九年级相似三角形综合练习题附答案(供参考)

合集下载

初三相似三角形练习题及答案

初三相似三角形练习题及答案

初三相似三角形练习题及答案相似三角形是初中数学中一个重要的概念,它在几何形状比较相似的情况下,能够帮助我们快速推导出一些性质和结果。

为了帮助同学们更好地掌握相似三角形的相关知识,下面给出一些练习题及其详细答案,希望能够对大家的学习有所帮助。

1. 如图,已知△ABC与△ADE相似,其中∠B=∠D=90°,AB=10cm,BC=15cm,DE=6cm,求AD和AC的长度。

解析:由于∠B=∠D=90°,所以△ABC与△ADE是直角三角形。

根据直角三角形的性质,我们知道在两个直角三角形中,如果一个角相等,那么它们就是相似三角形。

因此,△ABC与△ADE相似。

根据相似三角形的定义,我们知道相似三角形的对应边的比例相等。

所以我们可以列出比例方程:AB/AD = BC/DE代入已知的数值,得到:10/AD = 15/6进一步计算,可以得到:AD = (10 * 6) / 15 = 4cm同理,我们可以使用相似三角形的对应边比例相等的性质,求解出AC的长度。

列出比例方程:AB/AC = BC/AE10/AC = 15/AD代入AD = 4cm,可以得到:10/AC = 15/4进一步计算,得到:AC = (10 * 4) / 15 = 8/3 cm所以,AD的长度为4cm,AC的长度为8/3 cm。

2. 如图,已知△PQR与△XYZ相似,PR = 12cm,YZ = 6cm,PQ = 9cm,求XZ的长度。

解析:根据相似三角形的性质,我们可以列出比例方程:PQ/PX = QR/XZ代入已知数值,得到:9/PX = 12/XZ进一步计算,得到:PX * XZ = 9 * 12PX * XZ = 108根据已知条件,我们可以得到两个三角形的一对边已知,它们分别是PR和YZ,由于两个三角形相似,我们可以列出另一个比例方程:PR/YZ = PQ/XZ12/6 = 9/XZ进一步计算,得到:2 = 9/XZ解方程,可以得到:XZ = 9/2 = 4.5cm所以,XZ的长度为4.5cm。

人教版九年级下册数学《相似三角形》练习题及答案

人教版九年级下册数学《相似三角形》练习题及答案

27.2 相似三角形一、选择题1..下列语句正确的是( )A.△ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则⊿ABC 和⊿A′B′C′不相似;B.在⊿ABC 和⊿A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则⊿ABC ∽⊿A′B′C′;C.两个全等三角形不一定相似;D.所有的菱形都相似2.根据图中尺寸(AB ∥A 1B 1),那么物象长(A 1B 1的长)与物长(AB 的长)之间函数关系的图像大致是( )3.如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且AC AD =31,AE =BE ,则有( )(A )△AED ∽△BED (B )△AED ∽△CBD(C )△AED ∽△ABD (D )△BAD ∽△BCD( 3题 ) (4题)4.已知:如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )(A )1对 (B )2对 (C )3对 (D )4对5.三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为( )A.32cmB.24cmC.18cmD.16cm6. 已知⊿ABC ∽⊿A ′B ′C ′,且BC :B ′C ′= AC :A ′C ′,若AC=3,A ′C ′=1.8,则△A ′B ′C ′与△ABC 的相似比是( )。

A. 2:3B. 3:2C. 5:3D. 3:57.可以判定∆ABC ∽'''C B A ∆,的条件是 ( )A 、∠A=∠'C =∠'B B 、''''C A B A AC AB =,且∠A=∠'C C 、''''C A AC B A AB =且∠A=∠'B D 、以上条件都不对8. 已知一次函数y=2x+2与x 轴y 轴交于A 、B 两点,另一直线y=kx+3交x 轴正半轴于E 、交y 轴于F 点,如⊿AOB 与E 、F 、O 三点组成的三角形相似,那么k 值为( )A 1.5B 6C 1.5或6D 以上都不对二、填空题9. 已知一个三角形三边长是6cm ,7.5cm ,9cm ,另一个三角形的三边是8cm ,10cm ,12cm ,则这两个三角形 (填相似或不相似)10. 在1:25000000的中国政区图上,量得福州到北京的距离为6cm ,则福州到北京的实际距离为 km 。

(完整word版)九年级数学相似三角形综合练习题及答案

(完整word版)九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案1填空(本题14 分)(1 )若a=8cm , b=6cm , c=4cm ,贝U a 、b 、c 的第四比例项 d= ; a 、c 的比例中项 x=_。

(2) (2 x):x x:(1 x)。

贝U x= _______________ 。

(3) _______________________________________________________________ 在比例尺为1: 10000的地图上,距离为 3cm 的两地实际距离为 _________________________________ 公里。

