唐山市数学中考模拟试卷(3月)

合集下载

唐山市中考数学三模试卷

唐山市中考数学三模试卷

唐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·江都期中) 下列运算正确的是()A . 2a3÷a2=aB . a2+a2=a4C . (2a+b)2=4a2+b2+4abD . (2a+1)(2a﹣1)=2a2﹣12. (2分) (2017七下·乌海期末) 下列各式中,正确的是()A . =±5B . ± =4C . =﹣4D . =﹣33. (2分)若(a-1):7=4:5,则10a+8之值为()A . 54B . 66C . 74D . 804. (2分)(2017·百色) 计算(π﹣)0﹣sin30°=()A .B . π﹣1C .D . 1﹣5. (2分)(2019·怀化模拟) 下列运算不正确的是()A . (m2)3=m6B . a10÷a9=aC . x3•x5=x8D . a4+a3=a76. (2分)(2018·沈阳) 如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A . 60°B . 100°C . 110°D . 120°7. (2分)(2018·沈阳) 下列事件中,是必然事件的是()A . 任意买一张电影票,座位号是2的倍数B . 13个人中至少有两个人生肖相同C . 车辆随机到达一个路口,遇到红灯D . 明天一定会下雨8. (2分)(2018·沈阳) 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<09. (2分)(2018·沈阳) 点A(﹣3,2)在反比例函数y= (k≠0)的图象上,则k的值是()A . ﹣6B . ﹣C . ﹣1D . 610. (2分)如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A . πB . πC . 2πD . π二、填空题 (共6题;共8分)11. (1分)(2020·岳阳) 在,,1,2,3五个数中随机选取一个数作为二次函数中a的值,则该二次函数图象开口向上的概率是________.12. (1分) (2019九上·巴南期末) 在数-1,0,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数图像上的概率是________.13. (1分)(2019·怀化模拟) 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于________.14. (1分)(2019·怀化模拟) 如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于________;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.15. (2分)(2016·青海) 如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为________ cm2(结果保留π).16. (2分)(2016·青海) 如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=________.三、综合题 (共8题;共27分)17. (5分)(2018八上·黑龙江期末) 计算题(1)计算:(x+y)2-y(2x+y)(2)先计算,再把计算所得的多项式分解因式:(12a3-12a2+3a)÷3a.18. (2分)(2018·沈阳) 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.19. (2分)(2018·盘锦) 某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了________名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于________度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为________人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?20. (10分)(2018·葫芦岛) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?21. (2分)(2018·盘锦) 两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.22. (2分)(2018·沈阳) 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.23. (2分)(2018·葫芦岛) 在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2 ,当△POF为等腰三角形时,请直接写出线段OP的长.24. (2分)(2018·盘锦) 如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A 点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共8题;共27分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、19-4、19-5、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

河北省唐山市2019-2020学年中考数学三月模拟试卷含解析

河北省唐山市2019-2020学年中考数学三月模拟试卷含解析

河北省唐山市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.2.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π3.下列安全标志图中,是中心对称图形的是()A.B.C.D.4.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x 的函数图象大致为A.B.C.D.5.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2D.a2﹣3a+96.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2137.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60°B.100°C.110°D.120°8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4409.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.3B.3C.3D.310.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A .55°B .60°C .65°D .70°11.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A .6.5×105 B .6.5×106 C .6.5×107 D .65×105 12.﹣22×3的结果是( ) A .﹣5B .﹣12C .﹣6D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.14.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′,设Q 点运动的时间为t 秒,若四边形QP′CP 为菱形,则t 的值为_____.16.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,若⊙O 的半径是5,CD =8,则AE =______.17.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.18.函数y=36x x +- 中,自变量x 的取值范围为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的e的切线.延长线于F.求证:BF是O20.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?22.(8分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .23.(8分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.24.(10分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.25.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?26.(12分)先化简,再求值:a b a -÷(a ﹣22ab b a-),其中a=3tan30°+1,2cos45°. 27.(12分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =求O e 的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.2.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.3.B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.4.B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。

