高三数学考前热身试题理新人教A版
安徽省合肥市合肥六中2014届高三数学冲刺高考(最后一卷)试题 理 新人教A版
合肥六中2014冲刺高考最后一卷理科数学试题一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{|0},{|lg 0}1xA xB x x x=<=≥-,则集合{|1}x x ≤等于 A.A B B.A B C.()U A B ð D.()U A B ð 2.已知复数z 满足(1)(12)2(z i i i -+=为虚数单位,则z 的虚部是A.25iB.25C.35D.953.执行如图所示的程序框图,若输入919a =,则输出的k 的值是A.9B.10C.11D.124.已知椭圆22221(0)x y a b a b +=>>与双曲线221412x y -=的焦点相同, 且椭圆上任意一点到两焦点的距离之和为10,那么,该椭圆的离心率等于A.35 B.45 C.54 D.345.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是 A.108cm 3B.100 cm 3C.92 cm 3D.84 cm 36.函数2||1()x x f x e-=的图象大致是7.设某班级二模测试后的数学成绩服从正态分布,其密度函数是2(80)200(),x f x x R --=∈,则下列的估计不正确...的是 A.该班级的平均成绩是80分 B.分数在120以上的人数与分数在60分以下的人数相同 C.该班级数学成绩标准差是10分 D.分数在110以上的人数与分数在50分以下的人数相同 8.已知圆221:(1)2C x y +-=,直线1:3l y x =,将l 绕原点按逆时针方向旋转(θθ为锐角)第一次与圆C 相切,则tan θ的值是A.12B.13C.34D.359.若函数()f x 对任意x R ∈满足1()1(1)f x f x +=+,且(0,1)x ∈时,(),()f x xg x mx m ==--在(1,0)(0,1)-上有两个零点,则实数m 的取值范围是A.(1,1)-B.1(0,)2C.(0,1)D.(1,2]-10.如图,正三棱锥A BCD -放置在平面α上,,AD kCD O =是底面BCD ∆的中心,E 是CD 的中点,下列说法中,错误的是A.k >B.当1AD CD ==时,将三棱锥绕直线AO 旋转一周所形成的几何C.动点P 在截面ABE 上运动,且到点B 的距离与到点侧面ACD 的距离相等,则点P 在抛物线弧上D.当12k CD ==时,将该三棱锥绕棱CD 转动,则三棱锥在平面α上投影面积的最大值是2二、填空题:本大题共5小题,每小题5分,共25分,请将答案填写在答题卡的相应位置上.11.10(1)[(1)1]x x x ++-的展开式中,含7x 项的系数是12.设(0,)2x π∈,且21(3)sin cos 3cos 0x x x λ+-+≥恒成立,则实数λ的取值范围是13.如图所示,三棱锥A BCD -中,,E F 分别是棱,AD BC 的中点, 在三棱锥的6条棱及EF 所在的7条直线中,任取2条直线,则这两条直线是异面直线的概率是14.,A B 是椭圆的右顶点及上顶点,由椭圆弧221(0,0)4x y x y +=≥≥ 及线段AB 构成的区域为,P Ω是区域Ω上的任意一点(包括边界),设OP OA OB λμ=+,则动点(,)M λμ所形成区域'Ω的面积是15.定义在R 上的奇函数()f x 当(0,)x ∈+∞是,()0f x >且2()'()0f x xf x +>,有下列命题:①()f x 在R 上是增函数; ②当12x x >时,221122()()x f x x f x >; ③当120x x >>时,221221()()x x f x f x >; ④当120x x +>时,221122()()0x f x x f x +>⑤当12x x >时,221221()()x f x x f x >.则其中正确的命题是 (写出你认为正确的所有命题的序号)三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16(本小题满分12分)如图,在ABC ∆中,D 是BC 上的点,2,C D DAB BAD ∠∠=∠∆的面积与CAD ∆的面积相等,且sin B C =.(Ⅰ)求BAC ∠; (Ⅱ)求::a b c .17(本小题满分12分)如图,多面体ABCPQ 中,PA ⊥平面,,ABC PA AB ABC =∆是等腰直角三角形,90,BAC ∠=,QBC ∆是等边三角形,M 是BC 的中点,二面角Q BC A --的正切值为(Ⅰ)证明://PQ 平面ABC ;(Ⅱ)在线段QM 上是否存在一点N ,使得PN ⊥平面QBC ,如果存在,请求出N 点的位置,如果不存在,请说明理由.,18(本小题满分12分)已知椭圆22122:1(0)x y E a b a b+=>>,椭圆2E 的中心在坐标原点,焦点在x 轴上,长轴长是短轴长的(0,1)λλ>≠.(Ⅰ)求椭圆2E 的方程;并证明椭圆12,E E 的离心率相同;(Ⅱ)当2λ=时,设,M N 是椭圆1E 上的两个点,,OM ON 的斜率分别是,OM ON k k ,且22(OM ONb k k O a⋅=-是坐标原点),若OMPN 是平行四边形,证明:点P 在椭圆2E 上.19(本小题满分13分)已知函数())(0)x f x e x ϕϕπ=+<<且是函数()f x 的一个极值点,'()f x 是函数()f x 的导函数. (Ⅰ)求ϕ的值;(Ⅱ)设()'()g x f x =,求函数()g x 的单调递增区间;(Ⅲ)证明:当0x >时,|'()|x f x <.20(本小题满分13分)在研究 2.5PM (霾的主要成分)形成原因时,某研究人员研究了 2.5PM 与燃烧排放的223,,,CO NO CO O 等物质的相关关系,下图是 2.5PM 与3,CO O 相关性的散点图, (Ⅰ)根据三点图,请你就3,CO O 对 2.5PM 的影响关系作出初步评价;(Ⅱ)以1003为单位,在上述左图中取三个点,如下表所示,求y关于x 的回归方程,并估计当CO 的排放量为200/g m 时, 2.5PM 的值(用最小二乘法求回归方程的系数是(1221,)niii nii x y nx yb a y bx xnx ==⋅-⋅==--∑∑(Ⅲ)雾霾对交通影响较大,某市交通部门发现,在一个月内,当CO 排放量(单位: 3/g m μ)分别是60,120,180时,某路口的交通流量(单位:万辆)依次是800,600,200,在一个月内,CO 排放量是60,120,180的概率依次是,,p q r ,且1,343p q r ≤≤,求该路口一个月的交通流量期望值的最大值.21(本小题满分13分)设正项数列{}n a 的前n 项和为n S ,对任意*n N ∈,都有24410n n S a n --+=且212a a >>. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12n n a b +=,求证:131321122424221n nb bb b b b b b b b b b -+++<参考答案:1.C2.B3.C4. B.5.B6.C7.B8.A9.B 10.D 11.165 12.(,7]-∞ 13.13 14.142π- 15.②③④ 16.135BAC ∠=::a b c = 17.13MN MQ =18.(略)19.23πϕ=20.(1)CO 与 2.5PM 有正相关关系,而3O 与 2.5PM 没关系(2)9191,,284284b a y x ===+, 544 (3)()800600200200(32)200E X p q r p q =++=++18,321p q ==时,552.38(万辆)21.21n a n =-。
贵州省贵阳市高三数学适应性监测考试(二) 理(贵阳二模,含解析)新人教A版
贵州省贵阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(•贵阳二模)已知集合A={x∈R|x2≤4},B={x∈N|≤3},则A∩B()A.(0,2] B.[0,2] C.{1,2} D.{0,1,2}考点:其他不等式的解法;交集及其运算;一元二次不等式的解法.专题:不等式的解法及应用.分析:解分式不等式的解法求得A,再用列举法求得B,再根据两个集合的交集的定义求得A∩B.解答:解:集合A={x∈R|x2≤4}={x|﹣2≤x≤2},B={x∈N|≤3}={0,1,2,3,4,5,6,7,8,9},则A∩B={0,1,2},故选D.点评:本题主要考查绝对值不等式的解法,两个集合的交集的定义和求法,属于中档题.2.(5分)(•贵阳二模)已知i是虚数单位,m和n都是实数,且m(1+i)=5+ni ,则=()A.i B.﹣i C.1D.﹣1考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数相等的条件求出m和n 的值,代入后直接利用复数的除法运算进行化简.解答:解:由m(1+i)=5+ni ,得,所以m=n=5.则=.故选A.点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.(5分)(•贵阳二模)在边长为3的正方形ABCD内任取一点P,则P到正方形四边的距离均不小于1的概率为()A.B.C.D.考点:几何概型.专题:计算题;数形结合.分析:本题考查的知识点是几何概型,我们要根据已知条件,求出满足条件的正方形ABCD的面积,及P到正方形四边的距离均不小于1对应平面区域的面积,代入几何概型计算公式,即可求出答案.解答:解:满足条件的正方形ABCD,如下图示:其中满足动点P到正方形四边的距离均不小于1的平面区域如图中阴影所示:则正方形的面积S正方形=9阴影部分的面积 S阴影=1故P到正方形四边的距离均不小于1的概率P==故选A.点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.4.(5分)(•贵阳二模)若x∈﹙10﹣1,1﹚,a=lgx,b=2lgx.c=lg3x.则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a考点:对数值大小的比较.专题:常规题型.分析:依据对数的性质,分别确定a、b、c数值的大小,然后判定选项.解答:解:由于x∈﹙10﹣1,1﹚,则a=lgx∈(﹣1,0),即得﹣1<a<0,又由b=2lgx=2a.c=lg3x=a3.则b<a<c.故答案为C.点评:本题考查对数值大小的比较,是基础题.5.(5分)(•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4考点:复合命题的真假;指数函数与对数函数的关系.分析:先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.解答:易知p1是真命题,而对p2:,当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故P2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.点评:只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与P2中至少有一个真命题,p1∨p2就是真命题.6.(5分)(•贵阳二模)定积分dx的值等于()A . e 2﹣1B .(e 2﹣1)C . e 2D .e 2考点: 定积分. 专题: 计算题. 分析: 利用微积分基本定理即可求得结果. 解答:解:dx===,故选B .点评: 本题考查定积分的计算、微积分基本定理的应用,考查学生的计算能力. 7.(5分)(•贵阳二模)已知函数f (x )=Asin (ωx+φ) (A >0,ω>0,0<φ<π),其导函数f'(x )的部分图象如图所示,则函数f (x )的解析式为( )A . f (x )=4sin (x+π)B .f (x )=4sin (x+) C .f (x )=4sin (x+) D .f (x )=4sin (x+)考点: 由y=Asin (ωx+φ)的部分图象确定其解析式. 专题: 三角函数的图像与性质. 分析: 由函数的最值求出A ,由周期求出ω,由特殊点的坐标求出φ的值,从而求得函数的解析式. 解答:解:由函数的图象可得A=2,再由=•=﹣(﹣),求得ω=.再由sin ()=0,可得=(2k+1)π,k ∈z .结合 0<φ<π,∴φ=,故函数的解析式为 f (x )=4sin (x+π),故选A .点评: 本题主要考查由函数y=Asin (ωx+∅)的部分图象求解析式,由函数的最值求出A ,由周期求出ω,由特殊点的坐标求出φ的值,从而求得函数的解析式,属于中档题.8.(5分)(•贵阳二模)已知曲线及两点A 1(x 1,0)和A 2(x 2,0),其中x 2>x 1>0.过A 1,A 2分别作x 轴的垂线,交曲线C 于B 1,B 2两点,直线B 1B 2与x 轴交于点A 3(x 3,0),那么( )A .成等差数列B .成等比数列C . x 1,x 3,x 2成等差数列D . x 1,x 3,x 2成等比数列考点: 等差关系的确定;等比关系的确定. 专题: 综合题. 分析: 先求出B 1,B 2两点的坐标,进而得到直线B 1B 2的方程,再令y=0求出x 3,即可得出结论. 解答: 解:由题得:),B 2().∴直线B 1B 2的方程为:y ﹣=(x ﹣x 1)⇒y ﹣=﹣(x ﹣x 1).令y=0⇒x=x 1+x 2,即x 3=x 1+x 2,故选 A .点评: 本题主要考查直线方程的求法,点的坐标的求法以及等差关系的确定问题,是对基础知识的考查,属于基础题目.9.(5分)(•宁夏)设偶函数f (x )满足f (x )=2x﹣4(x≥0),则{x|f (x ﹣2)>0}=( ) A . {x|x <﹣2或x >4} B . {x|x <0或x >4} C . {x|x <0或x >6} D . {x|x <﹣2或x >2}考点: 偶函数;其他不等式的解法. 专题: 计算题.分析: 由偶函数满f (x )足f (x )=2x ﹣4(x≥0),可得f (x )=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.解答: 解:由偶函数满f (x )足f (x )=2x ﹣4(x≥0),可得f (x )=f (|x|)=2|x|﹣4,则f (x ﹣2)=f (|x ﹣2|)=2|x ﹣2|﹣4,要使f (|x ﹣2|)>0,只需2|x ﹣2|﹣4>0,|x ﹣2|>2 解得x >4,或x <0. 应选B .点评: 本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(•贵阳二模)若tanα=,α是第三象限的角,则=( )A .﹣B .C . 2D . ﹣2考点: 二倍角的正切. 专题: 三角函数的图像与性质. 分析:由tanα的值及α为第三象限角,求出sinα与cosα的值,进而求出tan的值,代入所求式子中计算即可求出值.解答:解:∵tanα=,α为第三象限角,∴sinα=﹣,cosα=﹣,∴tan ====﹣3,则==﹣2.故选D点评:此题考查了二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.11.(5分)(•贵阳二模)已知半径为1的球,若以其一条半径为正方体的一条棱作正方体,则此正方体内部的球面面积为()A.B.C.D.考点:球的体积和表面积;球内接多面体.专题:计算题;空间位置关系与距离.分析:根据题意,球表面位于正方体内部的面积等于球面积的,由此结合球的表面积公式,即可算出所求的面积.解答:解:根据题意,经过球心0作出三条两两互相垂直的三条半径OA、OB、OC再分别以OA、OB、OC为长、宽、高作正方体,可得球表面位于正方体内部的部分,恰好等于上面半球的,因此球表面位于正方体内部的面积等于球面积的∵球的半径为1,得球的表面积为S=4π×12=4π∴球表面位于正方体内部的面积为S1=×4π=故选:B 点评:本题给出半径为1的球,以其一条半径为正方体的棱作正方体,求正方体内部的球面面积.着重考查了正方体的性质和球的表面积公式等知识,属于基础题.12.(5分)(•贵阳二模)已知点P是双曲线C :﹣=1上一点,过P作C的两条逐渐近线的垂线,垂足分别为A,B 两点,则•等于()A.B.﹣C.0D.1考点:双曲线的简单性质;平面向量数量积的运算.专题:圆锥曲线的定义、性质与方程.分析:确定两条渐近线方程,设双曲线C上的点P(x0,y0),求出点P到两条渐近线的距离,利用P(x0,y0)在双曲线C上,及向量的数量积公式,即可求得结论.解答:解:由条件可知:两条渐近线分别为l1:x﹣y=0,l2:x+y=0设双曲线C上的点P(x0,y0),则点P到两条渐近线的距离分别为||=,||=,所以||||=×=||因为P(x0,y0)在双曲线C 上,所以,即2x﹣y=6故||||=2设与的夹角为θ,得cosθ=,则•=.故选A.点评:本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查向量知识,考查学生的计算能力,属于中档题.二、填空题:本小题共4小题,每小题5分13.(5分)(•贵阳二模)(9x﹣3﹣x)6(x∈R )的二项展开式中的常数项是15 .考点:二项式定理的应用.专题:计算题.分析:先求得(9x﹣3﹣x)6(x∈R)的二项展开式的通项公式,再令x的幂指数等于零,求得r的值,可得二项展开式中的常数项.解答:解:(9x﹣3﹣x)6(x∈R)的二项展开式的通项公式为 T r+1=•9x(6﹣r)•(﹣1)r3﹣xr=•312x﹣3xr令 12x﹣3rx=0,求得r=4,故二项展开式中的常数项是=15,故答案为 12.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)(•贵阳二模)一个几何体的三视图如图所示,则这个几何体的体积是.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据几何体的三视图判断几何体的形状,画出其直观图,再根据棱锥的体积公式计算即可.解答:解:根据几何体的三视图判定,几何体为四棱锥,其直观图为:∴V 棱锥==.故答案是.点评:本题考查由几何体的三视图求面积与体积.15.(5分)(•贵阳二模)已知F是抛物线C:y2=4x的焦点,直线l:y=k (x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2= 0 .考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出抛物线的焦点坐标,把直线方程和抛物线方程联立后化为关于x的一元二次方程,由根与系数关系求出两个交点的横坐标的和与积,写出斜率后作和,通分整理,把两个交点横坐标的乘积代入即可得到答案.解答:解:由y2=4x,得抛物线焦点F(1,0),联立,得k2x2+(2k﹣4)x+k2=0.设A(x1,y1),B(x2,y2),则.==.故答案为0.点评:本题考查了直线的斜率,考查了直线与圆锥曲线的关系,训练了一元二次方程的根与系数关系,属中档题.16.(5分)(•贵阳二模)设△ABC的内角A,B,C的对边长分别为a,b,c,且c=b+1=a+2,C=2A,则△ABC 的面积等于.考点:正弦定理;余弦定理.专题:解三角形.分析:由条件利用正弦定理及二倍角公式求得cosA=,再由余弦定理求得cosA=,可得=,解得a的值,可得三角形的三边长以及cosA、sinA的值,再根据△ABC的面积等于bc•sinA,运算求得结果.解答:解:△ABC中,c=b+1=a+2,C=2A,则由正弦定理可得,∴,解得cosA=.再由余弦定理可得 a2=(a+2)2+(a+1)2﹣2(a+2)(a+1)•cosA,解得 cosA=.∴=,解得a=4,故b=5,c=6,cosA=,∴sinA=,∴△ABC的面积等于bc•sinA==,故答案为.