(4) _______________________________ 圆的周长与其直径的比为 。

a 5 a b(5 )右,贝V= 。

b 3 b(6) 若 a :b : c=1 : 2: 3, 且 a bc 6,贝U a= ________ , b= ______ , c= _______ 。

ABACBC3CE(7) 如图 1, -- —— --- -,则(1)——(2)若 BD=10cm ,则 AD= cm 。

ADAE DE 2BC ,AB16cm ,则△ ABC 的周长为 (8)若点AEABc是线段AB的黄金分割点,且AC CB ,竺AC2•选择题 (1) 根据 A . 0 B .(2) 若线段bA.- d d C.—c(本题 9分)ab=cd ,共可写出以a 为第四比例项的比例式的个数是(1 C .2 D . 3a 、b 、c 、d 成比例,则下列各式中一定能成立的是(d b bC . DB AB ADEC AC AEBC DB ECECAB ACa3•已知:即3。

求(1)严3;;(2)愛。

(本题10分)4.若x: y:z=2: 7:5, x 2y 3z 6,求的值。

(本题6 分)za c e 25.已知:& d f 3,且2b d 5f 18。

九年级数学相似三角形练习题及答案

九年级数学相似三角形练习题及答案

相似三角形练习题1、如图,当四边形PABN 的周长最小时,a =.2、如图,等腰三角形 ABC 的边AB 长为2 ,DE 是它的中位线,那么下面四个结论: 〔1〕DE=1,〔2〕CDE ∆~CAB ∆,(3)CDE ∆的面积与CAB ∆面积之比为1:4,其中正确的有〔 〕A 、0个B 、1个C 、2个D 、3个 3、如图〔3〕,等腰ABC ∆中,底边BC=a ,A ∠=036,ABC ∠的平分线交AC 于D ,BCD ∠的512k -=,那么DE=( ) A 、2K a B 、3K a C 、2akD 、3a k4、:ABC ∆与DFE ∆相似且面积比为4:25,那么ABC ∆与DFE ∆的相似比为。

5、〔2021年滨州〕如下图,给出以下条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为〔 〕 A .1B .2C .3D .4〔5题图〕〔6题图〕6、2021年XX 市)如图,AB CD EF ∥∥,那么以下结论正确的选项是〔 〕 A .AD BCDF CE=B .BC DFCE AD=C .CD BCEF BE=D .CD ADEF AF=7、(2021XX)△ABC ∽△DEF ,且AB :DE=1:2,那么△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:18、〔2021XX 綦江〕假设△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,那么△ABC 与△DEF 的周长比为〔 〕 A .1∶4B .1∶2C .2∶1D 2y P (a ,0) N (a +2,A (1,-3)〔1题图〕 B (4,-1)O9、〔2021年XX 市〕如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值〔 〕 A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个10、(2021年XX 市〕如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,那么以下表达正确的选项是〔 〕A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形11、〔2021年XX 省〕如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的选项是〔 〕 A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格(11题图)〔13题图〕12、(2021年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

初三数学相似三角形经典题(含答案)

初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。

(完整)九年级相似三角形综合练习题附答案】.doc

(完整)九年级相似三角形综合练习题附答案】.doc

相似三角形综合练习题一、填空题:1. 已知a 2b 9,则 a : b __________ 2a b 52.若三角形三边之比为 3: 5:7,与它相似的三角形的最长边是21cm ,则其余两边之和是 __________cm3.如图,△ ABC 中, D 、 E 分别是 AB 、 AC 的中点, BC=6,则 DE=__________;△ ADE 与△ABC 的面积之比为: __________ 。