2019学年河北省唐山市中考三模数学试卷【含答案及解析】

2019学年河北省唐山市中考三模数学试卷【含答案及解析】

2019学年河北省唐山市中考三模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 某市一天的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.10℃ D.6℃2. 计算-(-3a2b3)4的结果是()A.81a8b12 B.12a6b7 C.-12a6b7 D.-81a8b123. 如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=2,则CF的长为()A.4 B.4.5 C.5 D.64. 在平面直角坐标系中,已知点A(m,3)与点B(4,n)关于y轴对称,那么(m+n)2015的值为()A.-1 B.1 C.-72015 D.720155. 下列四个点中,有三个点在同一反比例函数的图象上,则不在这个函数图象上的点是()A.(5,1) B.(-1,5) C.(,3) D.(-3,-)6. 如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是-1,则顶点A的坐标是()A.(2,-1) B.(1,-2) C.(1,2) D.(2,1)7. 用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱 B.圆锥 C.三棱柱 D.正方体8. 二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥-2 B.m≥5 C.m≥0 D.m>49. 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C.1 D.10. 下列说法中,完全正确是()A.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大B.抛掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段都可以组成一个三角形D.打开电视机,正在转播足球比赛11. 如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.312. 十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式是()A.y=27x(x>2) B.y=27x+5(x>2)C.y=27x+50(x>2) D.y=27x+45(x>2)13. 如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180° C.210° D.270°14. 已知有一根长为10的铁丝,折成了一个矩形框.则这个矩形相邻两边a,b之间函数的图象大致为()15. 如图,矩形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=40°,则∠BMC=()A.135° B.120° C.100° D.110°16. 如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36二、填空题17. 计算(+1)(-1)= .18. 如图所示,在平面直角坐标系中,△OAB三个顶点的坐标O(0,0)、A(3,4)、B (5,2).将△OAB绕原点O按逆时针方向旋转90°后得到△OA1B1,则点A1的坐标是.19. 如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(-2,0)是对应点,△ABC的面积是,则△A′B′C′的面积是.20. 如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.三、解答题21. 小明同学在解一元二次方程时,他是这样做的:(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x-1)=3(2x-1)22. 实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,则所选两位同学恰好是一位男同学和一位女同学的概率是.23. 如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.24. 如图,将边长为8的正方形纸片ABCD折叠,使点B落在CD边的中点E上,压平后得到折痕MN,EF与AD边交于点G.(1)求CN的长;(2)求DG的长;(3)AM= .(直接填结果)25. 如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.26. 如图,抛物线与x轴交于点A、B两点,与y轴交于点C,且A点坐标(-3,0),连接BC、AC.(1)求该抛物线解析式;(2)求AB和OC的长;(3)点E从点B出发,沿x轴向点A运动(点E与点A、B不重合),过点E作直线l平行AC,交BC于点D,设BE的长为m,△BDE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(4)在(3)的条件下,连接CE,求△CDE面积的最大值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

