm2
D. 8π cm2
13.某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该 商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元. 14.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2. 15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的 概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是 .
ABC 30, BAC 90, 1 40, 2 180 30 90 40 20,
故选: B . 【点睛】 本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.
12.C
解析:C 【解析】 【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】 先由三视图确定该几何体是圆柱体,底面半径是 2÷2=1cm,高是 3cm. 所以该几何体的侧面积为 2π×1×3=6π(cm2). 故选 C. 【点睛】 此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何 体是圆柱体.
A.x2+x+1
B.x2+2x﹣1
C.x2﹣1
D.x2﹣6x+9
3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时
间, y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家 2.5km B.体育场离文具店1km
9.B
解析:B 【解析】 【分析】 由 AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得 ∠CAE=55°,最后根据三角形外角的性质即可求得答案. 【详解】 ∵AB∥CD, ∴∠BAC+∠C=180°, ∵∠C=70°, ∴∠CAB=180°-70°=110°, 又∵AE 平分∠BAC, ∴∠CAE=55°, ∴∠AED=∠C+∠CAE=125°, 故选 B. 【点睛】 本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解 题的关键.
故选:C. 【点睛】 本题运用函数图象解决问题,看懂图象是解决问题的关键.
4.A
解析:A 【解析】 【分析】 根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最 低分不影响中位数. 【详解】 去掉一个最高分和一个最低分对中位数没有影响,故选 A. 【点睛】 考查了统计量的选择,解题的关键是了解中位数的定义.
C.众数
D.方差
5.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.abc>0
B.b2﹣4ac<0
C.9a+3b+c>0
D.c+8a<0
6.已知平面内不同的两点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,则 a 的值为
() A.﹣3
B.﹣5
C.1 或﹣3
8.A
解析:A 【解析】 【分析】 先求出不等式组的解集,再在数轴上表示出来即可. 【详解】
2x 1<3① 3x 1 2②
∵解不等式①得:x<1,
Hale Waihona Puke 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x<1,
在数轴上表示为:

故选 A. 【点睛】 本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求 出不等式组的解集是解此题的关键.
m
2m
求出中心的横坐标为 m+ 6m ,根据中心在反比例函数 y= k 上,可得出结果.
k
x
详解:设点 A 的坐标为(m, k ), m
∵矩形 ABCD 的面积为 12,
∴ BC
12 AB
12 k
12m k

m
∴矩形 ABCD 的对称中心的坐标为(m+ 6m , k ), k 2m
∵对称中心在反比例函数上,
19.在一个不透明的口袋中,装有 A,B,C,D4 个完全相同的小球,随机摸取一个小球
然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.
20.已知 M、N 两点关于 y 轴对称,且点 M 在双曲线 y 1 上,点 N 在直线 y=﹣x+3 2x
上,设点 M 坐标为(a,b),则 y=﹣abx2+(a+b)x 的顶点坐标为
(1)求证:DF 为⊙O 的切线;
(2)若∠BAC=60°,DE= 7 ,求图中阴影部分的面积; (3)若 AB 4 ,DF+BF=8,如图 2,求 BF 的长.
AC 3
23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民 对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用 A、B、C、D 表 示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查 情况绘制成如下两幅统计图(尚不完整).
7.A
解析:A 【解析】 【分析】 共有 x 个队参加比赛,则每队参加(x-1)场比赛,但 2 队之间只有 1 场比赛,根据共安排 36 场比赛,列方程即可. 【详解】 解:设有 x 个队参赛,根据题意,可列方程为:
1 x(x﹣1)=36, 2
故选:A. 【点睛】 此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
10.B
解析:B 【解析】
解:∵ 3 10 4 ,∴ 4 10 1 5 .故选 B .
点睛:此题主要考查了估算无理数的大小,正确得出 10 的取值范围是解题关键. 11.B
解析:B 【解析】 【分析】 根据平行线的性质判断即可得出结论. 【详解】
解: 直线 m // n , 2 ABC 1 BAC 180 ,
16.如图,把三角形纸片折叠,使点 B ,点 C 都与点 A 重合,折痕分别为 DE, FG ,若 C 15, AE EG 2 厘米,△ABC 则的边 BC 的长为__________厘米。
17.如图,矩形 ABCD 中,AB=3,BC=4,点 E 是 BC 边上一点,连接 AE,把∠B 沿 AE 折 叠,使点 B 落在点 处,当△ 为直角三角形时,BE 的长为 .
C.林茂从体育场出发到文具店的平均速度是 50m min
D.林茂从文具店回家的平均速度是 60m min
4.有 31 位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最
后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定
不发生变化的是( )
A.中位数
B.平均数
18.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其 直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.
A.
B.
C.
D. 9.如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若∠C=70°,则∠AED 度数为( )
A.110°
B.125°
C.135°
D.140°
10.估计 10 +1 的值应在( )
A.3 和 4 之间
B.4 和 5 之间
C.5 和 6 之间
D.6 和 7 之间
11.已知直线 m // n ,将一块含 30 角的直角三角板 ABC 按如图方式放置 ( ABC 30),其中 A , B 两点分别落在直线 m , n 上,若 1 40,则 2 的度数
另一个交点为(3,0),所以 9a 3b c 0 ,所以 C 错误;因为当 x=-2 时, y 4a 2b c <0,又 x b 1,所以 b=-2a,所以 y 4a 2b c 8a c <0,所
2a
以 D 正确,故选 D. 考点:二次函数的图象及性质.
6.A
解析:A 【解析】 分析:根据点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等,得到 4=|2a+2|,即可 解答. 详解:∵点 A(a+2,4)和 B(3,2a+2)到 x 轴的距离相等, ∴4=|2a+2|,a+2≠3, 解得:a=−3, 故选 A. 点睛:考查点的坐标的相关知识;用到的知识点为:到 x 轴和 y 轴的距离相等的点的横纵 坐标相等或互为相反数.
相关文档
最新文档