4.已知线段 a=4cm , b=9cm ,则线段 a 、 b 的比例中项 c 为 __________cm 。

5.在△ ABC 中,点 D 、E 分别在边 AB 、 AC 上, DE ∥ BC ,如果 AD=8, DB=6, EC=9,那么AE=__________6. 已知三个数1, 2, 3 ,请你添上一个数,使它能构成一个比例式,则这个数是__________7.如图,在梯形 ABCD 中, AD ∥BC , EF ∥BC ,若 AD=12cm , BC=18cm , AE : EB=2:3,则EF=__________8. 如图,在梯形 ABCD 中, AD ∥ BC ,∠ A=90°, BD ⊥ CD ,AD=6,BC=10,则梯形的面积为:__________二、选择题:1.如果两个相似三角形对应边的比是3: 4,那么它们的对应高的比是 __________ A. 9 :16 B.3 : 2C. 3: 4D. 3 :72.在比例尺为 1:m 的某市地图上,规划出长 a 厘米, 宽 b 厘米的矩形工业园区,该园区的实际面积是 __________ 米 2A.10 4 m 104 m 2 abmabm 2 abB.C.D.ab10 41043. 已知,如图, DE ∥ BC ,EF ∥ AB ,则下列结论:① AEBE ② ADAB ③ EFDE ④ CEEA ECFCBFBCABBCCFBF其中正确的比例式的个数是__________A. 4个B. 3 个C. 2 个D. 1 个4.如图,在△ ABC 中, AB=24, AC=18, D 是 AC 上一点, AD=12,在 AB 上取一点 E ,使 A 、D 、E 三点为顶点组成的三角形与△ ABC 相似,则 AE 的长是 __________A. 16B. 14C. 16 或 14D. 16 或 95.如图,在 Rt △ABC 中,∠ BAC=90°, D 是 BC 的中点, AE ⊥ AD ,交 CB 的延长线于点 E ,则下列结论正确的是 __________A. △ AED ∽△ ACBB. △ AEB ∽△ ACDC. △ BAE ∽△ ACED. △ AEC ∽△ DAC三、解答题:1.如图, AD∥ EG∥ BC, AD=6, BC=9, AE: AB=2: 3,求 GF的长。

初三数学相似三角形测试题及答案

初三数学相似三角形测试题及答案

初三数学相似三角形测试题及答案1、若b m m a 2,3==,则_____:=b a 。

2、已知653z y x ==,且623+=z y ,则__________,==y x 。

3、在等腰Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m . 4、反向延长线段AB 至C ,使2AC =AB ,那么BC :AB = 。

5、△ABC ∽△A ′B ′C ′,相似比为3:2,它们周长的差为40厘米,则△A ′B ′C ′的周长为 厘米。

7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。

若BC =6,AB =10,则BD = ,CD = 。

8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3。

5cm,且MN ∥PQ ∥AB , DM =MP =PA,则MN = ,PQ = 。

9、如图,四边形ADEF 为菱形,且AB =14,BC =12,AC =10,那BE = 。

10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。

11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b a12、等边三角形的中线与中位线长的比值是( )A 、1:3B 、2:3C 、23:21 D 、1:3CB DAD C NPN QAB14、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( ) A 、27 B 、12 C 、18 D 、20 16、已知c b a ,,是△ABC 的三条边,对应高分别为cb a h h h ,,,且6:5:4::=c b a ,那么cb a h h h ::等于( )A 、4:5:6 B 、6:5:4 C 、15:12:10 D 、10:12:1517、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( ) A 、44厘米 B 、40厘米 C 、36厘米 D 、24厘米 18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( ) A 、1个 B 、2个 C 、3个 D 、多于3个20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( ) A 、4:5 B 、3:5 C 、4:9 D 、3:821、已知()3:2:=-y y x ,求y x yx 2352-+的值。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。

2) $(2-x):x=x:(1-x)$。

则$x=\underline{1}$。

3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。

4) 圆的周长与其直径的比为\underline{$\pi$}。

5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。

6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。

7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。

8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。

2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。

答案:B。

2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。

九年级数学《相似三角形》练习参考答案

九年级数学《相似三角形》练习参考答案
A. = B. = C. = D. =
【考点】比例的性质. 菁优网版 权所有
【分析】根据比的性质,可得答案.
【解答】解:A、 = ⇒ab=cd,故 A 正确;
B、 = ⇒ab=cd,故 B 正确;
C、 = ⇒ab=cd,故 C 正确;
1
D、 = ⇒ad=bc,故 D 错误;
故选:D. 【点评】本题考查了比例的性质,利用了比例的性质:分子分母交叉相乘,乘积相等. 5.若 = ,则 的值为( )
A. ﹣1 B. C.1 D. 【考点】相似三角形的判定与性质;平移的性质.
菁优网版 权所有
【专题】压轴题. 【分析】利用相似三角形面积的比等于相似比的平方先求出 AʹB,再求 AAʹ就可以了. 【解答】解:设 BC 与 AʹCʹ交于点 E,
由平移的性质知,AC∥AʹCʹ ∴△BEAʹ∽△BCA
4
∴S△BEAʹ:S△BCA=AʹB2:AB2=1:2 ∵AB= ∴AʹB=1 ∴AAʹ=AB﹣AʹB= ﹣1 故选 A. 【点评】本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移, 对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 12.如图,在△ABC 中,D 是 BC 的中点,DE⊥BC 交 AC 与 E,已知 AD=AB,连接 BE 交 AD 于 F,下列结论: ①BE=CE;②∠CAD=∠ABE;③AF=DF;④S△ABF=3S△DEF;⑤△DEF∽△DAE,其中正确的有( )个.
AF=DF,S△ABF=3S△DEF,利用角的关系代替证明∠5≠∠4,从而得出△DEF 与△DAE 不相似.根据以上的分析 可以得出正确的选项答案. 【解答】解:∵D 是 BC 的中点,且 DE⊥BC, ∴DE 是 BC 的垂直平分线,CD=BD, ∴CE=BE,故本答案正确; ∴∠C=∠7, ∵AD=AB, ∴∠8=∠ABC=∠6+∠7, ∵∠8=∠C+∠4, ∴∠C+∠4=∠6+∠7, ∴∠4=∠6,即∠CAD=∠ABE,故本答案正确; 作 AG⊥BD 于点 G,交 BE 于点 H, ∵AD=AB,DE⊥BC, ∴∠2=∠3,DG=BG= BD,DE∥AG,