河北省唐山市中考三模数学考试试卷

河北省唐山市中考三模数学考试试卷

河北省唐山市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·苏州期末) 下列命题中真命题的是()A . 同旁内角互补B . 三角形的一个外角等于两个内角的和C . 若,则D . 同角的余角相等2. (2分)如图,已知菱形ABCD的边长为4,∠ABC=120°,过B作BE⊥AD,则BE的长为()A .B .C . 2D . 13. (2分) (2016九上·宜昌期中) 下列汽车标志中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2020·鄞州模拟) 疫情期间,某地向武汉捐赠口罩1200000只,其中数1200000用科学记数法表示是()A . 12×105B . 12×106C . 1.2×105D . 1.2×1065. (2分)(2018·曲靖模拟) 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A . 主视图B . 俯视图C . 左视图D . 一样大6. (2分)长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2 ,则这样的长方形中y与x 的关系可以写为()A . y=x2B . y=12﹣x2C . y=(12﹣x)•xD . y=2(12﹣x)7. (2分)若有意义,则a的取值范围是()A . a≥0B . a≥3C . a>-3D . a≥-38. (2分)对于任意有理数a,下列结论中,正确的是()A . |a|是正数B . ﹣a是负数C . ﹣|a|是负数D . |a|不是负数9. (2分) (2020九上·柯桥开学考) 我们知道,方程x2+2x﹣1=0的解可看作函数y=x+2的图象与函数y=的图象交点的横坐标,那么方程kx2+x﹣4=0(k≠0)的两个解其实就是直线y=kx+1与双曲线y=的图象交点的横坐标,若这两个交点所对应的坐标为(x1 ,)、(x2 ,),且均在直线y=x的同侧,则实数k的取值范围是()A . <k<B . ﹣<k<C . ﹣<k<0或0<k<D . <k<或﹣<k<010. (2分)(2012·南通) 如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1 ,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2 ,此时AP2=2+ ;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3 ,此时AP3=3+ ;…按此规律继续旋转,直到点P2012为止,则AP2012等于()A . 2011+671B . 2012+671C . 2013+671D . 2014+67111. (2分)(2017·陆良模拟) 如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A .B .C .D .12. (2分) (2016九下·杭州开学考) 若不等式组(x为未知数)无解,则二次函数的图象y=ax2﹣2x+1与x轴的交点()A . 没有交点B . 一个交点C . 两个交点D . 不能确定二、填空题 (共6题;共19分)13. (1分)如果a2n-1•an+5=a16 ,那么n=________(n是整数).14. (1分)(2013·宿迁) 计算的值是________.15. (5分)在2015年的政府工作报告中提出了九大热词,某数学兴趣小组就A互联网+、B民生底线、C中国制造2.0、D能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________ 名同学;(2)条形统计图中,m=________ ,n=________ ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是________ ;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是 ________16. (1分)写出一个图象经过第二、四象限的反比例函数y=(k≠0)的解析式:________ .17. (1分)小明家有一块三角形的玻璃不小心打破了如图所示,现在要带其中一块碎片去玻璃店配一块和原来形状、大小一样的玻璃,应该带________.(填序号①、②、③)18. (10分)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长三、解答题 (共7题;共77分)19. (10分)(1)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;(2)解不等式组,并在数轴上表示不等式组的解集.20. (17分)(2020·历下模拟) 随着通讯技术的迅猛发展,人与人之间的沟通方式变得更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息回答下列问题:(1)本次调查共调查了________名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.21. (10分)(2019·上城模拟) 如图,在△ABC中,AB=AC,以边BC为直径的⊙O与边AB交于点D,与边AC交于点E,连结OD,OE.(1)求证:BD=CE.(2)若∠C=55°,BC=10,求扇形DOE的面积.22. (5分)(2017·天山模拟) 从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)23. (10分)(2017·武汉模拟) 荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.24. (10分)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E 重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.25. (15分)(2017·盐都模拟) 如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM 的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共19分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共7题;共77分) 19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省唐山市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )A .12B .59C .49D .232.下列各数中是无理数的是( )A .cos60°B .·1.3C .半径为1cm 的圆周长D .38 3.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 4.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( )A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =15.半径为R 的正六边形的边心距和面积分别是( )A .32R ,2332R B .12R ,2332R C .32R ,234R D .12R ,234R 6.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<7.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°8.如图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于( )A .10°B .12.5°C .15°D .20°9.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .710.cos45°的值是( )A .12B .32C .22D .1 11.如图,在底边BC 为23,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .3312.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,∠A=80°,∠B=40°,BC 的垂直平分线交AB 于点D ,联结DC .如果AD=2,BD=6,那么△ADC 的周长为 .14.因式分解2242x x -+=______.15.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).16.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.17.将直线y=x 沿y 轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.18.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是_____m (结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?20.(6分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .21.(6分)如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.22.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.23.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,(1)求证:BC=2AD;(2)若cosB=34,AB=10,求CD的长.24.(10分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.25.(10分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC =3,求EC 的长.26.(12分)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H .(1)求证:∠D=2∠A ;(2)若HB=2,cosD=35,请求出AC 的长.27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键. 2.C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为1cos602=o,所以A选项中的数是有理数,不能选A;B选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是2πcm,2π是个无理数,所以可以选C;D38=2,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键. 3.D【解析】【分析】7的范围,进而可得7的范围.