点评:本题主要考查正弦定理、余弦定理、二倍角公式的应用,求三角形的面积,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤17.(12分)(•贵阳二模)已知公差不为0的等差数列{a n}的前n项和为S n,S7=70,且a1,a2,a6成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n =,数列{b n}的最小项是第几项,并求出该项的值.考点:等差数列的前n项和;等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)根据等差(等比)数列对应的前n项和、通项公式和性质,列出关于a1和d方程,进行求解然后代入通项公式;(Ⅱ)由(Ⅱ)的结果求出S n,代入b n进行化简后,利用基本不等式求出最小项以及对应的项数.解答:解:(I)设公差为d且d≠0,则有,即,解得或(舍去),∴a n=3n﹣2.(II )由(Ⅱ)得,=,∴b n ===3n+﹣1≥2﹣1=23,当且仅当3n=,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.点评:本题是数列与不等式结合的题目,考查了等差(等比)数列对应的前n项和、通项公式和性质等,注意利用基本不等式求最值时的三个条件的验证.18.(12分)(•贵阳二模)如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点(Ⅰ)求证:DE∥平面FGH;(Ⅱ)若点P在直线GF 上,=λ,且二面角D﹣BP﹣A 的大小为,求λ的值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:计算题;证明题;空间角.分析:(Ⅰ)欲证明DE∥平面FGH,先找直线与直线平行,即在平面FGH内找一条直线与直线DE平行.因此,取AD得中点M,连接GM,可证出MG∥DE,结合线面平行的判定定理可得DE∥平面FGH;(Ⅱ)建立空间直角坐标系,根据题中数据得出相应点的坐标进而得到、的坐标,利用垂直向量数量积为零的方法,求出=(5﹣2λ,,2)是平面BDP 的一个法向量,结合=(0,0,1)是平面ABP的一个法向量和二面角D﹣BP﹣A 的大小为,利用空间向量的夹角公式建立关于λ的方程,解之可得实数λ的值.解答:解:(Ⅰ)证明:取AD的中点M,连接MH,MG.∵G、H、F分别是AE、BC、BE的中点,∴MH∥AB,GF∥AB,∴MH∥GF,即G、F、H、M四点共面,平面FGH即平面MGFH,又∵△ADE中,MG是中位线,∴MG∥DE∵DE⊄平面MGFH,MG⊂平面MGFH,∴DE∥平面MGFH,即直线DE与平面FGH平行.(Ⅱ)在平面ABE内,过A作AB的垂线,记为AP,则AP⊥平面ABCD.以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,建立建立空间直角坐标系A﹣xyz,如图所示.可得A(0,0,0),B(0,4,0),D(0,0,2),E(2,﹣2,0),G (,﹣1,0),F (,1,0)∴=(0,2,0),=(0,﹣4,2),=(,﹣5,0).由=λ=(0,2λ,0),可得=+=(,2λ﹣5,0).设平面PBD 的法向量为=(x,y,z),则,取y=,得z=2,x=5﹣2λ,∴=(5﹣2λ,,2),又∵平面ABP 的一个法向量为=(0,0,1),∴cos<>===cos =,解之得λ=1或4即λ的值等于1或4.点评:本题在特殊四棱锥中证明线面平行,并求满足二面角D﹣BP﹣A 的等于的点P的位置.着重考查了线面平行的判定定理,利用空间坐标系研究二面角大小等知识点,属于中档题.19.(12分)(•贵阳二模)某次大型抽奖活动,分两个环节进行:第一环节从10000人中随机抽取10人,中奖者获得奖金1000元,并获得第二环节抽奖资格;第二环节在取得资格的10人中,每人通过电脑随机产生两个数x,y(x,y∈{1,2,3}),并按如图运行相应程序.若电脑显示“中奖”,则该抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.(I)已知甲在第一环节中奖,求甲在第二环节中奖的概率;(II)若乙参加了此次抽奖活动,求乙在此次活动中获得奖金的期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列;程序框图.专题:概率与统计.分析:(Ⅰ)确定从1,2,3三个数字中有重复取2个数字的基本事件,甲在第二环节中奖的基本事件,即可求得概率;(Ⅱ)确定乙参加此次抽奖活动获得奖金的取值,求出相应的概率,可得分布列与数学期望.解答:解:(Ⅰ)从1,2,3三个数字中有重复取2个数字,其基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9个,…(3分)设“甲在第二环节中奖”为事件A,则事件A包含的基本事件有(3,1),(3,3),共2个,∴P(A)=.…(6分)(Ⅱ)设乙参加此次抽奖活动获得奖金为X元,则X的可能取值为0,1000,10000.…(7分)P(X=0)=,P(X=1000)==,P(X=10000)==.∴X的分布列为X 0 1000 10000P…(11分)∴EX=0×+1000×+10000×=3.…(12分)点评:本题考查概率的计算,考查分布列与期望的计算,考查学生的计算能力,属于中档题.20.(12分)(•贵阳二模)设椭圆C :+=1(a>b>0)过点M(1,1),离心率e=,O为坐标原点.(I)求椭圆C的方程.(Ⅱ)若直线l是圆O:x2+y2=1的任意一条切线,且直线l与椭圆C相交于A,B两点,求证:•为定值.考点:直线与圆锥曲线的关系;平面向量数量积的运算;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(I)利用离心率的计算公式、a、b、c 的关系及点满足椭圆的方程可得,解出即可;(II)分切线的斜率存在与不存在讨论,把直线的方程与椭圆的方程联立得到根与系数的关系及利用数量积即可得出.解答:解:(Ⅰ)由题意可得,解得,∴椭圆C 的方程为.(Ⅱ)①当圆O的切线l的斜率存在时,设直线l的方程为y=kx+m,则圆心O到直线l 的距离,∴1+k2=m2.将直线l的方程和椭圆C 的方程联立,得到(1+3k2)x2+6kmx+3m2﹣4=0.设直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,则,.∴=x1x2+(kx1+m)(kx2+m)====0,②当圆的切线l 的斜率不存在时,验证得.综合上述可得,为定值0.点评:本题综合考查了椭圆的定义、标准方程及其性质、直线与椭圆的相交问题转化为方程联立及根与系数的关系、数量积等基础知识与基本技能,考查了分类讨论的思想方法推理能力和计算能力.21.(12分)(•贵阳二模)已知函数f(x)=(bx+c)lnx在x=处取得极值,且在x=1处的切线的斜率为1.(Ⅰ)求b,c的值及f(x)的单调减区间;(Ⅱ)设p>0,q>0,g(x)=f(x)+x2,求证:5g ()≤3g(p)+2g(q).考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:综合题;压轴题;导数的综合应用.分析:(Ⅰ),,故,由此能求出b,c的值及f(x)的单调减区间.(Ⅱ)先证,即证,再证明5g ()≤3g(p)+2g(q).解答:解:(Ⅰ),(1分),∴,即﹣b+b+ec=0,∴c=0,∴f'(x)=blnx+b,又f'(1)=1,∴bln1+b=1,∴b=1,综上,b=1,c=0,(3分)f(x)=xlnx,由定义域知x>0,f'(x)=lnx+1,∵,∴f(x )的单调减区间为.(5分)(Ⅱ)先证即证即证,(6分)令,∵p>0,q>0,∴t>0,即证令,则,∴=,(8分)①当3+2t>5t即0<t<1时,,即h'(t)>0h(t)在(0,1)上递增,∴h(t)<h(1)=0,(9分)②当3+2t<5t,即t>1时,ln<0,即h′(t)<0,h(t)在(1,+∞)上递减,∴h(t)<h(1)=0,(10分)③当3+2t=5t,即t=1时,h(t)=h(1)=0,综合①②③知h(t)≤0,即ln ≤,(11分)即5f ()≤3f(p)+2f(q),∵5•()2﹣(3p2+2q2)=≤0,∴5•()2≤3p2+2q2,综上,得5g ()≤3g(p)+2g(q).(12分)点评:本题考查函数的减区间的求法,考查不等式的证明,考查等价转化思想,考查运算推导能力,解题时要认真审题,仔细解答,注意导数性质的灵活运用.四、请考生在第22.23.24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(10分)(•贵阳二模)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.(1)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长.考点:圆的切线的性质定理的证明;直线与圆的位置关系;矩阵与矩阵的乘法的意义;简单曲线的极坐标方程;直线的参数方程.专题:计算题;证明题.分析:(1)要想证AB是⊙O的切线,只要连接OC,求证∠ACO=90°即可;(2)先由三角形判定定理可知,△BCD∽△BEC,得BD与BC的比例关系,最后由切割线定理列出方程求出OA的长.解答:解:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;(2)∵BC是圆O切线,且BE是圆O割线,∴BC2=BD•BE,∵tan∠CED=,∴.∵△BCD∽△BEC,∴,设BD=x,BC=2x.又BC2=BD•BE,∴(2x)2=x•(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分).点评:本题考查的是切线的判定、相似三角形的判定和性质,以及切割线定理的综合运用,属于基础题.23.(•贵阳二模)选修4﹣4:坐标系与参数方程在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l :ρsin(θ﹣)=,(I)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.求圆O和直线l的直角坐标方程;(II)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系.专题:直线与圆.分析:(Ⅰ)把给出的极坐标方程两边同时乘以ρ,把x=ρcosθ,y=ρsinθ代入即可求得圆的普通方程.展开两角差的正弦公式,把x=ρcosθ,y=ρsinθ代入即可求得直线的普通方程.(Ⅱ)求出圆与直线的交点坐标(0,1),由该点在极坐标平面内的位置得到其极径与极角.解答:解:(Ⅰ)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,所以圆O的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.直线,即ρsinθ﹣ρcosθ=,也就是ρsinθ﹣ρcosθ=1.则直线l的直角坐标方程为:y﹣x=1,即x﹣y+1=0.(Ⅱ)由,得.故直线l与圆O公共点为(0,1),该点的一个极坐标为.点评:本题考查了极坐标与直角坐标的互化,考查了直线与圆的位置关系,解答的关键是熟记公式x=ρcosθ,y=ρsinθ,是基础题.24.(•贵阳二模)选修4﹣5:不等式选讲已知函数f(x)=|x﹣2|﹣|x﹣5|.(1)证明:﹣3≤f(x)≤3;(2)求不等式f(x)≥x2﹣8x+15的解集.考点:绝对值不等式的解法.专题:计算题;不等式的解法及应用.分析:(1)通过对x的范围分类讨论将函数f(x)=|x﹣2|﹣|x﹣5|中的绝对值符号去掉,转化为分段函数,即可解决;(2)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.解答:解:(1)f(x)=|x﹣2|﹣|x﹣5|=.当2<x<5时,﹣3<2x﹣7<3.所以﹣3≤f(x)≤3.(2)由(1)可知,当x≤2时,f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,f(x)≥x2﹣8x+15的解集为{x|5﹣≤x<5};当x≥5时,f(x)≥x2﹣8x+15的解集为{x|5≤x≤6}.综上,不等式f(x)≥x2﹣8x+15的解集为{x|5﹣≤x≤6}.点评:本题考查绝对值不等式的解法,通过对x的范围分类讨论去掉函数式中的绝对值符号是关键,考查转化与分类讨论思想,属于中档题.。
(名师导学)高考数学总复习 同步测试卷(五)导数及其应用 理(含解析)新人教A版-新人教A版高三全册
同步测试卷理科数学(五) 【p 293】(导数及其应用) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.函数y =x sin x +x 的导数是( )A .y′=sin x +x cos x +12xB .y′=sin x -x cos x +12xC .y′=sin x +x cos x -12xD .y′=sin x -x cos x -12x【解析】f′(x)=(x)′sin x +x(sin x)′+⎝ ⎛⎭⎪⎫x 12′ =sin x +x cos x +12x -12=sin x +x cos x +12x .【答案】A2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( )A .-4B .-2C .4D .2【解析】f′()x =3x 2-12=3()x +2()x -2,令f′()x =0得x =-2或x =2,易得f ()x 在()-2,2上单调递减,在()2,+∞上单调递增,故f ()x 的极小值点为2,即a =2.【答案】D 3.定积分⎠⎛-aaa 2-x 2d x 等于( )A .14πa 2B .12πa 2 C .πa 2D .2πa 2【解析】由题意可知定积分表示半径为a 的半个圆的面积,所以S =12(πa 2)=12πa 2.【答案】B4.直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),则a +b =( )A .1B .4C .3D .2【解析】由f(x)=a ln x +b ,得f′(x)=ax,∴f′(1)=a.再由直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),得 ⎩⎪⎨⎪⎧k =a ,k +1=b ,b =2,∴⎩⎪⎨⎪⎧k =1,a =1,b =2, ∴a+b =3. 【答案】C5.已知函数y =f(x)是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x>0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3【解析】由已知得f ′(x )·x +f (x )x >0,得(xf (x ))′x>0,得(xf (x ))′与x 同号,令g (x )=xf (x ).则可知g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 且g (0)=0,又由xf (x )+1x =0,即g (x )=-1x ,显然y =g (x )的图象与y =-1x的图象只有一个交点,选B.【答案】B6.定义在R 上的偶函数f (x )的导函数为f ′(x ),若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值X 围是( )A .{x |x ≠±1}B .(-∞,-1)∪(1,+∞)C .(-1,1)D .(-1,0)∪(0,1)【解析】f (x )是R 上的偶函数,则函数g (x )=x 2f (x )-x 2也是R 上的偶函数, 对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立, 则g ′(x )=x [2f (x )+xf ′(x )-2].当x ≥0时,g ′(x )<0,当x <0时,g ′(x )>0,即偶函数g (x )在区间(-∞,0)上单调递增,在区间(0,+∞)上单调递减, 不等式x 2f (x )-f (1)<x 2-1即x 2f (x )-x 2<12f (1)-12, 据此可知g (x )<g (1),则x <-1或x >1.即实数x 的取值X 围是(-∞,-1)∪(1,+∞). 【答案】B二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.某产品的销售收入y 1(万元)是产量x(千台)的函数y 1=17x 2,生产成本y 2(万元)是产量x(千台)的函数y 2=2x 3-x 2,已知x>0,为使利润最大,应生产________(千台).【解析】由题意,利润y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3(x >0). y′=36x -6x 2,由y′=36x -6x 2=6x(6-x)=0,得x =6(x >0), 当x∈(0,6)时,y′>0,当x∈(6,+∞)时,y′<0. ∴函数在(0,6)上为增函数,在(6,+∞)上为减函数. 则当x =6(千台)时,y 有最大值为216(万元). 【答案】68.曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为________.【解析】由曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为⎠⎛012x d x +⎠⎛13(-x+3)d x =43x 32|10+⎝ ⎛⎭⎪⎫-12x 2+3x |31=43+2=103.【答案】1039.若函数f(x)=x 3-ax 2+3x -4a 3在(-∞,-1),(2,+∞)上都是单调增函数,则实数a 的取值集合是________.【解析】由f′(x)=3x 2-2ax +3,(1)当Δ=4a 2-36≤0⇒-3≤a≤3时,f(x)在R 上为增函数,满足条件; (2)当Δ=4a 2-36>0⇒a <-3或a >3时,由⎩⎪⎨⎪⎧-1<a3<2⇒-3<a <6,f ′(-1)≥0⇒a ≥-3,f ′(2)≥0⇒a ≤154,∴3<a ≤154,∴综合得a 的取值集合是⎣⎢⎡⎦⎥⎤-3,154. 【答案】⎣⎢⎡⎦⎥⎤-3,15410.若不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立,则实数m 的取值X 围是__________________.【解析】不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立, 等价为mx 3-ln x ≥1或mx 3-ln x ≤-1, 即m ≥1+ln x x 3或m ≤ln x -1x3, 记f (x )=1+ln x x 3,g (x )=ln x -1x3, 则f ′(x )=1x ·x 3-3x 2(1+ln x )x 6=-2-3ln xx4,由f ′(x )=-2-3ln xx4=0, 解得ln x =-23,即x =e -23,由f (x )>0,解得0<x <e -23,此时函数单调递增,由f (x )<0,解得x >e -23,此时函数单调递减,即当x =e -23时,函数f (x )取得极大值,同时也是最大值f (e -23)=1+ln e -23(e -23)3=1-23e-2=13e 2, 此时m ≥13e 2;由g (x )=ln x -1x3, ∵当x =1时,ln x -1x3=0, ∴当m >0时,不等式m ≤ln x -1x3不恒成立, 综上,m ≥13e 2.【答案】⎣⎢⎡⎭⎪⎫e 23,+∞ 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知函数f(x)=e x-2x.