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)

初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

九年数学经典相似三角形练习题(附参考答案)

九年数学经典相似三角形练习题(附参考答案)
(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;
(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.
27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.
解答:
证明:∵FD∥AB,FE∥AC,
∴∠B=∠FDE,∠C=∠FED,
∴△ABC∽△FDE.
点评:
本题很简单,考查的是相似三角形的判定定理:
(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
初中数学经典相似三角形练习题(附参考答案)
一.解答题(共30小题)
1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.
2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点Байду номын сангаас,若AB=6cm,EF=4cm,求CD的长.
16.如图,∠ACB=∠ADC=90°,AC= ,AD=2.问当AB的长为多少时,这两个直角三角形相似.
17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.
18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?

浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)

浙教版数学九年级上册  第四章 相似三角形  综合测试卷(原卷+答案)

第四章综合测试卷 相似三角形班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1.己知 ab =25,则a +b b的值为( )A 25B 35C 75D 232.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是( )A.BC DF=12 B.∠A 的度数∠D 的度数=12C.△ABC的面积△def 的面积= 12 D. △ABC 的周长△def 的周长= 123.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比 13的位似图形△OCD,则点C 坐标为( )A. (-1,-1)B.(−43,−1)C.(−1,−43) D. (-2,-1)4. 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出 △ABP 与△ECP 相似的是( )A.∠APB=∠EPCB. ∠APE=90°C. 点 P 是BC 的中点D. BP: BC=2:35.如图,在△ABC 中,点D 在BC 边上,连结AD,点E 在AC 边上,过点E 作EF∥BC,交 AD 于点F,过点E 作EG∥AB,交BC 于点G,则下列式子一定正确的是( ) A.AE EC=EF CDB.EF CD=EG ABC.AFFD=BG GCD.CG BC=AF AD6. 如图,小明为了测量一凉亭的高度AB(顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE(DE=BC=0.5m ,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点 G 处,测得CG=15m ,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得 EG=3m ,小明身高EF=1.6m,则凉亭的高度AB 约为( )A. 8.5mB. 9mC. 9.5mD. 10m7. 在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A. ①处B. ②处C. ③处D. ④处8. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大 12AD 的长为半径在AD 两侧作弧,交于两点M ,N第二步,连结MN 分别交AB,AC 于点E,F;第三步,连结DE,DF.若BD=6,AF=4,CD=3,则BE 的长是( )A. 2B. 4C. 6D. 89. 如图,在△ABC 中,点 D 为BC 边上的一点,且AD=AB=2,AD⊥AB,过点 D 作DE⊥AD,DE 交AC 于点E,若DE=1,则△ABC 的面积为( )A. 2B. 4C.25D. 810. 在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分 AC,点 H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图所示,点 E 是平行四边形ABCD 的边BC 延长线上一点,连结AE ,交 CD 于点F ,连结BF.写出图中任意一对相似三角形: .12. 已知 a6=b5=c4,且a+b-2c=6,则a 的值为 .13. 如图,在平行四边形ABCD 中,AB=10,AD=6,点E 是AD 的中点,在AB 上取一点F,使△CBF∽△CDE,则 BF 的长是 .14. 如图,在一块斜边长为30cm 的直角三角形木板(Rt△ACB)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC=1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为 .15.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为16. 如图所示,在直角坐标系中有两点A(4,0),B(0,2).如果点C 在x 轴上,且点 C 与点O 及点A 不重合,当点 C 的坐标为 时,使得由点B ,O ,C 构成的三角形与△AOB 相似(至少找出两个符合条件的点).三、解答题(本大题有8小题,共66分)17.(6分)如图,在△ABC中,DE‖BC,EF‖AB,求证:△ADEO△EFC.18. (6分)如图,一块材料的形状是锐角三角形 ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?19.(6分)如图,点 P 是⊙O的直径AB 延长线上一点,且AB=4,点 M为A AB上一个动点(不与A,B重合),射线 PM与⊙O交于点 N(不与M重合).