【详解】解:a=12×(77,∵27<3,∴6<7<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.4.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例.故选A .【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.A【解析】【分析】首先根据题意画出图形,易得△OBC 是等边三角形,继而可得正六边形的边长为R ,然后利用解直角三角形求得边心距,又由S 正六边形=6V OBC S 求得正六边形的面积.【详解】解:如图,O 为正六边形外接圆的圆心,连接OB ,OC ,过点O 作OH ⊥BC 于H ,∵六边形ABCDEF 是正六边形,半径为R ,∴∠BOC=3600166⨯︒=︒, ∵OB=OC=R ,∴△OBC 是等边三角形,∴BC=OB=OC=R ,60OBC ∠=︒∵OH ⊥BC ,∴在Rt OBH V 中,sin sin 60∠=︒=OH OBH OB, 即32=OH R ∴32=OH R ,即边心距为32R ;∵2112224=⋅=⋅=V OBC S BC OH R R R ,∴S 正六边形=2266==V OBC S R R , 故选:A .【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.6.C【解析】【分析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的;B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的.故选:C .【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.7.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB 与⊙O 相切于点A ,∴OA ⊥BA .∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C .考点:切线的性质.8.C试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.10.C【解析】【分析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.11.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:∵DE垂直平分AB,∴,∴△ACE的周长故选B.点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.B【解析】【分析】先由平均数是3可得x的值,再结合方差公式计算.【详解】∵数据1、2、3、x、5的平均数是3,∴12355x++++=3,解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故选B.【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.试题解析:∵BC的垂直平分线交AB于点D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周长为:AD+DC+AC=2+6+6=1.考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.14.22(1)x -.【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -. 15.12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360p p ´=,∴该圆锥的侧面面积为:12π, 故答案为12π.16.31+【解析】【分析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值【详解】 延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M, 设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=o1209030,EDM ∠=-=o o o3cos30,2DM DE =⋅=o 23,DF DM a ∴==)331,DG GF FD a a a ∴=+== ()3131tan .a GD GCD CD a ∠===故答案为:3 1.+【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.17.y=x+12【解析】【分析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.【详解】∵直线 y=x 沿y 轴向上平移1个单位长度,∴所得直线的函数关系式为:y=x+1.∴A (0,1),B (1,0),∴AB=12,过点 O 作 OF ⊥AB 于点 F ,则12AB•OF=12OA•OB , ∴OF=222OA OB AB ⋅== 2.故答案为y=x+12.【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b (k 、b 为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m 个单位,则平移后直线的解析式为 y=kx+b+m .18.3【解析】【分析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt △ADC 中,tan ∠CDA=tan30°=CD AD = 解得:m ),故答案为【点睛】此题主要考查了解直角三角形的应用,正确得出tan ∠CDA=tan30°=CD AD是解题关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可.(2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】 ⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩.∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中, ∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.20.证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.21.(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,)或(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32, 点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1, 当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.22.(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=kx,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=kx的图像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).设直线AB的函数表达式为y=k′x+b(k′≠0),则4326k bk b=+⎧⎨=+''⎩解得236 kb⎧=-⎪⎨⎪=⎩'∴直线AB的函数表达式为y=-23x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.23.(1)证明见解析;(2)CD =7.【解析】【分析】(1)根据三角函数的概念可知tanA =CD AD ,cos ∠BCD =CD BC,根据tanA =2cos ∠BCD 即可得结论;(2)由∠B 的余弦值和(1)的结论即可求得BD ,利用勾股定理求得CD 即可.【详解】(1)∵tanA =CD AD ,cos ∠BCD =CD BC,tanA =2cos ∠BCD , ∴CD AD =2·CD BC , ∴BC =2AD.(2)∵cosB =BD BC =34,BC =2AD , ∴BD AD =32. ∵AB =10,∴AD =25×10=4,BD =10-4=6, ∴BC =8,∴CD 22BC BD -7.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.24.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.(1)见解析;(2)EC =【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB ==,再利用DE ∥BC ,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt △BCD 中,∠3=60°,DC =DB 的长,进而得出EC 的长.【详解】(1)证明:∵AD ⊥DB ,点E 为AB 的中点, ∴12DE BE AB ==. ∴∠1=∠2.∵DE ∥BC ,∴∠2=∠3.∴∠1=∠3.∴BD 平分∠ABC.(2)解:∵AD ⊥DB ,∠A =30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD =90°,∴∠4=30°.∴∠CDE =∠2+∠4=90°.在Rt △BCD 中,∠3=60°,3DC =, ∴DB =2. ∵DE =BE ,∠1=60°,∴DE =DB =2.∴22437EC DE DC =+=+=.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB ,DE 的长是解题关键. 26.(1)证明见解析;(2)AC=45.【解析】【分析】(1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可;(2)设O e 的半径为r ,根据余弦的定义、勾股定理计算即可.【详解】(1)连接OC .∵射线DC 切O e 于点C ,90OCP ∴∠=︒.DE AP ⊥Q ,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥Q ,90CHO ∴∠=︒,设O e 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=. 在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.27.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.。