(1)求曲线y =f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=f(x)-a ,x∈[-1,1]恰有2个零点,某某数a 的取值X 围. 【解析】(1)∵f(x)=e x-2x ,∴f′(x)=e x-2. ∴f′(0)=-1, 又f(0)=1,∴曲线y =f(x)在点(0,f(0))处的切线方程为y -1=-x , 即x +y -1=0.(2)由题意得g(x)=e x-2x -a , ∴g′(x)=e x-2,由g′(x)=e x -2=0解得x =ln 2,故当-1≤x<ln 2时,g′(x)<0,g(x)在[-1,ln 2)上单调递减; 当ln 2<x≤1时,g′(x)>0,g(x)在(ln 2,1]上单调递增. ∴g(x)min =g(ln 2)=2-2ln 2-a , 又g(-1)=e -1+2-a ,g(1)=e -2-a , 结合函数的图象可得,若函数恰有两个零点,则⎩⎪⎨⎪⎧g (-1)=e -1+2-a≥0,g (1)=e -2-a≥0,g (ln 2)=2-2ln 2-a<0,解得2-2ln 2<a≤e -2. ∴实数a 的取值X 围是(2-2ln 2,e -2].12.(16分)已知定义在正实数集上的函数f(x)=ax 2-(a +2)x +ln x.(1)若函数g(x)=f(x)-ax 2+1,在其定义域上g(x)≤0恒成立,某某数a 的最小值; (2)若a>0时,f(x)在区间[1,e ]上的最小值为-2,某某数a 的取值X 围.【解析】(1)由g(x)=ln x -(a +2)x +1≤0在其定义域上恒成立,因为x>0,∴a+2≥ln x +1x,设h(x)=ln x +1x(x>0),h′(x)=1-ln x -1x 2=-ln xx2, 所以0<x<1时,h′(x)>0,h(x)递增,x>1时,h′(x)<0,h(x)递减, 因此h(x)max =h(1)=1,∴a+2≥1可得a≥-1, 综上实数a 的最小值是-1.(2)f′(x)=2ax -(a +2)+1x =(ax -1)(2x -1)x (x>0,a>0),f′(x)=0,x 1=12,x 2=1a,当a≥1,1a ≤1,x∈(1,e ),f′(x)≥0,f(x)单调递增,f(x)min =f(1)=-2符合题意,当1e <a<1,x∈[1,e ],x∈⎝ ⎛⎭⎪⎫1,1a ,f(x)单调递减,x∈⎝ ⎛⎭⎪⎫1a ,e ,f(x)单调递增; f(x)min =f ⎝ ⎛⎭⎪⎫1a <f(1)=-2舍去,当0<a≤1e,x∈(1,e ),f(x)单调递减,f(x)min =f(e )<f(1)=-2舍去,综上实数a 的取值X 围是[1,+∞).13.(18分)已知函数f(x)=-x -mx +2ln x ,m∈R .(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,证明:f (x 2)>1-x 2.【解析】(1)由f (x )=-x -m x+2ln x ,得f ′(x )=-1+m x 2+2x =-x 2+2x +m x 2=-x 2-2x -mx 2,x ∈(0,+∞).设g(x)=x2-2x-m,x∈(0,+∞).当m≤-1时,即Δ=4+4m≤0时,g(x)≥0,f′(x)≤0.∴f(x)在(0,+∞)上单调递减.当m>-1时,即Δ=4+4m>0时,令g(x)=0,得x1=1-1+m,x2=1+1+m,x1<x2.当-1<m<0时,0<x1<x2,在(0,x1)∪(x2,+∞)上,f′(x)<0,在(x1,x2)上,f′(x)>0,∴f(x)在(0,x1)上单调递减,在(x1,x2)上单调递增,在(x2,+∞)上单调递减.当m≥0时,x1≤0<x2,在(0,x2)上,f′(x)>0,在(x2,+∞)上,f′(x)<0,∴f(x)在(0,x2)上单调递增,在(x2,+∞)上单调递减.综上,当m≤-1时,f(x)在(0,+∞)上单调递减;当-1<m<0时,f(x)在(0,1-1+m),(1+1+m,+∞)上单调递减,在(1-1+m,1+1+m)上单调递增;当m≥0时,f(x)在(0,1+1+m)上单调递增,在(1+1+m,+∞)上单调递减.(2)∵f(x)有两个极值点x1,x2,且x1<x2,∴由(1)知g(x)=x2-2x-m有两个不同的零点x1,x2,x1=1-1+m,x2=1+1+m,且-1<m<0,此时,x22-2x2-m=0,要证明f(x2)=-x2-mx2+2ln x2>1-x2,只要证明2ln x2-mx2>1.∵m =x 22-2x 2,∴只要证明2ln x 2-x 2>-1成立. ∵m ∈(-1,0),∴x 2=1+1+m ∈(1,2). 设h (x )=2ln x -x ,x ∈(1,2), 则h ′(x )=2x-1,当x ∈(1,2)时,h ′(x )>0, ∴h (x )在x ∈(1,2)上单调递增, ∴h (x )>h (1)=-1,即2ln x 2-x 2>-1,∴f (x )有两个极值点x 1,x 2,且x 1>x 2时,f (x 2)>1-x 2.word 11 / 11。
浙江省杭州二中2014届高三数学仿真考试试题 理 新人教A版
2014年杭州二中高三仿真考数学(理科)试题卷一、选择题1、已知(1)3,Z i i +=-则复数Z = ( )A.12i +B.12i -C.2i +D.2i -2、设集合{}{}236,450S x x T x x x =<≤=--≤,则()R C S T ⋂=( )A.(]3-∞⋃∞,(6,+)B.(]3-∞⋃∞,(5,+)C.∞⋃∞(-,-1)(6,+)D.∞⋃∞(-,-1)(5,+)3、已知等差数列{}n a 的前n 项和为n S ,且744S S π-=,则6tan a =( )4、在ABC ∆中,“30A ∠<”是“1cos 2A >”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D 既不充分也不必要条件5、若,则函数()2f x x'的图象是( )6、程序框图如右图所示,其输出结果是63,则a 的初始值,(0)m m >有多少种可能A.3B.4C.5D.67、如图,点P 在双曲线22221x y a b-=的右支上,12F F 分别是双曲线的左右焦点,212PF F F =,直线1PF 与圆222x y a +=相切,则双曲线的离心率e =( )A.43B.53.2 8、设,a b 为单位向量,若向量c 满足()c a b a b -+=-,则c 的最大值是( )A..19、若0,2x y π<<,且sin cos x x y =,则( )A.4x y <B.42x x y <<C.2xy x << D .x y < 10、已知函数222()(1)2(11)f x a x bx b b a =--+-<-<,用()card A 表示集合A 中元素的个数,若使得()0f x >成立的充分必要条件是x A ∈,且()4card A Z ⋂=,则实数a 的取值范围是( )A.(-1,2)B.(1,2)C.(2,3) D .(3,4) 二、填空题11、已知31()(12)()()nf x x x n N x*=-+∈的展开式中没有常数项,且26n <<,则展开式中含2x 的系数是 。
福建省福州八中2013届高三数学模拟考试试题 理 新人教A版
某某八中2012—2013学年高三毕业班模拟考数学(理)试题考试时间:120分钟 试卷满分:150分参考公式:样本数据x 1,x 2,…,x n 的标准差 锥体体积公式=31Sh 其中x 为样本平均数其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式V =Sh 24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.1. 已知集合}2|{≤=x x A ,}0)3(|{<-=x x x B ,则B A = A .}20|{≤<x x B .}0|{<x xC .2|{≤x x ,或}3>xD .0|{<x x ,或}2≥x2. 在复平面内,复数i-1i21-=z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3. 已知数列{}n a 的前n 项和2n S n =,则5a 等于A .25B .16C .11D .94. 一个几何体的三视图如图所示,其中俯视图是一个菱形,则该几何体的体积为 A.B.C.2D.5. 函数0,0,12,1)(2<≥⎩⎨⎧+++=x x x x x x f 的图象和函数xx g e )(=的图正视图侧视图俯视图象的交点个数是 A.4B.3C.2D.16. 已知不等式yx k y x +>+91对任意正数x 、y 恒成立,则实数k 的取值X 围是 A .16<k B .16>k C .12>k D .12<k7. 已知a 为常数,则使得⎰>e1d 1x x a 成立的一个充分而不必要条件是A .0>aB .0<aC .e >aD .e <a8. 已知O 为坐标原点,直线y x a =+与圆224x y +=分别交于,A B 两点.若2-=⋅OB OA ,则实数a 的值为A .1B .2C .1±D .2±9. 三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是A .130B .115C .110D .1510.设向量12(,)a a a =,12(,)b b b =,定义一运算:12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=,已知1(,2)2m =,11(,sin )n x x =。
(新课标)高考数学模拟系列(二)试题 理 新人教A版
12023年高考模拟系列试卷(二) 数学试题【新课标版】(理科)1.本试卷分第一卷(阅读题)和第二卷(表达题)两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
第一卷(选择题,共60分)一、此题共12小题,每题5分,共60分,在每题给出的四个选项中只有一个选项是符合题目要求的1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,那么()RM N ⋂等于( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、假设sin601233,log cos60,log tan 30a b c ===,那么( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,那么41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,那么点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否认为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤- 7、设a b <,函数()()2y x a x b =--的图象可能是( )28、程序框图如下:如果上述程序运行的结果S 的值比2023小,假设使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,那么此几何体的体积是( )A .1533π+B .21533π+C .3033π+D .43033π+ 10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A .5-1B .355 C .3515- D .523-1 12、已知椭圆C :22221(0)x ya b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,假设A 为线段PQ 的靠近P 的三等分点,那么椭圆的离心率为 ( )3A .23B .33C .53D .73第二卷(非选择题,共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。
江西省南昌二中2014届高三数学最后一次模拟考试试题 理 新人教A版
江西省南昌二中2014届高三数学最后一次模拟考试试题 理 新人教A 版一、选择题1. 对于集合U 的子集,,M N M N 若是的真子集,则下列集合中必为空集合的是( ).();U A C M N .();U B M C N .()();U U C C M C N .D M N2.设函数()()f xg x ==()()f x g x ⋅的定义域是( ) 23.,32A ⎡⎫⎪⎢⎣⎭ 3.(,)2B +∞ 2.,3C ⎡⎫+∞⎪⎢⎣⎭ 23.,32D ⎛⎤⎥⎝⎦3.{}n a 为等差数列,n S 为前n 项和,566778,,S S S S S S <=>,则下列错误的是( ).0A d < 7.0B a = 95.C S S > 67.n D S S S 和均为的最大值;4.下列命题:①经过三点可以确定一个平面;②复数2iZ =在复平面上对应的点在第四象限; ③已知平面//;a a αβααββ⊥⊥,,若平面且平面平面,则平面④若回归直线方程的斜率的估计值是1.23,样本的中心点为(4,5),则回归直线的方程是:ˆ 1.230.08;yx =+以上命题中错误的命题个数是( ) .0A.1B .2C .3D 5. 从1,2,3,,10这10个数中选出互不相邻的3个数的方法种数是( ) .56A .57B .58C .60D6.在ABC ∆中,90,C P ∠=为三角形内一点且PAB PBC PCA S S S ∆∆∆==,则222PA PB PC +=( ).2A B C .5D7. ,a b 是方程220mx nx +-=的两个不等的实数根,且点(,)M m n 在圆22:1C x y += 上,那么过点2(,)A a a 和2(,)B b b 的直线与圆C 的位置关系( ) .A 相离.B 相切 .C 相交 .D 随,m n 的变化而变化 8. 两位工人加工同一种零件共100个,甲加工了40个,其中35个是合格品,乙加工了60个,其中有50个合格,令A 事件为”从100个产品中任意取一个,取出的是合格品”,B 事件为”从100个产品中任意取一个,取到甲生产的产品”,则P (A|B)等于( ) A.25B.35100C.78D.57A.15 B..72010. 如图,正方形ABCD的顶点,顶点C D、位于第一象限,直将正方形ABCD分成两部分,记位于直线l左()s f t=的图象大致是()二、填空题11.计算44(cos sin)x x dxππ--=⎰ .12. 设双曲线的渐近线为xy23±=,则其离心率为 .15,,0,,3,5,4ABCABC AB a AC b a b S a b a bθ∆∆==⋅<===13.已知中,则与的夹角为14.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=。
高三数学三模冲刺卷一新人教A版
高三三模冲刺卷卷(一)一、选择题1.概念集合运算:{|(),,}A B z z xy x y x A y B ⊕==+∈∈.设集合},{10=A ,},{32=B ,则集合B A ⊕的所有元素之和为 ( )B.62.复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( ) B.31 C.213.设等差数列{}n a 的前n 项和为46,9,11n S a a ==若,则9S 等于 ( )A .180B .90C .72D .104.设函数)(x f 的概念域为R ,若存在常数0>k ,使2013|||)(|x k x f ≤对一切实数x 均成立,则称)(x f 为“好运”函数.给出下列函数:①2)(x x f =;②x x x f cos sin )(+=;③1)(2++=x x xx f ;④13)(+=xx f .其中)(x f 是“好运”函数的序号为 . A. ① ② B.① ③C. ③D. ② ④5.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,且直角边长为1,那么这个几何体的体积为( )B.21C.31D.616.若函数Rx x x x f ∈+=,cos sin )(ωω3,又02=-=)(,)(βαf f ,且βα-的最小值为43π,则正数ω的值是( )A. 31B. 32C.34D.237.概念行列式运算:12142334a a a a a a a a =-.若将函数-sin cos ()1 -3x x f x =的图象向左平移m (0)m >个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .32πB .3πC .6πD .π658.如图;现有一迷失方向的小青蛙在3处,它每跳动一次可以等机缘地进入相邻的任意一格(如若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机缘进入l ,2,4,5处),则它在第三次跳动后, 进入5处的概率是A .12 B .13 C .14 D .169.一个正方体的极点都在球面上,它的棱长为2cm ,则球的表面积是( )主视图 俯视图左视图A.28cm π B.212cm π C.216cm π D.220cm π10.如图,已知抛物线)(022>=p px y 的核心F 恰好是双曲线12222=-b y a x 的右核心,且两条曲线的交点的连线过F ,则该双曲线的离心率为( )A.2B.2C.12+D.12-11.已知)(x f 为概念在),(+∞-∞上的可导函数,且)()('x f x f < 对于任意R x ∈恒成立,则( ) A. )0()2010(),0()2(20102f e f f e f ⋅>⋅> B. )0()2010(),0()2(20102f e f f e f ⋅>⋅< C. )0()2010(),0()2(20102f e f f e f ⋅<⋅> D.)0()2010(),0()2(20102f e f f e f ⋅<⋅<12.已知()f x 是概念在R 上的偶函数,在区间[0,)+∞上为增函数,且1()03f =,则不等式18(log )0f x >的解集为( )A. 1(,2)2B. (2,)+∞C. 1(0,)(2,)2⋃+∞D. 1(,1)(2,)2⋃+∞二、填空题13.函数2,0()2,0x x f x x x +⎧=⎨-+>≤⎩,则不等式2()f x x ≥的解集是14.给出下列命题: ① 存在实数x ,使3sin cos 2x x +=;② 若α、β是第一象限角,且α>β,则cos α<cos β;③ 函数2sin()32y x π=+是偶函数; ④ A 、B 、C 为锐角ABC ∆的三个内角,则sin cos A B >其中正确命题的序号是____________.(把正确命题的序号都填上)15.在△ABC 中,角A 、B 、C 的对边别离是a 、b .c ,且cos cos c Cb B -=,则B 的大小为 .16.设x ,y 知足约束条件220840,0,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最大值为8,则a+b 的最小值为 .三、解答题17.设函数21()1()2a f x x ax nx a R -=+-∈。
安徽省迎河中学2014届高考数学考前模拟试题 理 新人教A版