(1)当M在什么位置时,△MAB的面积最大? 并求出这个最大值;(2)求证:△PAN∽△PMB.20. (8 分)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.21. (8分)如图,在△ABC中,点 D,E分别在边AB,AC上,且∠ABE=∠ACD,BE,CD交于点G,连结DE.(1)求证:△AEDO△ABC;(2)如果BE平分∠ABC,求证:DE=CE.22.(10分)如图,在 △ABC 中,点D,E,F 分别在AB,BC,AC 边上, DE‖AC,EF‖AB.(1)求证: △BDEO △EFC.(2)设AF FC=12,①若. BC =12,,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.23.(10分)在矩形ABCD 中,AE⊥BD 于点E,点 P 是边AD 上一点.(1)若BP 平分∠ABD,交 AE 于点G,PF⊥BD 于点F,如图①,证明四边形 AGFP 是菱形;(2)如图②,若PE⊥EC,求证:AE·AB=DE·AP;(3)在(2)的条件下,若AB=1,BC=2,求AP 的长.24.(12分)如图,已知 △ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB,BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点C 时,P ,Q 两点都停止运动.设运动时间为t(s),解答下列问题:(1) 当 t =2时,判断 △BPQ 的形状,并说明理由;(2)设 △BPQ 的面积为 S (cm²),求S 与t 的函数表达式;(3)如图,作 QR//BA 交AC 于点R,连结PR,当t 为何值时,△APR∽△PRQ?第四章综合测试卷 相似三角形1. C2. D3. B4. C5. C6. A7. B8. D9. B 10. D 11. △ADF∽△ECF(答案不唯一)12. 12 13. 1.8 14. 100cm² 15.24516. (-1,0)或(1,0)或(-4,0)(答案不唯一)17. 证明:∵DE∥BC,∴△ADE∽△ABC,∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.18. 解:设这个正方形零件的边长为 xmm ,则△AEF 的边EF 上的高AK=(80-x) mm.∵四边形EF-HG是正方形,∴EF∥GH,即 EF∥BC.∴△AEF CABC.∴EF BC=AK AD,即 x 120=80−x 80⋅∴x =48.∴这个正方形零件的边长是48mm.19. (1)解:当点 M 在 AB 的中点处时,△MAB 的面积最大,此时( OM⟂AB,∵OM =12AB =12×4=2,∴S ABM =12AB ⋅OM =12×4×2=4. (2)证明:∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.20. 解: ∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD.∵BC=4,∴CD=4.∵AB∥ CD,∴ABECDE,∴AB CD=AE CE,∴84=AE CE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.21. 证明:(1)∵∠ABE=∠ACD,且∠A 是公共角, ∴ABEACD.∴AE AD=AB AC,即AEAB =ADAC ,又∵∠A 是公共角,∴△AED∽△ABC. (2)∵∠ABE=∠ACD,∠BGD=∠CGE,∴△BGD∽ CGE.:DG EG=BG CG,即DG BG=EG CG.又∵∠DGE=∠BGC,∴△DGE∽△BGC.∴∠GBC=∠GDE,∵BE 平分∠ABC,∴∠GBC=∠ABE,∵∠ABE=∠ACD,∴∠GDE=∠ACD.∴DE=CE.22. (1)证明:∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.(2)解:①∵EF//AB,∴BE EC=AF FC=12.∵BC = 12,∴BE12−BE =12,∴BE =4.②∵EF∥AB,∴△EFC∽△BAC,∴S△BC= (EC BC)2⋅∴BE EC=12,∴EC BC=23.又∵△EFC 的面积是20, ∴20SABC=(23)2,∴SABC=45,即△ABC 的面积是45.23. (1)证明:∵四边形 ABCD 是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵BP 平分∠ABD,∴∠ABG=∠PBD.∵∠AGP=∠BAG+∠ABG,∠APB =∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP 平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP 是平行四边形,∵PA=PF,∴四边形AGFP 是菱形.(2)证明:∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴DE·AP.(3)解:∵四边形 ABCD 是矩形,∴AD=BC=2,∠BAD=90°,∴BD=√AB²+AD² =5,∵AE ⊥BD,∴S ABD =12⋅BD ⋅AE = 12⋅AB ⋅AD,∴AE =255,∴DE =AD 2−AE 2=455,∵AE ⋅AB =DE ⋅AP,∴ AP =255×1455=12.24. 解:(1)△BPQ 是等边三角形.当t=2时,AP=21 =2( cm),BQ=2×2=4( cm),∴BP=AB-AP=6-2=4( cm),∴BQ=BP,又∵∠B = 60°,∴△BPQ 是等边三角形.(2)如图,过点 Q 作QE⊥AB,垂足为 E,由 QB=2tcm,∠B=60°,∠BEQ=90°,得 QE =3tcm,由AP= tcm,得 PB =(6−t )cm,∴S =12BP ⋅QE = 12×(6−t )×3t =−32t 2+33t.(3)∵QR‖BA,∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△QRC是等边三角形,∴QR=RC=QC=(6-2t)cm⋅:BE=12BQ=12×2t=t(cm),∴EP=AB−AP−BE=6−t−t=6−2t(cm),∵EP‖QR,EP=QR,∴四边形 EPRQ是平行四边形,∴PR=EQ3tcm.又∵∠PEQ=90°,∴∠APR∠PRQ=90°,∴△APR∽△PRQ,∴∠QPR=∠A=60∘,QRPR=6−2t3t=3,解得t=65.∴当t=65时,△APR∽△PRQ.。