河北省唐山市中考数学3月模拟考试试卷

河北省唐山市中考数学3月模拟考试试卷

河北省唐山市中考数学3月模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列各数为无理数的是()A . 0.7256B .C .D .2. (2分) (2017七下·扬州月考) 下列计算正确的是()A . a3•a2=a6B . (a2)3=a6C . (2x2)3=6x6D . (﹣ab)2=﹣a2b23. (2分)某牧场放养的鸵鸟和绵羊一共70只,已知鸵鸟和绵羊的腿数之和为196条,则鸵鸟比绵羊多()A . 20只B . 14只C . 15只D . 13只4. (2分)如图,是某物体的主视图和俯视图,依据此物体的主视图和俯视图找出符合该物体的左视图()A .B .C .D .5. (2分)(2017·茂县模拟) 如图,△ABC内接于⊙O,连接OA、OC,⊙O的半径为3,且sinB= ,则弦AC的长为()A .B . 5C .D .6. (2分) (2015九上·重庆期末) 正六边形的边心距为,这个正六边形的面积为()A . 2B . 4C . 6D . 12二、填空题 (共6题;共6分)7. (1分)一元二次方程x2+3x+2=0的两个实数根是x1、x2 ,则x12x2+x1x22=________.8. (1分) (2019九下·温州竞赛) 2019年春节期间,电影《流浪地球》受到众多影迷的追捧,据猫眼实时数据统计大年初二全天的综合票房大约262000000元。