2014届安徽省迎河中学高考模拟数 学 试 题 (理)一、选择题:本大题共10小题,每小题5分.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆ (2)若复数z 满足()i 34i 43+=-z ,则z 的虚部为 (A )4- (B )54-(C )4 (D )54(3)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右(4)已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±=(B )x y 31±=(C ) x y 21±=(D )x y ±= (5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于 (A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,- (6)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(7)某几何体的三视图如右图所示,则该几何体的体积为(A )8π16+ (B )8π8+ (C )π6116+(D )16π8+ (8)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为(A )=0()cos=2R θρρ∈和 (B )=()cos=22R πθρρ∈和(C ) =()cos=12R πθρρ∈和 (D )=0()cos=1R θρρ∈和(9)已知函数⎩⎨⎧+≤+-=0),1(ln 02)(2>x x x ,x x f , 若ax x f ≥)(,则a 的取值范围是(A )](0,∞- (B )](1,∞- (C )[]12,- (D )[]02,-(10)设n n n C B A △的三边长分别为n a ,n b ,n c ,n n n C B A △的面积为n S ,3,2,1=n …… 若1b >1c ,1112a c b =+,n n a a =+1,2n 1a c b n n +=+,2n1a b c n n +=+,则 (A ){}n S 为递减数列 (B ){}n S 为递增数列 (C ){}12-n S 为递增数列,{}n S 2为递减数列 (D ){}12-n S 为递减数列,{}n S 2为递增数列二..填空题:本大题共5小题,每小题5分,共25分。
广东省韶关市2014届高三数学考前热身考试题 理 新人教A版
韶关2014届高三热身考试理科数学试题(5月31日)一、选择题1.设全集R U =,{|lg(1)}A x y x ==-,则=A C RA .(,1)-∞B .(0,1]C .[1,)+∞D .(1,)+∞2.已知1+(1)i mi -z=()是纯虚数(i 是虚数单位),则实数m 的值为A.1±B.1C. 2D. 1-3.运行如图1的程序框图,则输出s 的结果是 A.16 B.2524 C.34 D.11124.将函数y =cos2x 的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短到原来的2倍(纵坐标不变),得到的函数解析式为A .y =sinxB .y =-cos4xC .y =sin4xD .y =cosx5根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+中的b ∧的值为0.7,则记忆力为14的同学的判断力约为A .7B .7.5C .8D .8.56.把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD -的正视图与俯视图如图所示,则其侧视图的面积为 A 7.已知圆C :222)()(r b y a x =-+-的圆心为抛物线x y 42=的焦点,直线3x +4y +2=0与圆C 相切,则该圆的方程为A .2564)1(22=+-y x B .2564)1(22=-+y x C .1)1(22=+-y x D .1)1(22=-+y x 4π(B )当1[2,2]n n x -∈(*n ∈N )时,函数()f x 的图象与x 轴围成的面积为2 (D )存在实数0x ,使得不等式00()6x f x >成立 二、填空题 (一)必做题:9.等比数列{}n a 的各项均为正数,28a =,且4352,,4a a a 成等差数列,则{}n a 的前5项和为 .10.已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是 .11. 已知变量y ,x 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07y x 1x 02y x , 则x y 的最大值是__________.12.在12)31(xx -的展开式中,3x 的系数为 . 13.已知AD 是ABC ∆的中线,若︒=∠120A ,2AB AC ⋅=-,则AD 的最小值是 .(二)选做题:14.(坐标系与参数方程选做题)已知C 的参数方程为3cos 3sin x t y t =⎧⎨=⎩(t 为参数),C 在点(0,3)处的切线为l ,若以直角坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 . 15.(几何证明选讲选做题)如图,在Rt △ABC 中,∠C= 90o,E 为AB 上一点,以BE 为 直径作圆O 与AC相切于点D .若AB :BC=2:1, O 的半径长为 .三、解答题:16.(本小题满分12分) 在ABC ∆中,C-A=2π,(1)求sinC 的值;(2)若BC=6,求ABC ∆的面积.17.( 本小题满分12分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 。
福建省厦门双十中学2014届高三数学热身考试试卷 理 新人教A版
2014双十中学热身卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的]1.设全集R U =,集合{11}M x x x =><-或,{}|02N x x =<<,则()U N M =ð( )A .{}|21x x -≤<B .{}|01x x <≤C .{}|11x x -≤≤D .{}|1x x < 2. 已知圆22:1O x y +=及以下3个函数:①3()f x x =;②()t a n f x x =;③()s i n .f x x x =其中图像能等分圆C 面积的函数有( ) A .3个 B. 2个 C. 1 个 D. 0个 3.下列结论错误..的是( ) A.命题“若2340x x --=,则4x =”的逆否命题为“若24,340x x x ≠--≠则”B.“4x =”是“2340x x --=”的充分不必要条件C.已知命题p “若0m >,则方程20x x m +-=有实根”,则命题p 的否定p ⌝为真命题D.命题“若220m n +=,则00m n ==且”的否命题是“若220.00m n m n +≠≠≠则或”4.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( ) A .(,1]-∞- B .(,1)(1,)-∞-+∞ C .[3,)+∞ D .(,1][3,)-∞-+∞5. 执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为( ) A.1 B.2 C.3 D.46.则y 对x A .y =x -1B .y =x +1C .y =88+12x D .y =1767.把函数22cos y x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )8. 已知方程|x –(*n N ∈)在区间[2n –1,2n+1]上有两个不相等的实数根,则k 的取值范围是( ) A .1021k n <≤+ B .0<k.121n +≤k.0k <<9. 如图,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=2AA 1=4,点O 是底面ABCD 的中心,点E 是A 1D 1的中点,点P 是底面ABCD 上的动点,且到直线OE 的距离等于1, 对于点P 的轨迹,下列说法正确的是( )A.B.离心率为12的椭圆 C.一段抛物线 D.半径等于1的圆 10.已知集合M=N={0,1,2,3},定义函数f :M →N ,且点A (0,f (0)),B (i ,f (i )),C (i+1,f (i+1)),(其中i=1,2).若△ABC 的内切圆圆心为P ,且满足()PA PC PB R λλ+=∈,则满足条件的ABC ∆有( )A . 10个B . 12个C . 18个D . 24个 二、填空题:本大题共5小题,每小题4分,共20分。
高三数学模拟试卷(23)(含解析)新人教A版-新人教A版高三全册数学试题
某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(23)一.填空题:(本大题共14小题,每小题5分,计70分)1.复数的虚部是__________.2.已知集合M={a,0},N={x|2x2﹣3x<0,x∈Z},如果M∩N≠∅,则a=__________.3.已知,,则=__________.4.设等比数列{a n}的各项均为正数,其前n项和为S n.若a1=1,a3=4,S k=63,则k=__________.5.△ABC 中,“A=”是“sinA=”的__________条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选出符合题意的一个填空).6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号是__________.①若m∥n,m⊥β,则n⊥β;②若m∥n,m∥β,则n∥β;③若m∥α,m∥β,则α∥β;④若n⊥α,n⊥β,则α⊥β.7.根据如图所示的伪代码,最后输出的S的值为__________.8.已知正方形ABCD的边长为1,点E是AB边上的动点,则的最大值为__________.9.已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|x<4,y>0,x﹣2y>0},若向区域Ω上随机投掷一点P,则点P落入区域A的概率为__________.10.函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为__________.11.已知0<y<x<π,且tanxtany=2,,则x﹣y=__________.12.求“方程()x+()x=1的解”有如下解题思路:设f(x)=()x+()x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为__________.13.设等比数列{a n}的前n项和为S n(n∈N*).若S3,S9,S6成等差数列,则的值是__________.14.在平面直角坐标系xOy中,已知点A是椭圆上的一个动点,点P在线段OA的延长线上,且,则点P横坐标的最大值为__________.二.解答题:(本大题共6小题,计90分)15.已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)某某数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值X围.16.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.17.如图,在三棱锥P﹣ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.(1)证明平面PBF⊥平面PAC;(2)判断AE是否平行于平面PFD,并说明理由;(3)若PC=AB=2,求三棱锥P﹣DEF的体积.18.如图所示,直立在地面上的两根钢管AB和CD,AB=10m,CD=3m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示).则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距3m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?19.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值X围.20.已知数列{a n}满足a n+1+a n=4n﹣3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥5成立,求a1的取值X围.三、附加题(共4小题,满分0分)21.已知矩阵A=,向量=.求向量,使得A2a=b.22.选修4﹣4:坐标系与参数方程在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.23.如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE 沿DE折起到△PDE的位置(如图(2)).(Ⅰ)求证:PB⊥DE;(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.24.附加题:在十字路口的路边,有人在促销木糖醇口香糖,只听喇叭里喊道:木糖醇口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小明一看,只见一大堆瓶装口香糖堆在一起(假设各种口味的口香糖均超过3瓶,且每瓶价值均相同).(1)小明花10元钱买三瓶,请问小明共有多少种选择的可能性?(2)小明花10元钱买三瓶,售货员随便拿三瓶给小明,请列出有小明喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(23)一.填空题:(本大题共14小题,每小题5分,计70分)1.复数的虚部是.考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:根据复数的除法法则计算即可.解答:解:==,所以复数的虚部是.故答案为:.点评:本题考查复数代数形式的乘除运算、复数的基本概念,属基础题.2.已知集合M={a,0},N={x|2x2﹣3x<0,x∈Z},如果M∩N≠∅,则a=1.考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分析:求解二次不等式化简集合N,然后由交集的运算可得a的值.解答:解:由N={x|2x2﹣3x<0,x∈Z}={x|0<x<,x∈Z}={1},又M={a,0}且M∩N≠∅,所以a=1.故答案为1.点评:本题考查了一元二次不等式的解法,考查了交集及其运算,是基础题.3.已知,,则=﹣.考点:两角和与差的正切函数.分析:所求式子利用诱导公式化简,将sinα算出并求出tanα带入可求出值.解答:∵∴sinα==﹣即tanα=∴tan()==﹣故答案为:﹣点评:考查了两角和公式的应用,属于基础题.4.设等比数列{a n}的各项均为正数,其前n项和为S n.若a1=1,a3=4,S k=63,则k=6.考点:等比数列的前n项和;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:先由已知的项可求等比数列的公比,然后代入等比数列的求和公式即可求解k解答:解:由等比数列的通项公式可得,=4又∵a n>0∴q>0∴q=2∵S k=63,∴∴2k=64∴k=6故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5.△ABC 中,“A=”是“sinA=”的充分不必要条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选出符合题意的一个填空).考点:必要条件、充分条件与充要条件的判断.专题:三角函数的求值.分析:根据A=可以判断sinA=,得到前者可以推出后者,举出一个反例来说明后者不一定推出前者,得到前者是后者的充分不必要条件.解答:解:若A=,根据三角函数的特殊值知sinA=,即前者可以推出后者,当sinA=,比如sin=,显然A=,不成立.得到前者不能推出后者,∴综上可知前者是后者的充分不必要条件,故答案为:充分不必要点评:本题考查充分条件、必要条件与充要条件的定义,正弦函数的值,本题解题的关键是通过举反例来说明某个命题不正确,这是一种简单有效的方法,本题是一个基础题.6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号是①.①若m∥n,m⊥β,则n⊥β;②若m∥n,m∥β,则n∥β;③若m∥α,m∥β,则α∥β;④若n⊥α,n⊥β,则α⊥β.考点:命题的真假判断与应用;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对每一选择支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.解答:解:对于①,根据线面垂直的判定定理,如果两平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.可知该命题正确;对于②,根据线面平行的判定定理可知少条件:“n不在平面β内”,故不正确;对于③,若m∥α,m∥β,则α∥β或α与β相交.可知该命题不正确;对于④,根据面面平行的判定定理可知“α∥β”,故不正确.故答案为:①.点评:本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力和推理论证能力,属于基础题.7.根据如图所示的伪代码,最后输出的S的值为145.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28时,S的值.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28值.∵S=1+4+7+10+13+…+28=145,故输出的S值为145.故答案为:145.点评:本题考查的知识点是伪代码,其中根据已知分析出循环的循环变量的初值,终值及步长,是解答的关键.8.已知正方形ABCD的边长为1,点E是AB边上的动点,则的最大值为1.考点:平面向量数量积的运算.专题:平面向量及应用.分析:建系,由向量数量积的坐标运算公式,可得得=x,结合点E在线段AB上运动,可得到x的最大值为1,即为所求的最大值.解答:解:以AB、AD所在直线为x轴、y轴,建立坐标系如图可得A(0,0),B(1,0),C(1,1),D(0,1)设E(x,0),其中0≤x≤1∵=(x,﹣1),=(1,0),∴=x•1+(﹣1)•0=x,∵点E是AB边上的动点,即0≤x≤1,∴x的最大值为1,即的最大值为1故答案为:1点评:本题考查向量数量积的最大值,建立坐标系是解决问题的关键,属中档题.9.已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|x<4,y>0,x﹣2y>0},若向区域Ω上随机投掷一点P,则点P落入区域A的概率为.考点:几何概型.专题:计算题.分析:根据二元一次不等式组表示的平面区域的原理,分别作出集合Ω和集合A对应的平面区域,得到它们都直角三角形,计算出这两个直角三角形的面积后,再利用几何概型的概率公式进行计算即可.解答:解:区域Ω={(x,y)|x+y<6,x>0,y>0},表示的图形是第一象限位于直线x+y=6的下方部分,如图的红色三角形的内部,它的面积S=;再观察集合A={(x,y)|x<4,y>0,x﹣2y>0},表示的图形在直线x﹣2y=0下方,直线x=4的左边并且在x轴的上方,如图的黄色小三角形内部可以计算出它的面积为S1==4根据几何概率的公式,得向区域Ω上随机投一点P,P落入区域A的概率为P=故答案为:点评:本题主要考查了二元一次不等式组表示的平面区域和几何概率模型,准确画作相应的平面区域,熟练地运用面积比求相应的概率,是解决本题的关键,属于中档题.10.函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为y=sin(2x﹣).考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:由图知,A=1,T=π,可求ω,再由ω+φ=可求得φ,从而可得y=f(x)的解析式,利用y=Asin(ωx+φ)的图象变换及可求得答案.