初三相似三角形练习题含答案

初三相似三角形练习题含答案

初三相似三角形练习题含答案1. 某个角的度数是60°。

它的补角和它的和是多少?解答:补角是90°减去该角的度数,即90°- 60° = 30°。

和角是该角的度数加上补角的度数,即60° + 30° = 90°。

2. 给出三角形ABC,其中∠ABC = 90°, AB = 6cm,AC = 8cm。

根据比例的性质,我们可以得出DE = ? (ADE与ABC相似,DE = x cm)解答:由三角形相似的性质可知,AB/DE = AC/AD。

代入已知条件可得6/DE = 8/AD。

交叉相乘得到8DE = 6AD,进一步可以得到4DE = 3AD。

根据题意可知AD = AE + DE,即8 = AE + x。

将此代入前面的等式中,可以得到4x = 3(8-x)。

解这个方程可以得到x = 6。

所以DE = 6cm。

3. 已知两个三角形ABC和DEF相似。

已知BC = 12cm,EF = 8cm,且BC/EF = 3/2。

求AB的长度。

解答:根据相似三角形的性质,AB/DE = BC/EF。

代入已知条件得到AB/8 = 12/8。

交叉相乘可得到8AB = 12 × 8,即AB = 12 × 8 ÷ 8 =12cm。

所以AB的长度为12cm。

4. 两个三角形相似,已知小三角形的面积为25cm²,大三角形的面积是多少?解答:根据相似三角形的性质,如果两个三角形相似,它们对应边的比例的平方等于对应高的比例的平方。

假设小三角形的面积为S,大三角形的面积为T,对应边的比例为k,对应高的比例为h,那么我们可以得到:T/S = (k² × h²)/(k² × h²) = (k² × h²)/(1) = k² × h²根据题意,已知小三角形的面积为25cm²,所以S = 25。

九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案

精品文档九年级数学相似三角形综合练习题及答案1.填空〔此题14 分〕〔1〕假设 a=8cm ,b=6cm , c=4cm ,那么a、 b、 c 的第四比例项d=___ ; a、 c 的比例中项x=__ 。

(2 x):x x:(1 x) 。

那么x=__________ 〕。

〔 2〔 3〕在比例尺为1: 10000的地图上,距离为3cm 的两地实际距离为______ 公里。

〔4〕圆的周长与其直径的比为________ 。

a5a b,那么〔 5〕假设 =________ 。

3bb6c a b c=________ 。

,那么6〔〕假设a:b:c=1 :2: 3,且a=________ , b=_______ , CEBC3ABAC,。

,那么AD=______cm〕如图1,那么〔1〕________〔 2〕假设BD=10cm 〔 7AEDEADAE2 16cm,那么△ABC的周长为________ 。

〔 3〕假设△ ADE 的周长为ABBCCBAC________ ,,。

〔 8〕假设点 c 是线段 AB 的黄金分割点,且ACAB 2.选择题〔此题9 分〕〔1〕根据 ab=cd ,共可写出以 a 为第四比例项的比例式的个数是〔〕________A . 0B . 1 〔2〕假设线段C. 2 D . 3a、 b、 c、d 成比例,那么以下各式中一定能成立的是〔〕abcd AB ..badcbcda. DC .adcb〕,在以下比例式中,不能成立的是〔〔 3〕如图: DE//BCADAEDEAE A . B .ECBCDBECABDBACAB. D.CACECAEAD精品文档.精品文档a3a 2ba b2。