数据262000000用科学记数法表示为 ________.9. (1分)数据2、4、5、3、9、4、5、8的众数是________,中位数是________.10. (1分)(2017·靖江模拟) 两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C 点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了________度,线段CE旋转过程中扫过的面积为________.11. (1分) (2018九上·巴南月考) 已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为________.12. (1分)(2019·黄陂模拟) 在平面直角坐标系xOy中,已知点P(﹣2,1)关于y轴的对称点P′,点T (t,0)是x轴上的一个动点,当△P′TO是等腰三角形时,t的值是________.三、解答题 (共11题;共128分)13. (10分)(2018·广州) 已知(1)化简T。

河北省唐山市路北区2019年中考数学三模试卷含答案解析+【精选五套中考模拟卷】

河北省唐山市路北区2019年中考数学三模试卷含答案解析+【精选五套中考模拟卷】

河北省唐山市路北区2019年中考数学三模试卷含答案解析一、选择题(本大题共16小题,1-10题,每小题3发,11-16小题,每小题3分,共42分)1.(3分)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.2.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)3.(3分)下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件4.(3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1075.(3分)一个正多边形的内角和是外角和的2倍,则这个正多边形的每个外角为()A.50° B.60° C.45° D.120°6.(3分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.7.(3分)下列说法正确的是()A.若a<0,则<0 B.x实数,且x2=a,则a>0C.有意义时,x≤0 D.0.1的平方根是±0.018.(3分)化简÷的结果是()A. B.C. D.2(x+1)9.(3分)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<10.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35° B.30° C.25° D.20°11.(2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)12.(2分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是()A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形13.(2分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.14.(2分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1015.(2分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=216.(2分)如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是()A.4 B.4 C.8 D.8二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题共4分)17.(3分)计算:(+1)(3﹣)= .18.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.19.(4分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).(1)当m=时,n= ;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a、b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算.例如:3⊕2=3﹣2×2=﹣1.(1)计算:3⊕(﹣2);(2)若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.21.(9分)如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.(1)求∠ACD度数;(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)22.(9分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.23.(9分)教室内的饮水机接通电源进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(分钟)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.如图为在水温为30℃时,接通电源后,水温y(℃)和时间x(分钟)的关系如图.(1)a= ;(2)直接写出图中y关于x的函数关系式;(3)饮水机有多少时间能使水温保持在70℃及以上?(4)若饮水机早上已加满水,开机温度是20℃,为了使8:40下课时水温达到70℃及以上,并节约能源,直接写出当它上午什么时间接通电源比较合适?24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.(10分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?26.(12分)平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE= °,CD= ;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.参考答案与试题解析一、选择题(本大题共16小题,1-10题,每小题3发,11-16小题,每小题3分,共42分)1.(3分)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.2.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.3.(3分)下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件【解答】解:为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过有交通信号灯的路口,遇到红灯”是随机事件,D错误.故选:C.4.(3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×107【解答】解:0.00 000 069=6.9×10﹣7,故选:B.5.(3分)一个正多边形的内角和是外角和的2倍,则这个正多边形的每个外角为()A.50° B.60° C.45° D.120°【解答】解:设多边形的边数为n.因为正多边形内角和为(n﹣2)•180°,正多边形外角和为360°,根据题意得:(n﹣2)•180°=360°×2,解得:n=6.∴这个正多边形的每个外角==60°,故选B.6.(3分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【解答】解:从几何体的上面看俯视图是,故选:D.7.(3分)下列说法正确的是()A.若a<0,则<0 B.x实数,且x2=a,则a>0C.有意义时,x≤0 D.0.1的平方根是±0.01【解答】解:A、若a<0,则=|a|>0,故本选项错误;B、x实数,且x2=a,则a≥0,故本选项错误;C、有意义时,﹣x≥0,此时x≤0,故本选项正确;D、0.01的平方根是±0.1,故本选项错误;故选:C.8.(3分)化简÷的结果是()A. B.C. D.2(x+1)【解答】解:原式=•(x﹣1)=,故选A9.(3分)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<[来源:学科网]【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选A10.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35° B.30° C.25° D.20°【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,[来源:]∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.11.(2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.12.(2分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是()A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形【解答】解:A、由作法可得AD平分∠MAN,所以A选项的结论正确;B、因为AB=AC,DB=DC,所以AD垂直平分BC,所以B选项的结论正确;C、因为AB=AC,DB=DC,所以∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,所以∠MBD=∠NCD,所以C选项的结论正确;D、BA不一定等于BD,所以四边形ABDC不一定是菱形,所以D选项的结论错误.故选D.13.(2分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.14.(2分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选:C.15.(2分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.16.(2分)如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是()A.4 B.4 C.8 D.8【解答】解:当AC是直径时,∵∠BAC=45°,∠ABC=90°,∴∠BAC=∠BCA=45°,∴AB=BC=8,∴AC=8,[来源:Z#xx#]∵AE=EB,BD=DC,∴DE=AC=4.故选B.二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题共4分)17.