解答:解:由图知,A=1,T=π,∴T=π,ω==2,又×2+φ=+2kπ(k∈Z),∴φ=2kπ+(k∈Z),又|φ|<,∴φ=;∴y=f(x)的解析式为y=sin(2x+),∴将y=f(x)的图象向右平移单位后得y=sin[2(x﹣)+]=sin(2x﹣).故答案为:y=sin(2x﹣).点评:本题考查y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象变换,考查识图与运算能力,属于中档题.11.已知0<y<x<π,且tanxtany=2,,则x﹣y=.考点:两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由题意可得cosxcosy=,进而可得cos(x﹣y)=cosxcosy+sinxsiny=,由余弦函数可知x﹣y的值.解答:解:由题意可得tanxtany==2,解得cosxcosy=,故cos(x﹣y)=cosxcosy+sinxsiny=故x﹣y=2kπ±,k∈Z,又0<y<x<π,所以0<x﹣y<π.所以x﹣y=故答案为:点评:本题考查同角三角函数的基本关系,以及两角和与差的余弦函数,属基础题.12.求“方程()x+()x=1的解”有如下解题思路:设f(x)=()x+()x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为{﹣1,2}.考点:类比推理.专题:规律型.分析:类比求“方程()x+()x=1的解的解题思路,设f(x)=x3+x,利用导数研究f(x)在R上单调递增,从而根据原方程可得x2=x+2,解之即得方程x6+x2=(x+2)3+(x+2)的解集.解答:解:类比上述解题思路,设f(x)=x3+x,由于f′(x)=3x2+1≥0,则f(x)在R 上单调递增,由x6+x2=(x+2)3+(x+2)即(x2)3+x2=(x+2)3+(x+2),∴x2=x+2,解之得,x=﹣1或x=2.所以方程x6+x2=(x+2)3+(x+2)的解集为{﹣1,2}.故答案为:{﹣1,2}.点评:本题主要考查了类比推理,考查了导数与单调性的关系,函数单调性的应用,属于中档题.13.设等比数列{a n}的前n项和为S n(n∈N*).若S3,S9,S6成等差数列,则的值是.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:设等比数列{a n}的公比为q、首项是a1,根据公比q与1的关系进行分类,由等比数列的前n项和公式化简求值,再由等比数列的通项公式化简所求的式子即可.解答:解:设等比数列{a n}的公比为q、首项是a1,当q=1时,有S3=3a1、S9=9a1、S6=a1,不满足S3,S9,S6成等差数列;当q≠1时,因为S3,S9,S6成等差数列,所以2×=+,化简得2q6﹣q3﹣1=0,解得q3=或q3=1(舍去),则===,故答案为:.点评:本题考查等比数列的前n项和公式、通项公式,分类讨论思想,使用等比数列的前n 项和公式时需要对公比与1的关系进行讨论.14.在平面直角坐标系xOy中,已知点A是椭圆上的一个动点,点P在线段OA 的延长线上,且,则点P横坐标的最大值为15.考点:椭圆的简单性质;平面向量数量积的运算.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据向量共线定理设,结合题意算出.设A(x,y)、P(m,n),由向量的坐标运算公式,化简得m=λx=,再利用基本不等式求最值,可得当A点横坐标为时,P点横坐标的最大值为15.解答:解:∵点P在线段OA的延长线上,∴设(λ>1),由得,可得.设A(x,y),P(m,n),则可得m=λx====,为了研究点P横坐标m的最大值,根据A点在椭圆上,设x∈(0,5),可得≥2=,∴m=≤=15,由此可得:当且仅当,即A点横坐标x=时,P点横坐标的最大值为15.故答案为:15点评:本题已知椭圆上的动点满足的条件,求点P横坐标的最大值.着重考查了向量的数量积及其运算性质、向量的坐标运算公式、基本不等式与椭圆的简单几何性质等知识,属于中档题.二.解答题:(本大题共6小题,计90分)15.已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)某某数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值X围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断;一元二次不等式的解法.专题:计算题.分析:(1)利用参数分离法将m用x表示,结合二次函数的性质求出m的取值X围,从而可求集合M;(2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2﹣a即a>1时,N={x|2﹣a <x<a},②当a<2﹣a即a<1时,N={x|a<x<2﹣a},③当a=2﹣a即a=1时,N=φ三种情况进行求解解答:解:(1)由x2﹣x﹣m=0可得m=x2﹣x=∵﹣1<x<1∴M={m|}(2)若x∈N是x∈M的必要条件,则M⊆N①当a>2﹣a即a>1时,N={x|2﹣a<x<a},则即②当a<2﹣a即a<1时,N={x|a<x<2﹣a},则即③当a=2﹣a即a=1时,N=φ,此时不满足条件综上可得点评:本题主要考查了二次函数在闭区间上的值域的求解,集合之间包含关系的应用,体现了分类讨论思想的应用.16.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.考点:两角和与差的正弦函数;诱导公式的作用;三角函数的周期性及其求法.专题:解三角形.分析:(1)根据诱导公式和二倍角公式、两角和的正弦公式对解析式化简,再由周期公式求f(x)的最小正周期;(2)把条件代入f(x)的解析式化简,再由A的X围和正弦值求A,结合三角形面积公式条件和余弦定理求出边a.解答:解:(1)f(x)=2==sin2x+(1+cos2x)+2=sin2x+cos2x)+3=2sin(2x+)+3∴T==π.(2)由f(A)=4得2sin(2A+)+3=4,∴sin(2A+)=,又∵A为△ABC的内角,∴<2A+<,∴2A+=,A=.由S△ABC=,得bcsinA=×1×c×=,c=2.由余弦定理得a2=b2+c2﹣2bccosA=1+4﹣2×=3,∴a=.点评:本题考查了三角恒等变换、正弦函数的性质的应用,以及余弦定理的综合应用,关键是正确对解析式进行化简,属于中档题.17.如图,在三棱锥P﹣ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.(1)证明平面PBF⊥平面PAC;(2)判断AE是否平行于平面PFD,并说明理由;(3)若PC=AB=2,求三棱锥P﹣DEF的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:综合题.分析:(1)先根据PC⊥平面ABC,BF⊂平面ABC得到PC⊥BF;再结合BF⊥AC即可得到BF⊥平面PAC,进而证明结论;(2)先假设AE∥平面PFD,借助于假设证得平面ABE∥平面PFD,与P∈平面PFD,P∈平面ABE相矛盾,即可说明结论;(3)直接根据D,E,F分别为BC,PB,CA的中点,把所求体积进行转化;转化为V P﹣BDF即可求出结论.解答:解:(1)∵PC⊥平面ABC,BF⊂平面ABC.∴PC⊥BF.由条件得BF⊥AC,PC∩AC=C.∴BF⊥平面PAC,BF⊂平面PBF,∴平面PBF⊥平面PAC.(2):AE不平行于平面PFD.反证法:假设AE∥平面PFD,∵AB∥FD,FD⊂平面PFD.∴AB∥平面PFD.∵AE∩AB=A,∴平面ABE∥平面PFD.∵P∈平面PFD,P∈平面ABE.矛盾.则假设不成立,所以:AE不平行于平面PFD(3)∵D,E,F分别为BC,PB,CA的中点.∴V P﹣DEF=V C﹣DEF=V E﹣DFC=V E﹣BDF=V P﹣BDF=××S△BDF•PC=××S△ABC•PC=××××2×2××2=.点评:本题主要考查平面与平面垂直的判定以及棱锥体积的求法.棱锥体积的求法常用转化思想,变为易求的几何体的体积,考查计算能力.18.如图所示,直立在地面上的两根钢管AB和CD,AB=10m,CD=3m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示).则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距3m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?考点:利用导数求闭区间上函数的最值;根据实际问题选择函数类型.专题:应用题;函数的性质及应用;导数的综合应用.分析:设钢丝绳长为ym,∠CFD=θ,(1)(其中0<θ<θ0,tanθ0=7),求导,由导数的正负确定函数的单调性,从而求最值;(2)(其中0<θ<θ0,),求导,由导数的正负确定函数的单调性,从而求最值.解答:解:(1)设钢丝绳长为ym,∠CFD=θ,则(其中0<θ<θ0,tanθ0=7),,易知为(0,θ0)上的增函数,且当tanθ=时,y′=0;故在(0,θ0)上先减后增,故当时,即时,y min=8;(2)设钢丝绳长为ym,∠CFD=θ,则(其中0<θ<θ0,),,令y'=0得sinθ=cosθ,当时,即时,;答:按方法(1),米时,钢丝绳最短;按方法(2),米时,钢丝绳最短.点评:本题考查了函数在实际问题中的应用,同时考查了导数的综合应用,属于中档题.19.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值X围.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与X围问题.分析:(1)设所求椭圆的标准方程为,右焦点为F2(c,0).已知△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,可得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.即可得到椭圆的方程.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程,得到根与系数的关系,利用PB2⊥QB2,⇔,即可得到m.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),利用点到直线的距离公式可得圆心O到直线l的距离,可得t=,得k的取值X围;把直线l的方程代入椭圆的方程点到根与系数的关系,代入|B1B2|×|y1﹣y2|,再通过换元,利用二次函数的单调性即可得出S的取值X围.解答:解:(1)设所求椭圆的标准方程为,右焦点为F2(c,0).因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.因此所求椭圆的标准方程为:.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程.化为(5+m2)y2﹣4my﹣16=0.设P(x1,y1)、Q(x2,y2),则,,又,B2P⊥B2Q,所以=(m2+1)y1y2﹣4m(y1+y2)+16===0,∴m2=4,解得m=±2;所以满足条件的直线有两条,其方程分别为:x+2y+2=0和x﹣2y+2=0.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),则圆心O到直线l的距离,因此t=,得,联立方程组:得(1+5k2)y2﹣4ky﹣16k2=0,由韦达定理知,,所以,因此.设,所以,所以,综上所述:△B2PQ的面积.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、三角形的面积计算公式、点到直线的距离公式、二次函数的单调性等基础知识与基本技能,考查了推理能力、计算能力.20.已知数列{a n}满足a n+1+a n=4n﹣3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥5成立,求a1的取值X围.考点:数列与不等式的综合;等差数列的通项公式;等差数列的前n项和.专题:综合题;压轴题.分析:(1)由等差数列的定义,若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd.结合a n+1+a n=4n﹣3,得即可解得首项a1的值;(2)由a n+1+a n=4n﹣3(n∈N*),用n+1代n得a n+2+a n+1=4n+1(n∈N*).两式相减,得a n+2﹣a n=4.从而得出数列{a2n﹣1}是首项为a1,公差为4的等差数列.进一步得到数列{a2n}是首项为a2,公差为4的等差数列.下面对n进行分类讨论:①当n为奇数时,②当n为偶数时,分别求和即可;(3)由(2)知,a n=(k∈Z).①当n为奇数时,②当n为偶数时,分别解得a1的取值X围,最后综上所述,即可得到a1的取值X围.解答:解:(1)若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd.由a n+1+a n=4n﹣3,得(a1+nd)+[a1+(n﹣1)d]=4n﹣3,即2d=4,2a1﹣d=﹣3,解得d=2,a1=.(2)由a n+1+a n=4n﹣3(n∈N*),得a n+2+a n+1=4n+1(n∈N*).两式相减,得a n+2﹣a n=4.所以数列{a2n﹣1}是首项为a1,公差为4的等差数列.数列{a2n}是首项为a2,公差为4的等差数列.由a2+a1=1,a1=2,得a2=﹣1.所以a n=(k∈Z).①当n为奇数时,a n=2n,a n+1=2n﹣3.S n=a1+a2+a3+…+a n=(a1+a2)+(a3+a4)+…+(a n﹣2+a n﹣1)+a n=1+9+…+(4n﹣11)+2n=+2n=.②当n为偶数时,S n=a1+a2+a3+…+a n=(a1+a2)+(a3+a4)+…+(a n﹣1+a n)═1+9+…+(4n﹣7)=.所以S n=(k∈Z).(3)由(2)知,a n=(k∈Z).①当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1.由≥5,得a12﹣a1≥﹣4n2+16n﹣10.令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6.当n=1或n=3时,f(n)max=2,所以a12﹣a1≥2.解得a1≥2或a1≤﹣1.②当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1.由≥5,得a12+3a1≥﹣4n2+16n﹣12.令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4.当n=2时,g(n)max=4,所以a12+3a1≥4.解得a1≥1或a1≤﹣4.综上所述,a1的取值X围是(﹣∞,﹣4]∪[2,+∞).点评:本小题主要考查等差数列的通项公式、等差数列的前n项和、不等式的解法、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想.属于压轴题.三、附加题(共4小题,满分0分)21.已知矩阵A=,向量=.求向量,使得A2a=b.考点:矩阵与向量乘法的意义.专题:计算题;矩阵和变换.分析:先计算A2==,再利用矩阵的乘法求向量.解答:解:∵矩阵A=,∴A2==,设=,由A2=得=,即,解得,所以=.点评:本题考查矩阵与向量乘法的意义,考查学生的计算能力,比较基础.22.选修4﹣4:坐标系与参数方程在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.考点:简单曲线的极坐标方程;圆的参数方程.专题:计算题.分析:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.解答:解:由得,两式平方后相加得x2+(y﹣1)2=1,…∴曲线C是以(0,1)为圆心,半径等于的圆.令x=ρcosθ,y=ρsinθ,代入并整理得ρ=2sinθ.即曲线C的极坐标方程是ρ=2sinθ.…点评:本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ,ρ=.23.如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE 沿DE折起到△PDE的位置(如图(2)).(Ⅰ)求证:PB⊥DE;(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;空间角.分析:(I)根据翻折后DE仍然与BE、PE垂直,结合线面垂直的判定定理可得DE⊥平面PEB,再由线面垂直的性质可得PB⊥DE;(II)分别以DE、BE、PE所在直线为x轴、y轴、z轴,建立如图所示空间直角坐标系.设PE=a,可得点B、D、C、P关于a的坐标形式,从而得到向量、坐标,利用垂直向量数量积为0的方法建立方程组,解出平面PCD的一个法向量为=(1,1,),由PD与平面PBC所成的角为30°和向量的坐标,建立关于参数a的方程,解之即可得到线段PE 的长.解答:解:(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE,….∵BE∩PE=E,∴DE⊥平面PEB,又∵PB⊂平面PEB,∴BP⊥DE;….(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,∴分别以DE、BE、PE所在直线为x轴、y轴、z轴建立空间直角坐标系(如图),…设PE=a,则B(0,4﹣a,0),D(a,0,0),C(2,2﹣a,0),P(0,0,a),…可得,,…设面PBC的法向量,∴令y=1,可得x=1,z=因此是面PBC的一个法向量,…∵,PD与平面PBC所成角为30°,…∴,即,…解之得:a=,或a=4(舍),因此可得PE的长为.…点评:本题给出平面图形的翻折,求证线面垂直并在已知线面角的情况下求线段PE的长,着重考查了线面垂直的判定与性质和利用空间向量研究直线与平面所成角的求法等知识,属于中档题.24.附加题:在十字路口的路边,有人在促销木糖醇口香糖,只听喇叭里喊道:木糖醇口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小明一看,只见一大堆瓶装口香糖堆在一起(假设各种口味的口香糖均超过3瓶,且每瓶价值均相同).(1)小明花10元钱买三瓶,请问小明共有多少种选择的可能性?(2)小明花10元钱买三瓶,售货员随便拿三瓶给小明,请列出有小明喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列;计数原理的应用.专题:计算题.分析:(1)若小明买的三瓶口味均不同,有C83=56种;若其中两瓶口味一样,有C81C71=56种;若三瓶口味一样,有8种.由此能求出小明共有几种选择.(2)ξ的取值为0,1,2,3.=;=;;.由此能求出ξ的分布列和数学期望.解答:解:(1)若小明买的三瓶口味均不同,有C83=56种;若其中两瓶口味一样,有C81C71=56种;若三瓶口味一样,有8种.所以小明共有56+56+8=120种选择.(2)ξ的取值为0,1,2,3.=;=;;.所以ξ的分布列为ξ0 1 2 3P其数学期望.点评:本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.。
福建省莆田一中2014届高考数学考前模拟 理 新人教A版