求〔 1〕。

〔此题10 分〕 3.:;〔 2〕 b 3a2a 3bb3 x yx 2y 3z 6,求, 7z=2:: 5 的值。

〔此题 6 分〕4.假设x: y:2zace22b d 5f 182a c 5e的值。

浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(2)+答案解析

浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(2)+答案解析

浙教新版九年级上册《4.3相似三角形》2024年同步练习卷(2)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知∽,相似比为2,则下列说法正确的是()A.是的2倍B.是的2倍C.AB是DE的2倍D.DE是AB的2倍2.下列说法正确的是()A.所有的等腰三角形都相似B.所有的等边三角形都相似C.所有的直角三角形都相似D.两相似三角形必是全等三角形3.如图,点A、B、C、D、E、F、G、H、K都是方格纸中的格点,为使∽,则点M应是F、G、H、K四点中的()A.FB.GC.HD.K4.已知∽,∽,下列关于和关系的结论正确的是()A.全等B.周长相等C.面积相等D.相似二、填空题:本题共5小题,每小题3分,共15分。

5.如图,已知∽,相似比为2:3,则BC:DE的值为______.6.如图,AB,CD相交于O点,∽,OC::3,,则BD的长为______.7.如图,∽,则图中的DE的对应边是______,的对应角是______.8.一个三角形的各边之比为2:5:6,和它相似的另一个三角形的最大边为15cm,则它的最小边长为______9.如图是一个边长为1的正方形组成的网络,与都是格点三角形顶点在网格交点处,并且∽,则与的相似比是______.三、解答题:本题共5小题,共40分。

解答应写出文字说明,证明过程或演算步骤。

10.本小题8分如图,O是内任意一点,,,,那么与相似吗?说明理由.11.本小题8分如图,D,E分别是AB,AC上的点,已知∽,,,,求AE的长.12.本小题8分如图,已知∽,,,垂足分别为E,写出这两个相似三角形对应边的比例式.若,,,求BC的长.13.本小题8分如图,中,D是AB上的一点,∽,且AD::4,,求,的度数;若,求AB的长.14.本小题8分如图,点D、E分别在的边AB、AC上,且,,,若使与相似,求AE的长.答案和解析1.【答案】C【解析】解:∽,相似比为2,,AB是DE的2倍,选项A、B、D说法错误,不符合题意;选项C说法正确,符合题意;故选:根据相似三角形的对应角相等、对应边的比等于相似比判断即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等、对应边的比等于相似比是解题的关键.2.【答案】B【解析】解:所有的等腰三角形不一定相似,只有顶角相等的等腰三角形都相似,所以A选项不符合题意;B.所有的等边三角形都相似,所以B选项符合题意;C.所有的直角三角形不一定相似,只有有一锐角相等的直角三角形相似,所以B选项不符合题意;D.全等三角形必相似,但两相似三角形不一定全等,所以D选项不符合题意.故选:利用等腰三角形的性质和相似三角形的判定方法对A进行判断;利用等边三角形的性质和相似三角形的判定方法对A进行判断;利用直角三角形相似的判定方法对C进行判断;根据相似三角形的性质全等三角形的判定方法对D进行判断.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似;两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了全等三角形的判定、等腰三角形的性质和相似三角形的性质.3.【答案】C【解析】【分析】本题主要考查相似三角形的判定.由图形可知的边,,,当∽时,AB和DE是对应边,相似比是1:2,则AC的对应边是3,则点M的对应点是【解答】解:根据题意,当DE::AC时,∽,,,应是H故选:4.【答案】D【解析】解:∽,,,∽,,,,,∽,故选:先利用相似三角形的性质得到,;,,则,,于是可判断∽,从而可对各选项进行判断.本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.5.【答案】3:2【解析】解:∽,且相似比为2:3,::2,故答案为3:由于∽,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC、DE的比例关系.本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.【答案】4【解析】解:::3,::2,∽,,即,解得:,故答案为:根据OC::3,求得OC::2,根据相似三角形的对应边的比相等列出方程,计算即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.7.【答案】【解析】解:∽,与是对应角,DE与DG是对应边.故答案为:DG,根据相似三角形的对应角相等以及对应角的定义,可以确定的对应角;根据∽,结合字母所在的对应位置,可以得到DE的对应边.本题主要考查相似三角形的对应边与对应角的定义,可以结合定义进行解答.8.【答案】5【解析】解:两三角形相似,三边比:5:6,另一三角形三边比:5:6,设此三角形各边为2x,5x,6x,,解得,根据相似三角形的性质,一个三角形的各边之比为2:5:6,和它相似的另一个三角形的各边之比也是2:5:6,设和它相似的另一个三角形的各边为2x,5x,6x,得到关于x的方程,解即可.本题考查相似三角形的对应边的比相等.9.【答案】【解析】解:由图可知,,与的相似比是:先利用勾股定理求出AC,那么AC:即是相似比.本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.10.【答案】解:∽理由:,∽,同理可得,,,∽【解析】先根据得出∽,故,同理可得,,由此可得出结论.本题考查的是三角形的判定,熟知三组对应边的比相等的两个三角形相似是解答此题的关键.11.【答案】解:∽,,,,,即,解得【解析】直接根据相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.12.【答案】解:;,,,,解得:,【解析】根据∽对应边成比例,直接写出即可;根据∽对应边成比例求出AB,再由勾股定理求出BC即可.本题主要考查了相似三角形的性质、勾股定理,根据相似三角形的对应边成比例列出是解决此题的关键.13.【答案】解:∽,,;而,,,,;又∽,,,即AB的长为【解析】直接利用相似三角形的对应角相等这一性质即可解决问题.直接利用相似三角形的对应边成比例,列出比例式求解即可.本题主要考查了相似三角形的性质及其应用问题;解题的关键是找准相似三角形的对应角和对应边,准确列出比例式.14.【答案】解:①若对应时,,即,解得;②当对应时,,即,解得所以AE的长为2或【解析】由于与相似,但其对应角不能确定,所以应分两种情况进行讨论.本题考查的是相似三角形的性质,即相似三角形的对应边成比例.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形综合练习题一、填空题:
1. 已知a b
a b
+
-
=
2
2
9
5
,则a b
:=__________
2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm
3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。

4. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。

5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________
6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是
__________
7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________
8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________
二、选择题:
1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________
A. 9:16
B. 3:2
C. 3:4
D. 3:7
2. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2
A. 104m
ab
B.
1042m
ab
C.
abm
104
D.
abm2
4
10
3. 已知,如图,DE∥BC,EF∥AB,则下列结论:
①AE
EC
BE
FC
=②
AD
BF
AB
BC
=③
EF
AB
DE
BC
=④
CE
CF
EA
BF
=
其中正确的比例式的个数是__________
A. 4个
B. 3个
C. 2个
D. 1个
4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、
D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________
A. 16
B. 14
C. 16或14
D. 16或9
5. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________
A. △AED∽△ACB
B. △AEB∽△ACD
C. △BAE∽△ACE
D. △AEC∽△DAC
三、解答题:
1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。

2. 如图,△ABC中,D是AB上一点,且AB=3AD,∠B=75°,∠CDB=60°,求证:△ABC ∽△CBD。

3. 如图,BE为△ABC的外接圆O的直径,CD为△ABC的高,求证:AC·BC=BE·CD。

4. 如图,Rt △ABC 中,∠ACB=90°,AD 平分∠CAB 交BC 于点D ,过点C 作CE ⊥AD 于E ,CE 的延长线交AB 于点F ,过点E 作EG ∥BC 交AB 于点G ,AE ·AD=16,AB =45。

(1)求证:CE=EF 。

(2)求EG 的长。

[参考答案]
一、填空题:
1. 19:13
2. 24
3. 3;1:4
4. 6
5. 12
6. 只要是使得其中两个数的比值等于另外两个数的比值即可,如:2222
、等。

7. 14.4 8. 166
二、选择题:
1. C
2. D
3. B
4. D
5. C 三、解答题:
1. 解:∵AD ∥EG ∥BC
∴在△ABC 中,有EG BC AE AB
= 在△ABD 中,有EF AD BE AB
= ∵AE :AB=2:3
∴BE :AB=1:3
∴EG BC EF AD ==2313
, ∵BC=9,AD=6
∴EG=6,EF=2
∴GF=EG -EF=4
2. 解:过点B 作BE ⊥CD 于点E ,
∵∠CDB=60°,∠CBD=75°
∴∠DBE=30°,
∠CBE=∠CBD -∠DBE=75°-30°=45°
∴△CBE 是等腰直角三角形。

∵AB=3AD ,设AD=k ,则AB=3k ,BD=2k
∴DE=k ,BE =
3k ∴BC k =6
∴BD BC k k
==2623, ∴BD BC BC AB
= ∴△ABC ∽△CBD
3. 连结EC ,
∵BC BC ⋂=⋂
∴∠E=∠A
又∵BE 是⊙O 的直径
∴∠BCE=90°
又∵CD ⊥AB
∴∠ADC=90°
∴△ADC ∽△ECB
∴AC EB CD BC
= 即AC ·BC=BE ·CD
4. (1)∵AD 平分∠CAB
∴∠CAE=∠FAE
又∵AE ⊥CF
∴∠CEA=∠FEA=90°
又∵AE=AE
∴△ACE ≌△AFE (ASA )
∴CE=EF
(2)∵∠ACB=90°,CE ⊥AD ,∠CAE=∠DAC
∴△CAE ∽△DAC
∴AC AD AE AC
= ∴AC AE AD 216==·
在Rt △ACB 中
∴BC =8
又∵CE=EF ,EG ∥BC
∴FG=GB
∴EG 是△FBC 的中位线
∴EG BC ==12
4。

相关文档
最新文档