(3分)计算:(+1)(3﹣)= 2.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.18.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有 6 个红球.【解答】解:设袋中有x个红球.由题意可得: =0.2,解得:x=6,即袋中有6个红球,故答案为:6.19.(4分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).(1)当m=时,n= ﹣1 ;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为.【解答】解:(1)当m=时,连接PM,如图1,则有∠APM=×360°=90°.∵PA=PM,∴∠PAM=∠PMA=45°.∴NO=AO=1,∴n=﹣1.故答案为﹣1;(2)①当m=时,连接PM,如图2,∠APM=360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在Rt△AON中,NO=AO•tan∠OAN=1×=;②当m=时,连接PM,如图3,∠APM=360°﹣×360°=120°,同理可得:NO=.综合①、②可得:点N相应移动的路经长为+=.[来源:学_科_网Z_X_X_K]故答案为.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a、b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算.例如:3⊕2=3﹣2×2=﹣1.(1)计算:3⊕(﹣2);(2)若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.【解答】解:(1)3⊕(﹣2)=3﹣2×(﹣2)=3+4=7;(2)3⊕x=3﹣2x<1,解得x>1,在数轴上表示为:.21.(9分)如图,已知∠M ON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.(1)求∠ACD度数;(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)【解答】解:(1)延长AC交ON于点E,如图,∵AC⊥ON,∴∠OEC=90°,在Rt△OEC中,∵∠O=25°,∴∠OCE=65°,∴∠ACB=∠OCE=65°,∴∠ACD=90°﹣∠ACB=25°(2)∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,在Rt△ABC中,∵cos∠ACB=,∴BC=AC•cos65°=5×0.42=2.1,∴AD=BC=2.1.22.(9分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50 ;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.23.(9分)教室内的饮水机接通电源进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(分钟)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.如图为在水温为30℃时,接通电源后,水温y(℃)和时间x(分钟)的关系如图.(1)a= 7 ;(2)直接写出图中y关于x的函数关系式;(3)饮水机有多少时间能使水温保持在70℃及以上?(4)若饮水机早上已加满水,开机温度是20℃,为了使8:40下课时水温达到70℃及以上,并节约能源,直接写出当它上午什么时间接通电源比较合适?【解答】解:(1)由题意可得,a=(100﹣30)÷10=70÷10=7,故答案为:7;(2)当0≤x≤7时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤7时,y关于x的函数关系式为y=10x+30,当x>30时,设y=,100=,得a=700,即当x>30时,y关于x的函数关系式为y=,当y=30时,x=,∴y与x的函数关系式为:y=,(3)将y=70代入y=10x+30,得x=4,将y=70代入y=,得x=10,∵10﹣4=6,∴饮水机有6分钟能使水温保持在70℃及以上;(4)由题意可得,6+(70﹣20)÷10=11(分钟),∴40﹣11=29,即8:29开机接通电源比较合适.24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.25.(10分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【解答】解:(1)z=(x﹣20)y=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,故z与x之间的函数解析式为z=﹣2x2+140x﹣2000;(2)由z=400,得400=﹣2x2+140x﹣2000,解这个方程得x1=30,x2=40所以销售单价定为30元或40元;(3)∵厂商每月的制造成本不超过520万元,每件制造成本为20元,∴每月的生产量小于等于=26万件,由y=﹣2x+100≤26,得:x≥37,又由限价40元,得37≤x≤40,∵z=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,∴图象开口向下,对称轴右侧z随x的增大而减小,∴当x=37时,z最大为442万元.当销售单价为37元时,厂商每月获得的利润最大,最大利润为442万元.26.(12分)平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC 边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE= 90 °,CD= ;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.【解答】解:(1)∵CE是半圆O的直径,∴∠CDE=90°,∵∠B=90°,∴DE∥AB,∴△CDE∽△CBA,∴,∵AC=2CE,BC=n,∴CD=•CB=,故答案为90,;[来源:学科网ZXXK](2)∵∠ACB=∠DCE,∴∠ACE=∠BCD,∴△ACE∽△BCD,∴=;(3)在Rt△ABC中,∵AC=10,BC=8,根据勾股定理得,AB=6,在Rt△ABE中,BE=BC﹣CE=3,∴AE==3,由(2)知,△ACE∽△BCD,∴,∴,∴BD=(4)∵m=6,n=4,∴CE=3,CD=2,根据勾股定理得,AB=2,①当α=90°时,半圆O与AC相切,在Rt△ABC中,BD==2,②当α=90°+∠ACB时,∠BCE=90°时,半圆O与BC相切,如图,过点E作EM⊥AB与AB的延长线于M,∵BC⊥AB,∴四边形BCEM为矩形,∴BM=EC=3,ME=4,∴AM=5,在Rt△AME中,AE==,由(2)知, ==,∴BD=AE=.即:BD=2或.中考数学模拟试卷一、选择题(每小题3分,共30分)1. 下列图形是中心对称图形.()A.B.C.D.2.在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)3.如图,二次函数y=ax2+bx的图象经过点A,B,C,则判断正确的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>04.将抛物线y=x2平移得到抛物线y=(x﹣3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位5.不解方程,判断方程x2+2x﹣1=0 的根的情况是()A.有两个相等的实根B.有两个不相等的实数根C.无实数根 D.无法确定6.一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1﹣x)=121 B.100(1+x)=121C.100(1﹣x)2=121 D.100(1+x)2=1217.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣18.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.AB=8cm,∠D=40°,那么AM的值和∠C的度数分别是()A.3cm和30° B.3cm和50°C.4cm和50°D.4cm和60°9.如图,四边形ABCD 是圆内接四边形,AB 是⊙O 的直径, 若∠BAC=20°,则∠ADC 的度数为( ) A. 110° B. 100° C. 120° D. 90°10. 如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠COB 、∠B 的度数是( ).A .10°和40°B .10°和50°C .40°和50°D .10°和60° 二、填空题(每小题3分,共15分)11.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为 .12.把二次函数y=x 2﹣2x+3化成y=a (x ﹣h )2+k 的形式为 .13.如图,⊙O 的直径AB 垂直弦CD 于点E ,AB=8,∠A=22.5°,则CD=14.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE=6,∠BAC+∠EAD=180°,则弦BC 的长等于__________13 14 1515.如图,将△ABC 绕点B 逆时针旋转到△A ′BC ′,使点 A ,B ,C ′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4 cm ,则图中阴影部分面积为__________ cm 2. 三、解答题(本大题共8个小题,满分75分) 16.选择适当的方法解下列方程:(每小题4分,共12分)(1)x 2+2x ﹣35=0 (2)x 2﹣7=4x (3)10452-=-x x x )(17.(6分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的关系式;18.(6分)某公司现有甲、乙两种品牌的计算器,甲品牌计算器有 A,B,C 三种不同的型号,乙品牌计算器有 D,E两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)列举出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么 A 型号计算器被选中的概率是多少?19.(8分)如图,AB为⊙O的直径,AC是弦,AC为∠BAD的平分线,过A点作AD⊥CD于点D.求证:直线CD为⊙O的切线.20.(8分)已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体。