福建省莆田一中2014年高考考前模拟数学理试题 理科数学(完卷时间:120分钟;满分:150分)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 参考公式:第Ⅰ卷 (选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.) 1.如图,在复平面内,复数12,Z Z 对应的向量分别是,,OA OB 则12||Z Z +=( )A .2 B.3C.2.抛物线24x y =的焦点坐标为 ( ) A .)1,0(B .)0,1(C . )161,0( D . )0,161( 3.某几何体的三视图如图所示,其中俯视图为扇形, 则该几何体的体积为( ) A.23π B. 3π C. 29π D. 169π4. 设随机变量ζ服从正态分布)4,3(N , 若)2()32(+>=-<a P a P ζζ,则=a ( )A .3B .35 C .5 D .375. 设函数4log )(2xx f =,等比数列{}n a 中,8852=⋅⋅a a a ,则129()()...()f a f a f a +++=( )A. -9B. -8C. -7D. -106. 若函数a x x x f -+=2)(,则使得“函数)(x f y =在区间)1,1(-内有零点”成立的一个必要非充分条件是( ))(A 241≤≤-a . )(B 241<≤-a . )(C 20<<a . )(D 041<<-a . ,,(nx x ++-7.设P 为曲线x y 43=上任一点,)0,5(),0,5(21F F -,则下列命题正确的是:( ) A.821≥-PF PF B.821≤-PF PF C.821>-PF PF D.821<-PF PF 8.在高校自主招生中,某校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名,并且北京大学和清华大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同推荐方法的种数是 ( )A .20 B.22 C.24 D. 369.已知,,a b c 均为单位向量,且满足0a b =,则()()a b c a c +++的最大值为( ).1.3.2.2A B C D +++10.已知函数21(0)()(1)1(0)x x f x f x x ⎧-≤=⎨-+>⎩,把函数()()g x f x x =-的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为 ( )A .*(1)()2n n n a n -=∈N B .*(1)()n a n n n =-∈NC .*1()n a n n =-∈ND .*22()n n a n =-∈N二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11. 把函数 sin(2)3y x π=-的图象向____平移 ____个单位长度就可得到函数y=sin2x 的图象。
高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题
某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=__________.2.函数的定义域是__________.3.已知幂函数y=f(x)的图象过点,则=__________.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=__________.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是__________.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为__________.7.若函数y=的定义域为R,则实数m的取值X围是__________.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=__________.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是__________.10.=__________.11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为__________.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是__________.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是__________.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是__________.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=[0,2].考点:交集及其运算.专题:集合.分析:先求出x2﹣x﹣2≤0的解集M,由二次函数的性质求出集合N,再由交集的运算求出M∩N.解答:解:由x2﹣x﹣2≤0得,﹣1≤x≤2,则集合M=[﹣1,2],因为y=x2,﹣1≤x≤2,所以0≤y≤4,则N=[0,4],所以M∩N=[0,2],故答案为[0,2].点评:本题考查交集及其运算,以及一元二次不等式、一元二次函数的性质,属于基础题.2.函数的定义域是{x|x>﹣1且x≠1}.考点:函数的定义域及其求法.专题:计算题.分析:欲求此函数的定义域,可由x+1>0,且1﹣x≠0,解出x的取值X围,最终得出答案.解答:解:∵x+1>0,且1﹣x≠0,∴x>﹣1且x≠1,故答案为:{x|x>﹣1且x≠1}.点评:本题考查的是求定义域时要注意对数函数的真数大于0,并且分母不能是0的问题.3.已知幂函数y=f(x)的图象过点,则=2.考点:幂函数的性质.专题:函数的性质及应用.分析::设幂函数y=f(x)的解析式为 f(x)=xα,根据幂函数y=f(x)的图象过点求出α的值,可得函数的解析式,从而求得的值.解答:解:设幂函数y=f(x)的解析式为 f(x)=xα,由幂函数y=f(x)的图象过点可得=3α,∴α=﹣,∴f(x)=,∴==2,故答案为 2.点评:本题主要考查幂函数的定义,用待定系数法求函数的解析式,求函数的值,属于基础题.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=2.考点:二次函数的性质.专题:函数的性质及应用.分析:偶函数定义域关于原点对称,且f(﹣x)=f(x),由此即可求出a,b.解答:解:因为偶函数的定义域关于原点对称,所以2a﹣3+4﹣a=0,解得a=﹣1.由f(x)为偶函数,得f(﹣x)=f(x),即ax2﹣(b﹣3)x+3=ax2+(b﹣3)x+3,2(b﹣3)x=0,所以b=3.所以a+b=3﹣1=2.故答案为:2.点评:偶函数的定义域关于原点对称,f(﹣x)=f(x)恒成立,对于函数的奇偶性问题,往往从定义上考虑.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是(﹣∞,5).考点:特称命题.专题:不等式的解法及应用.分析:构造函数f(x)=2x2﹣ax+2,若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0,进而可得实数a的取值X围解答:解:令f(x)=2x2﹣ax+2若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0即4﹣a>0,或10﹣2a>0,即a<4,或a<5故a<5即实数a的取值X围是(﹣∞,5)故答案为:(﹣∞,5)点评:本题考查的知识点是特称命题,其中构造函数,将存在性问题(特称命题),转化为不等式问题是解答的关键.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为2.考点:根的存在性及根的个数判断.专题:计算题.分析:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,数形结合可得答案.解答:解:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,如图所示:由于函数y=f(x)的图象与直线y=x只有2个交点,故答案为 2.点评:本题主要考查方程的根的存在性及个数判断,抽象函数的应用,体现了转化与数形结合的数学思想,属于中档题.7.若函数y=的定义域为R,则实数m的取值X围是[0,12).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出结论.解答:解:∵y=的定义域为R,∴不等式mx2+mx+3≠0,若m=0,则3≠0成立,若m≠0,则等价为判别式△=m2﹣12m<0,解得0<m<12,综上0≤m<12,故答案为:[0,12)点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件以及一元二次不等式的求解.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:由题设知,当x≥0时,f(x)不可能为负,故应求出x<0时的解析式,代入f(a)=﹣2,求a的值.解答:解:令x<0,则﹣x>0,所以f(﹣x)=﹣x(1﹣x),又f(x)为奇函数,所以当x<0时有f(x)=x(1﹣x),令f(a)=a(1﹣a)=﹣2,得a2﹣a﹣2=0,解得a=﹣1或a=2(舍去).故应埴﹣1点评:本题考点是函数奇偶性的运用,用奇偶性这一性质求对称区间上的解析式,这是函数奇偶性的一个重要应用.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是2.考点:函数的值域.专题:新定义.分析:根据min{a,b,c}的意义,画出函数图象,观察最大值的位置,通过求函数值,可得答案.解答:解:画出y=2x+4,y=x2+1,y=5﹣3x的图象,观察图象可知,当x≤﹣1时,f(x)=2x+4,当﹣1≤x≤1时,f(x)=x2+1,当x>1时,f(x)=5﹣3x,f(x)的最大值在x=±1时取得为2,故答案为:2点评:本题考查函数的图象函数的图象、函数最值问题,利用数形结合可以很容易的得到最大值.10.=.考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质,直接化简表达式,求出它的值.解答:解:==﹣故答案为:﹣点评:本题主要考查函数值的求法,以及对数的运算,11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为﹣.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:由a,b为正实数,知函数f(x)=ax3+bx+2x是增函数,故f(x)在[0,1]上的最大值f(1)=a+b+2=4,所以a+b=2.由此能求出f(x)在[﹣1,0]上的最小值.解答:解:∵a,b为正实数,函数f(x)=ax3+bx+2x,∴f(x)在R上是增函数,∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,∴a+b=2.∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+2﹣1=﹣2+=﹣.∴f(x)在[﹣1,0]上的最小值是﹣.故答案为:﹣.点评:本题考查函数的单调性的应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是(﹣2,1).考点:其他不等式的解法.专题:计算题;转化思想.分析:先得到函数在定义域上是增函数,再由函数单调性定义求解.解答:解:易知函数在定义域上是增函数∴f(2﹣a2)>f(a),可转化为:2﹣a2>a解得:﹣2<a<1∴实数a的取值X围是(﹣2,1)故答案为:(﹣2,1)点评:本题主要考查函数的单调性定义在解不等式中的应用,一般来讲,抽象函数不等式,多数用单调性定义或数形结合法求解.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是lg.考点:其他不等式的解法;对数的运算性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:运用对数和指数的关系,及基本不等式,可得10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.对第二个等式,求出10c,再化简代入,分子常数化,即可得到c的最大值.解答:解:lg(10a+10b)=a+b,即为10a+b=10a+10b,而10a+10b≥2=2,即有10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.lg(10a+10b+10c)=a+b+c,即为10a+b+c=10a+10b+10c,即10c===1+≤1+=.则c≤lg.当且仅当a=b,c取得最大值lg.故答案为:.点评:本题考查对数与指数的互化,考查指数的运算性质,以及基本不等式的运用,考查运算能力,属于中档题.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是.考点:函数与方程的综合运用.专题:计算题;不等式的解法及应用.分析:通过t的X围,求出f(t)的表达式,判断f(t)的X围,然后代入已知函数,通过函数的值域求出t的X围即可.解答:解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值X围.故答案为:.点评:本题考查函数一方程的综合应用,指数与对数不等式的解法,函数的定义域与函数的值域,函数值的求法,考查计算能力.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.考点:函数的定义域及其求法;交集及其运算.专题:函数的性质及应用;集合.分析:(1)由集合B非空得出a≠1,对3a+1与2的大小比较,可分①当时,②当时,③当时3种情况,利用A=B求得a的值;(2)仍分第(1)问的三种情况,化简集合A,再由条件A∩B=φ求得a的X围.解答:解:(1)由于函数的定义域是非空数集,故a≠1.①当时,A=(2,3a+1),B=(2a,a2+1),由A=B可得:,方程组无解;②当时,A=φ,A=B不可能;③当时,A=(3a+1,2),B=(2a,a2+1),由A=B可得:,∴a=﹣1.(2)①当时,A=(2,3a+1),B=(2a,a2+1),由A∩B=φ可得3a+1≤2a或a2+1≤2,又,则;②当时,A=φ,则A∩B=φ,符合题意;③当时,A=(3a+1,2),B=(2a,a2+1),由A∩B=φ可得2≤2a或a2+1≤3a+1,又,则.∴当a∈[0,1)时,A∩B=φ..点评:本题主要考查函数的定义域的求法,同时考查集合与集合之间的关系,对于含有字母的函数定义域的求法,通常要讨论.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)分情况讨论:①当b=0时,②当b>0时,③当b<0时,然后利用导数即可求得单调区间;(Ⅱ)f(x)≥1等价于b≤﹣x2+x,g(x)=﹣x2+x,则“∃x∈[,],使得b≤﹣x2+x”等价于b小于等于g(x)在区间[,]上的最大值.解答:解:(Ⅰ)①当b=0时,f(x)=.故f(x)的单调减区间为(﹣∞,0),(0,+∞);无单调增区间.②当b>0时,f′(x)=.令f′(x)=0,得x1=,x2=﹣.f(x)和f′(x)的情况如下:x (﹣∞,﹣)﹣(﹣,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘故f(x)的单调减区间为(﹣∞,﹣),(,+∞);单调增区间为(﹣,).③当b<0时,f(x)的定义域为D={x∈R|x≠±}.因为f′(x)=<0在D上恒成立,故f(x)的单调减区间为(﹣∞,﹣),(﹣,),(,+∞);无单调增区间.(Ⅱ)解:因为b>0,x∈[,],所以f(x)≥1等价于b≤﹣x2+x,其中x∈[,].设g(x)=﹣x2+x,g(x)在区间[,]上的最大值为g()=.则“∃x∈[,],使得b≤﹣x2+x”等价于b≤.所以b的取值X围是(0,].点评:本题考查利用导数研究函数的单调性、函数恒成立及函数在区间上的最值问题,考查学生综合运用所学知识分析问题解决问题的能力.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.。
辽宁省大连24中高三数学模拟考试试题 理 新人教A版
数学试题(理科)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
13i -在复平面内对应点的直线的倾斜角为A .6πB .-6πC .23π D .56π2.已知集合A ,B 都是非空集合,则“x ∈(A ∪B )”是“x ∈A 且x ∈B ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.若双曲线x 2+ky 2=1的离心率是2,则实数k 的值是( )A .-3B .13-C .3D .134.在△ABC 中,15,,0,,||3,||5,4ABC AB a AC b a b S a b ∆==⋅<===则∠BAC= A .30° B . 120° C .150° D . 30°或150°5.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线:已知直线bα平面,直线a α⊂平面,直线b ∥平面α,则b ∥a ”的结论显然是错误的,这是因为 A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误6.庆“元旦”的文艺晚会由6个节目组成,演出顺序有如下要求:节目甲必须安排往前两位,节目乙不能安排在第一位,节目丙 必须安排在最后一位,则该晚会节目演出顺序的编排方案共有 A .36种; B .42种; C .48种; D .54种 7.在右程序框图中,当(1),()n n N n f x +∈>时函数表示函数1()n f x -的导函数,若输入函数1()sin cos f x x x =+,则输出的函数()n f x 可化为 A 2)4x π- B 2)4x π-C 2)4x π+D 2)4x π+8.对于平面α和共面的直线m ,n ,下列命题是真命题的是 A .若m ,n 与α所成的角相等,则m//nB .若m//α,n//α,则m//nC .若m ⊥α,m ⊥n ,则n//αB .若,//,m n αα⊂则m//n9.已知实数x ,y 满足14,0x x y ax by c ≥⎧⎪+≤⎨⎪++≤⎩且目标函数z=2x+y 的最火值为7最小值为 1,则ab c+的值A .-3B .3C .13-D .1310.已知集合M={1,2,3},N ={1,2,3,4).定义函数f :M →N .若点(1,(1)),(2,(2)),(3,(3))A f B f C f ,△ABC的外接圆圆心为D ,且()DA DC DB R λλ+=∈,则满足条件的函数f (x )有A .6个B .10个C .12个D .16个11.定义在R 上的函数f (x )满足:对任意α,β∈R ,总有 ()[()()]2012f f f αβαβ+-+=,则下列说法正确的是 A .()1f x -是奇函数 B .()1f x +是奇函数C .f (x )—2012是奇函数D .f (x )+2012是奇函数12.三棱锥P-ABC 中,顶点P 在平面ABC 上的射影为D 满足0OA OB OC ++=,A 点在侧面PBC 上的射影H 是△PBC 的垂心,PA =6,则此三棱锥体积最大值是 A .12 B .36 C .48 D .24第II 卷二、填空题:本大题共4小题,每小题5分. 13.已知5sin()(0)4134x x ππ-=<<,则cos 2cos()4x x π+的值为 。
高中数学 高考模拟测试卷一课一练(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题
新20版练B1数学人教A 版高考模拟测试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U ={x ∈N|x ≤8},集合A ={1,3,7},B ={2,3,8},则(∁U A )∩(∁U B )=()。
A.{1,2,7,8}B.{4,5,6} C.{0,4,5,6} D.{0,3,4,5,6} 答案:C解析:∵U ={x ∈N|x ≤8}={0,1,2,3,4,5,6,7,8},又A ∪B ={1,2,3,7,8},∴(∁U A )∩(∁U B )=∁U (A ∪B )={0,4,5,6},故选C 。
2.(2019·黄冈调考)已知函数f (x )=a x(a ∈R),则“0<a ≤14”是“对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0”成立的()。
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案:A解析:“对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1−x 2<0”等价于“函数f (x )=a x(a ∈R)在R 上为减函数”,即0<a <1,显然“0<a ≤14”是“对任意x 1≠x 2,都有f (f 1)-f (f 2)f 1−f 2<0成立”的充分不必要条件,故选A 项。
3.(2019·某某调考)命题p :∀x ∈[0,+∞),(log 32)x≤1,则()。
A.p 是假命题,p 的否定:∃x 0∈[0,+∞),(log 32)x 0>1 B.p 是假命题,p 的否定:∀x ∈[0,+∞),(log 32)x≥1 C.p 是真命题,p 的否定:∃x 0∈[0,+∞),(log 32)x 0>1 D.p 是真命题,p 的否定:∀x ∈[0,+∞),(log 32)x ≥1 答案:C解析:因为0<log 32<1,所以∀x ∈[0,+∞),(log 32)x≤1,p 是真命题,f p :∃x 0∈[0,+∞),(log 32)x0>1。
高三数学人教版A版数学(理)高考一轮复习试题:8.1直线的倾斜角与斜率、直线方程Word版含答案
直线及其方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角与斜率 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫作直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫作这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α.(2)斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.易误提醒 任意一条直线都有倾斜角,但只有与x 轴不垂直的直线才有斜率(当直线与x 轴垂直,即倾斜角为π2时,斜率不存在)[自测练习]1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2.∴y =-3.答案:B2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:由题图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,∴k 1<k 3<k 2. 答案:D知识点二 直线方程易误提醒 (1)利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.(2)用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.(3)直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B.[自测练习]3.过点(-1,2)且倾斜角为30°的直线方程为( ) A.3x -3y -6+3=0 B.3x -3y +6+3=0 C.3x +3y +6+3=0 D.3x +3y -6+3=0 解析:直线斜率k =tan 30°=33,直线的点斜式方程为y -2=33(x +1), 整理得3x -3y +3+6=0,故选B. 答案:B4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a.∴a +2a =a +2,解得a =-2或a =1. 答案:D考点一 直线的倾斜角与斜率|1.直线x +3y +m =0(m ∈R )的倾斜角为( ) A .30° B .60° C .150°D .120°解析:∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.故选C. 答案:C2.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________.解析:当a =-1时,直线l 的倾斜角为90°,符合要求:当a ≠-1时,直线l 的斜率为-aa +1,则有-a a +1>1或-aa +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a 的取值范围是⎝⎛⎭⎫-∞,-12∪(0,+∞).答案:⎝⎛⎭⎫-∞,-12∪(0,+∞)3.(2016·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________.解析:如图,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞求倾斜角α的取值范围的一般步骤(1)求出tan α的取值范围;(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 注意已知倾斜角θ的范围,求斜率k 的范围时注意下列图象的应用: 当k =tan α,α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π时的图象如图:考点二 直线的方程|根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. (2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用.求直线过点(5,10)且到原点的距离为5的直线方程.解:当斜率不存在时,所求直线方程为x -5=0,适合题意,当斜率存在时,设斜率为k , 则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.考点三 直线方程的综合应用|直线方程的综合应用是高考常考内容之一,它经常与不等式、导数、平面向量、数列等有关知识进行交汇,考查学生综合运用直线知识解决问题的能力.归纳起来常见的命题探究角度有: 1.与最值相结合问题.2.与导数的几何意义相结合问题. 3.与平面向量相结合问题. 4.与数列相结合问题. 探究一 与最值相结合问题1.(2015·高考福建卷)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:法一:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以1=1a +1b≥21a ·1b=2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b ≥2ab (当且仅当a =b =2时取等号),所以a +b ≥4(当且仅当a =b =2时取等号),故选C.法二:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 答案:C探究二 与导数的几何意义相结合问题2.已知函数f (x )=x -4ln x ,则曲线y =f (x )在点(1,f (1))处的切线方程为________.解析:由f ′(x )=1-4x ,则k =f ′(1)=-3,又f (1)=1,故切线方程为y -1=-3(x -1),即3x +y -4=0.答案:3x +y -4=0探究三 与平面向量相结合问题3.在平面直角坐标平面上,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线的方向向量上的投影的长度相等,则直线l 的斜率为( )A .-14B.25 C.25或-43D.52解析:直线l 的一个方向向量可设为h =(1,k ),由题⎪⎪⎪⎪⎪⎪OA →·h |h |=⎪⎪⎪⎪⎪⎪OB →·h |h |⇒|1+4k |=|-3+k |,解得k =25或k =-43,故选C.答案:C探究四 与数列相结合问题4.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n =1与坐标轴所围成三角形的面积为( )A .36B .45C .50D .55解析:由a n =1n (n +1)可知a n =1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,∴1-1n +1=910,∴n =9.∴直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),∴直线与坐标轴所围成的三角形的面积为12×10×9=45,故选B.答案:B(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.17.忽视零截距致误【典例】 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.[解] (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零.∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.[易误点评] 本题易错点求直线方程时,漏掉直线过原点的情况.[防范措施] (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[跟踪练习] 若直线过点P (2,1)且在两坐标轴上的截距相等,则这样的直线的条数为( ) A .1 B .2C .3D .以上都有可能解析:当截距均为零时,显然有一条;当截距不为零时,设直线方程为x +y =a ,则a =2+1=3,有一条.综上知,直线过点P (2,1)且在两坐标轴上的截距相等的直线有两条,故选B.答案:BA 组 考点能力演练1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.答案:A2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).答案:D3.直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 解析:∵(2x +1)-m (y +3)=0恒成立,∴2x +1=0,y +3=0,∴x =-12,y =-3.∴定点为⎝⎛⎭⎫-12,-3. 答案:D4.(2016·海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ) A .y =3x +3或y =-3x - 3 B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析:|AB |= (cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y=-33x -33,选B. 答案:B5.(2016·贵阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得.也可以利用数形结合.选D. 答案:D6.(2016·温州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k3=2,所以k =-24.答案:-247.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________.解析:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k.由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=09.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:法一:设直线方程为x a +yb =1(a >0,b >0),点P (3,2)代入得3a +2b =1≥26ab, 得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k ,即k =-23时,等号成立,即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.B 组 高考题型专练1.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3解析:法一:如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知OP =2,OA =1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 法二:设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3. 答案:D2.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:∵y =ax 2+b x ,∴y ′=2ax -bx2,由题意可得⎩⎨⎧4a +b2=-5,4a -b 4=-72解得⎩⎪⎨⎪⎧a =-1,b =-2.∴a +b =-3. 答案:-33.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |时取“=”).答案:5。
人教A版理科数学课时试题及解析(2)命题、充要条件
高考数学复习 课时作业(二) [第2讲 命题、充要条件][时间:45分钟 分值:100分]基础热身1.已知命题p :若x =y ,则x =y ,那么下列叙述正确的是( )A .命题p 正确,其逆命题也正确B .命题p 正确,其逆命题不正确C .命题p 不正确,其逆命题正确D .命题p 不正确,其逆命题也不正确2.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( )A .1≤a ≤3B .-1≤a ≤1C .-3≤a ≤1D .-1≤a ≤33.记等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.“a =2”是“直线(a 2-a )x +y =0和直线2x +y +1=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件能力提升5.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 已知条件p :-2<m <0,0<n <1;条件q :关于x 的方程x 2+mx +n =0有两个小于1的正根,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :关于x 的函数y =(2a -1)x 在R 上为减函数,若p 且q 为真命题,则a 的取值范围是( )A .a ≤23B .0<a <12C.12<a ≤23D.12<a <1 8. “a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设命题p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,命题q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.在下列四个结论中,正确的有________(填序号).①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件;②“⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件;④“x ≠0”是“x +|x |>0”的必要不充分条件.11.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.12. 在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的________条件.13.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________(填序号).14.(10分) 命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x2-x -6≤0或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.15.(13分)已知a ,b 是实数,求证:a 4-b 4-2b 2=1成立的充要条件是a 2-b 2=1.难点突破16.(12分) 已知全集U =R ,非空集合A =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x -2x -3a -1<0,B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -a 2-2x -a <0. (1)当a =12时,求(∁U B )∩A ; (2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.课时作业(二)【基础热身】1.C [解析] 当x 、y 为负值时,命题p 不正确,而当x =y 时,有x =y ,故p 的逆命题正确.2.D [解析] x 2+(a -1)x +1≥0恒成立,所以(a -1)2-4≤0,得-1≤a ≤3.3.D [解析] 可以借助反例说明:①如数列:-1,-2,-4,-8公比为2,但不是增数列;②如数列:-1,-12,-14,-18是增数列,但是公比为12<1. 4.A [解析] 因为两直线平行,则(a 2-a )×1-2×1=0,解得a =2或-1,所以选A.【能力提升】5.B [解析] 显然,充分性不成立.若a -c >b -d 和c >d 都成立,则同向不等式相加得a >b ,即由“a -c >b -d ”⇒“a >b ”.6.B [解析] 设关于x 的方程x 2+mx +n =0有两个小于1的正根x 1,x 2,则x 1+x 2=-m ,x 1·x 2=n ,∵0<x 1<1,0<x 2<1,∴0<-m <2,0<n <1,∴-2<m <0,0<n <1,这说明p 是q 的必要条件.设-2<m <0,0<n <1,则关于x 的方程x 2+mx +n =0不一定有两个小于1的正根,如m =-1,n =34时,方程x 2-x +34=0没有实数根,这说明p 不是q 的充分条件,故p 是q 的必要不充分条件.7.C [解析] 已知命题p 为真,则3a 2≤1,∴a ≤23;已知命题q 为真,则0<2a -1<1,∴12<a <1;综合以上得12<a ≤23. 8.A [解析] 函数y =cos 2ax -sin 2ax =cos2ax 的最小正周期为π⇔a =1或a =-1,所以“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件.故选A.9.B [解析] f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥⎝⎛⎭⎫8x x 2+4max ,8x x 2+4=8x +4x ≤824=2,即m ≥2.则因为{m |m ≥⎩⎨⎧ m ⎪⎪⎭⎬⎫m ≥43,正确选项为B.10.①②④ [解析] 根据命题的等价性,结论①正确;根据二次函数图象与不等式的关系,结论②正确;结论③即x 2=1是x =1的充分不必要条件,显然错误;x ≠0也可能x +|x |=0,故条件不充分,反之x ≠0,结论④正确.11.[-3,0] [解析] ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0, 故-3≤a ≤0.12.充要 [解析] AB →·AC →=BA →·BC →⇔AB →· AC →-BA →·BC →=0,⇔AB →(AC →+BC →)=0⇔(AC →-BC →)(BC →+AC →)=0⇔BC →2=AC →2⇔|AC →|=|BC →|,于是“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的充要条件.13.② [解析] ①的逆命题是:若四点中任何三点都不共线,则这四点不共面.在平行四边形A 1B 1C 1D 1中,A 1、B 1、C 1、D 1任何三点都不共线,但A 1、B 1、C 1、D 1四点共面,所以①的逆命题不真.②的逆命题是:若两条直线是异面直线,则这两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线没有公共点.所以②的逆命题是真命题.14.[解答] 设A ={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0}={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.因为綈p 是綈q 的必要不充分条件,所以綈q ⇒綈p ,且綈p 推不出綈q ,而∁R B ={x |-4≤x <-2},∁R A ={x |x ≤3a ,或x ≥a ,a <0},所以{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧ a ≤-4,a <0, 即-23≤a <0或a ≤-4. 15.[解答] 证法一:证明:充分性:若a 2-b 2=1,则a 4-b 4-2b 2=(a 2+b 2)(a 2-b 2)-2b 2=a 2+b 2-2b 2=a 2-b 2=1,所以a 2-b 2=1是a 4-b 4-2b 2=1成立的充分条件.必要性:若a 4-b 4-2b 2=1,则a 4-(b 2+1)2=0,即(a 2+b 2+1)(a 2-b 2-1)=0,因为a ,b 是实数,所以a 2+b 2+1≠0,所以a 2-b 2-1=0,即a 2-b 2=1,所以a 2-b 2=1是a 4-b 4-2b 2=1成立的必要条件.证法二:证明:a 4-b 4-2b 2=1⇔a 4=b 4+2b 2+1⇔a 4=(b 2+1)2⇔a 2=b 2+1,a 4-b 4-2b 2=1成立的充要条件是a 2=b 2+1.综上所述,a 4-b 4-2b 2=1成立的充要条件是a 2-b 2=1.【难点突破】16.[解答] (1)当a =12时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 2<x <52,B =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <94,所以(∁U B )∩A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 94≤x <52. (2)若q 是p 的必要条件,即p ⇒q ,可知B ⊇A .因为a 2+2>a ,所以B ={x |a <x <a 2+2}.当3a +1>2,即a >13时,A ={x |2<x <3a +1}, 由⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52. 当3a +1=2,即a =13时,A =∅符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 由⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13. 综上,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013深圳外国语学校综合测试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页.满分150分.考试时间120分钟. 注意事项:1.选择题答案的序号填涂在答题卡指定的位置上,非选择题应在答题卡上对应的位置作答. 超出答题区域书写的答案无效.2.作选考题时,按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考数据:锥体的体积公式V 锥体13Sh=,其中S 是锥体的底面积,h 是锥体的高.第I 卷(选择题 共40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集{xN x U *∈=<}6,集合{}{}1,3,3,5A B ==,则()U C A B 等于A .{}4,1B .{}5,1C .{}5,2D .{}4,22. i 是虚数单位,若(i 1)i z +=,则z等于A .1B .22C .23D . 213.若()2sin()f x x m ωϕ=++,对任意实数t 都有()()88f t f t ππ+=-,且()38f π=-,则实数m 的值等于A .1- ;B .5±;C .5-或1-D .5或14.在等比数列{}n a 中,11a =,公比||1q ≠.若12345m a a a a a a =,则m =( )A .9B .10C .11D .125.实数y x ,满足⎪⎩⎪⎨⎧≤->≤≥,0),1(,1y x a a y x 若目标函数y x z +=取得最大值4,则实数a 的值为A .2B .3C .4D .236.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,若甲、乙两名员工必须分到同一个车间,则不同分法的种数为 A .24 B .36 C .48 D .60 7.一个几何体的三视图如右图所示,则该几何体的体积为A .533B .433C .36 D .38.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|},0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①2011[1]∈; ②3[3]-∈; ③[0][1][2][3][4]Z =⋃⋃⋃⋃; ④“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.其中,正确结论的是 ( )A .①②④B .①②③C .①③④D .①②③④第II 卷(非选择题 共110分) 二、填空题:(本大题共7小题,考生作答6小题,每小题5分,满分30分.) (一)必做题 (9~13题)9.已知向量a 、b 的夹角为0120,且6a =,5b ==+b a ________.10. 运行如右图所示的程序框图,则输出S 的值为________.11.直线2y x =与抛物线2y x =围成的图形的面积等于______.12.已知双曲线12222=-b y a x (0,0a b >>)的离心率为2,一个焦点与抛物线216y x =的焦点相同,则双曲线的渐近线方程为_________.13. 已知函数1lg(1),1()(),1x x f x g x x +->⎧=⎨<⎩的图象关于点P 对称,且函数(1)1y f x =+-为奇函数,则下列结论:①点P 的坐标为(1,1);②当(,0)x ∈-∞时,()0g x >恒成立;③关于x 的方程(),f x a a R =∈有且只有两个实根。
其中正确结论的题号为 。
A .①② B .②③ C . D .①②③(二)选做题 (14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在直角坐标系中,曲线1C 的参数方程为为参数)ααα(sin 3cos 3⎩⎨⎧==y x ;在极坐标系(以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为cos()24πρθ+=, 则1C 与2C 两交点的距离为________.15.(几何证明选讲选做题)如图, AB 是两圆的交点,AC 是小圆的一条直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知4,10AC BE ==,且BC AD =,则DE =________________.三、解答题(本大题共6小题,满分80分. 解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)已知函数1()3sin cos cos 22f x x x x=-,x R ∈(I) 求函数()f x 的最小正周期及单调增区间;(Ⅱ)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,又4()235A f π+=,2b =,ABC∆的面积等于3,求边长a 的值.17.(本小题满分l2分)如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人D ACBE(第15题)先后分别转动一次游戏转盘,得分情况记为(a,b)(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).(Ⅰ)求某个家庭得分为(5,3)的概率;(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.求某个家庭获奖的概率;(Ⅲ)若共有4个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为X,求X的分布列及数学期望.18.(本小题满分l4分)如图,在矩形ABCD中,212AB BC==,E为CD的中点,将DAE∆沿AE折起,使DAE ABCE⊥面面;再过点D作//DQ AB,且12DQ AB=.(Ⅰ)求证:DAE BEQ⊥面面;(Ⅱ)求直线BD与DAE面所成角的正弦值;(Ⅲ)求点Q到DAE面的距离.19.(本小题满分l4分)已知等差数列{}n a的首项为a,公差为b,等比数列{}n b的首项为b,公比为a,其中a,b都是大于1的正整数,且1123,a b b a<<.(1)求a的值;(2)若对于任意的n+∈N,总存在m+∈N,使得3m na b+=成立,求b的值;(3)令1n n nC a b+=+,问数列{}nC中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.20.(本小题满分l4分)如图,已知抛物线C:pxy22=和⊙M:1)4(22=+-yx,过抛物线C上一点)1)(,(≥yyxH作两条直线与⊙M相切于A、B两点,分别交抛物线为E 、F 两点,圆心点M 到抛物线准线的距离为417.(1)求抛物线C 的方程;(2)当AHB ∠的角平分线垂直x 轴时,求直线EF 的斜率; (3)若直线AB 在y 轴上的截距为t ,求t 的最小值.21.(本小题满分l4分)设()f x 是定义在区间(1,)+∞上的函数,其导函数为'()f x .如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()0h x >,使得2'()()(1)f x h x x ax =-+,则称函数()f x 具有性质()P a .(I )设函数2()ln 1b f x x x +=++,(1x >),其中b 为实数①求证:函数()f x 具有性质()P b ; ②求函数()f x 的单调区间;(II)已知函数()g x 具有性质(2)P ,给定12,(1,)x x ∈+∞,12x x <,设m 为实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1α>,1β>,若12()()()()g g g x g x αβ-<-,求m 的取值范围。
数 学(理科)参考答案 一、选择题D B C C A B A C 二、填空题910.2- 11.43 12.y = 13.①③14. 15.三、解答题16、解:(1)因为1()2cos 2sin(2)226f x x x x π=-=- ………2分故()f x 的最小正周期为π ………3分222262k x k k zπππππ-≤-≤+∈即63k x k k zππππ-≤≤+∈ ………5分所以,函数的增区间为,63k k k zππππ⎡⎤-+∈⎢⎥⎣⎦ ………6分(2)4()235A f π+= ()0,A π∈ 43cos ,sin 55A A ∴== ………8分13sin 3,2,sin 25S bc A b A ====5c ∴= ………10分由余弦定理2222cos 13a b c bc A =+-=a ∴=………12分17、 解:(Ⅰ)记事件A :某个家庭得分情况为(5,3).111().339P A =⨯=所以某个家庭得分情况为(5,3)的概率为19.……………2分(Ⅱ)记事件B :某个家庭在游戏中获奖,则符合获奖条件的得分包括(5,3),(5,5),(3,5)共3类情况. 所以1111111().3333333P B =⨯+⨯+⨯=所以某个家庭获奖的概率为13. ……………4分(Ⅲ)由(Ⅱ)可知,每个家庭获奖的概率都是11,~(4,).33X B 所以 ……5分00441216(0)()(),3381P X C ===1341232(1)()(),3381P X C === 22241224(2)()(),3381P X C ===334128(3)()().3381P X C ===4404121(4)()()3381P X C ===…………………………10分所以X 分布列为: X 01234P1681 32812481881 18143EX np ==期望…………………………12分18、(1)证明:折叠前,矩形ABCD 中,连接BE ,ABE ∆中,62AE BE ==,12AB =222AE BE AB ∴+=,即AE BE ⊥, ………1分 DAE ABCE ⊥面面,交线为AE ,∴ DAE BE ⊥面, ………3分而BE BEQ ⊂面∴ DAE BEQ ⊥面面 ………4分(2) 由(1)知,DAE BE ⊥面∴ BDE ∠是直线与DAE 面所成的角,………6分 在Rt BDE ∆中,62BE =,6DE = 63BD =∴BE 626sin BDE=BD 363∠== ………8分故直线BD 与DAE 面所成角的正弦值为63。
………9分(3)设点Q 到DAE 面的距离为h ,DQ//EC 且DQ=EC ,∴四边形DQCE 为平行四边形, QC//DE ∴,从而QC//DAE 面,故点Q 到DAE 面的距离等于点C 到DAE 面的距离, ………11分ADE 1S AD DE=182∆=⋅⋅,AEC 1S EC AD=182∆=⋅⋅作DH AE H ⊥于,DAE ABCE ⊥面面,交线为AE ,∴ AH ABCE ⊥面,则AH 是D 到面ABCE 的距离,而 ………12分由Q-ADE C-ADE D-AECV V V ==ADE AEC 11S h S DH 33∆∆⋅⋅=⋅⋅∴ h = ………13分∴ 点Q 到DAE 面的距离为………14分19.(本小题满分14分)解:(1)由已知,得1(1),n n n a a n b b b a -=+-=⋅.由1123,a b b a <<,得,2a b ab a b <<+.因a ,b 都为大于1的正整数,故a≥2.又b a >,故b≥3.…………………1分 再由2ab a b <+,得 (2)a b a -<. 由b a >,故(2)a b b -<,即(3)0a b -<.由b≥3,故30a -<,解得3a <.…………………………………………3分 于是23a <≤,根据a ∈N ,可得2a =.……………………………………4分(2)由2a =,对于任意的n *∈N ,均存在m +∈N ,使得1(1)52n b m b --+=⋅,则1(21)5n b m --+=.又3b ≥,由数的整除性,得b 是5的约数.故1211n m --+=,b=5.所以b=5时,存在正自然数12n m -=满足题意.……………………………8分(3)设数列{}n C 中,12,,n n n C C C ++成等比数列,由122n n C nb b -=++⋅,212()n n n C C C ++=⋅,得211(22)(22)(222)n n n nb b b nb b nb b b -++++⋅=++⋅+++⋅.化简,得12(2)2n n b n b -=+-⋅⋅. (※) …………………………10分当1n =时,1b =时,等式(※)成立,而3b ≥,不成立.…………………11分 当2n =时,4b =时,等式(※)成立.………………………………………12分当3n ≥时,112(2)2(2)24n n n b n b n b b --=+-⋅⋅>-⋅⋅≥,这与b≥3矛盾.这时等式(※)不成立.………………………………………………………13分综上所述,当4b ≠时,不存在连续三项成等比数列;当4b =时,数列{}n C 中的第二、三、四项成等比数列,这三项依次是18,30,50.…………………………………………14分20、解(1)∵点M 到抛物线准线的距离为=+24p 417,∴21=p ,即抛物线C 的方程为x y =2.(2)法一:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴HE HF k k =-,设11(,)E x y ,22(,)F x y ,∴1212H HH H y y y y x x x x --=---, ∴ 12222212H H H H y y y y y y y y --=---,∴1224H y y y +=-=-.212122212121114EF y y y y k x x y y y y --====---+.法二:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴60=∠AHB ,可得3=HA k ,3-=HB k ,∴直线HA 的方程为2343+-=x y ,联立方程组⎩⎨⎧=+-=x y x y 22343,得023432=+--y y ,∵2E y +=∴363-=E y ,33413-=E x .同理可得363--=F y ,33413+=F x ,∴41-=EF k . (3)法一:设),(),,(2211y x B y x A ,∵411-=x y k MA ,∴114y x k HA -=,可得,直线HA 的方程为0154)4(111=-+--x y y x x , 同理,直线HB 的方程为0154)4(222=-+--x y y x x ,∴0154)4(101201=-+--x y y y x ,0154)4(202202=-+--x y y y x ,∴直线AB 的方程为02200(4)4150y x y y y --+-=,令0=x ,可得)1(154000≥-=y y y t ,∵t 关于0y 的函数在[1,)+∞单调递增, ∴11min -=t .法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+, ①⊙M 方程:1)4(22=+-y x . ②①-②得:直线AB 的方程为2242(24)(4)(2)714x m m y m m m m -----=-+.当0x =时,直线AB 在y 轴上的截距154t m m =-(1)m ≥,∵t 关于m 的函数在[1,)+∞单调递增, ∴11min -=t .21、(1)(i)'()f x 222121(1)(1)(1)b x bx x x x x +=-=-+++ ………………1分∵1x >时,21()0(1)h x x x =>+恒成立,∴函数)(x f 具有性质)(b P ;……………2分(ii)(方法一)设222()1()124b b x x bx x ϕ=-+=-+-,()x ϕ与)('x f 的符号相同。