河北省唐山市中考数学三模考试试卷

河北省唐山市中考数学三模考试试卷

河北省唐山市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·衡阳模拟) 由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A .B .C .D .2. (2分)(2018·南京) 下列无理数中,与最接近的是()A .B .C .D .3. (2分)如图所示的四个图案中,轴对称图形的个数是()A . 1B . 2C . 3D . 44. (2分)(2017·信阳模拟) 从1、2、3、4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是()A .B .C .D .5. (2分) (2018八下·永康期末) 二次根式中,字母a的取值范围是A .B .C .D .6. (2分) (2019七上·福田期末) 下列事件是确定事件的是()A . 我校同学中间出现一位数学家B . 从一副扑克牌中抽出一张,恰好是大王C . 从装着九个红球、一个白球共十个球的袋中任意摸出两个,其中一定有红球D . 未来十年内,印度洋地区不会发生海啸7. (2分)如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()A . 10°B . 15°C . 30°D . 35°8. (2分) (2019九上·滦南期中) 如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .9. (2分)已知一个直角三角形的两边长分别为3和4,则第三边长是()A . 5B . 25C .D . 5或10. (2分)如图,已知直线与轴交于点,与轴交于点,以点为圆心,为半径画弧,交轴正半轴于点,则点的坐标为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)(2018·大连) 因式分解:x2﹣x=________.12. (1分)(2019·白云模拟) 把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数________的图象.13. (1分) (2018八上·东城期末) 如图,在△ABC中,∠ACB=90°,AD平分∠BAC , BC=10cm,BD:DC=3:2,则点D到AB的距离________cm.14. (1分)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于________ 度.三、计算题 (共2题;共15分)15. (10分)(2018·台州) 计算: .16. (5分) (2018七下·于田期中) 解方程组(1)解方程组:.(2)解方程组.四、综合题 (共12题;共53分)17. (10分) (2019八下·哈尔滨期中) 如图,已知射线MN表示一艘轮船的航行路线,从M到N的走向为南偏东30°,在M 的南偏东60°方向上有一灯塔A,灯塔A到M处的距离为200海里.(1)求灯塔A到航线MN的距离;(2)在航线MN上有一点B,且∠MAB=15°,若轮船的航速为50海里/时,求轮船从M到B处所用的时间为多少小时?(结果保留根号)18. (2分)(2017·合肥模拟) 某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱戏曲的有________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.19. (2分)(2017·老河口模拟) 如图,已知一次函数y1= x﹣4与反比例函数y2= 的图象在第一象限相交于点A(6,n),与x轴相交于点B.(1)填空:n的值为________,k的值为________;当y2≥﹣4时,x的取值范围是________;(2)以AB为边作菱形ABCD,使点C在点B右侧的x轴上,求点D的坐标.20. (2分)(2017·广东) 如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.21. (1分) (2017九上·抚宁期末) 某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为________.22. (1分)有5张写有数字的卡片(如图所示),它们的背面都相同,现将它们背面朝上,从中翻开任意一张是数字3的概率是________23. (1分) (2017九下·江阴期中) 如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.24. (1分)(2018·阜宁模拟) 如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,则DE的长为________.25. (1分)(2017·海曙模拟) 如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为________.26. (2分)(2017·鄂托克旗模拟) 如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.27. (15分)(2017·东河模拟) 如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.28. (15分)(2018·浦东模拟) 已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3、答案:略4、答案:略5-1、6-1、7、答案:略8-1、9-1、10-1、二、填空题 (共4题;共4分)11、答案:略12-1、13-1、14-1、三、计算题 (共2题;共15分)15、答案:略16-1、16-2、四、综合题 (共12题;共53分) 17-1、17-2、18-1、18-2、19、答案:略20-1、20-2、20-3、21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、27-2、28、答案:略。

河北省唐山市中考数学模拟试卷(3月份)

河北省唐山市中考数学模拟试卷(3月份)

河北省唐山市中考数学模拟试卷(3月份)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式计算正确的是()A .B .C .D .2. (2分) (2019七下·绍兴月考) 如图,a∥b,将一块三角板的直角顶点放在直线a上,∠1=42°,则∠2的度数为()A . 46°B . 48°C . 56°D . 72°3. (2分)(2018·广安) 下列图形中,主视图为①的是()A .B .C .D .4. (2分)到2011年5月8日止,某铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A . 2.653×105B . 2.653×106C . 2.653×107D . 2.653×1085. (2分) (2019九上·诸暨月考) 下列命题:①三点确定一个圆;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④等弧所对的圆心角相等;其中真命题的个数是()A . 0B . 1C . 2D . 36. (2分)(2017·鹤壁模拟) 一个不透明的袋子中装有4张卡片,卡片上分别标有数字﹣3,1,,2,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A .B .C .D .7. (2分) (2017七下·成安期中) 根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A . 男生在13岁时身高增长速度最快B . 女生在10岁以后身高增长速度放慢C . 11岁时男女生身高增长速度基本相同D . 女生身高增长的速度总比男生慢8. (2分) (2019九上·杭州月考) 给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴,正确的命题为()A . ①③⑤B . ②④⑤C . ③④⑤D . ①②⑤9. (2分) (2019八上·深圳月考) 如图,正方形的边长为5,,,连接,则线段的长为()A .B .C .D .10. (2分)若一个反比例函数的图象与一次函数y=x﹣3的图象在同一平面直角坐标系中没有公共点,则这个反比例函数的解析式可能是()A . y=B . y=﹣C . y=D . y=二、填空题 (共6题;共15分)11. (1分)(2018·江都模拟) 若式子在实数范围内有意义,则x的取值范围是________.12. (1分) (2015八上·黄冈期末) 分解因式:9x3﹣18x2+9x=________.13. (1分)(2011·宜宾) 某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元.则该城市两年来最低生活保障的平均年增长率是________.14. (1分)(2019·梧州) 如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是________cm.15. (1分)一个袋中装有12个红球、10个黑球、8个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸到黑球的概率是________ .16. (10分)(2020·中模拟) 如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且=,过点E作EF⊥BC于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6 ,求⊙O的半径.三、解答题 (共8题;共73分)17. (5分) (2017七下·潮阳期中) 计算:﹣﹣ +(﹣1)2016 .18. (10分) (2019八上·荣昌期末) 按要求完成下列各题:(1)分解因式:(2)解方程:19. (10分) (2019九上·阜宁月考) 如图:AB是⊙O的直径,AC交⊙O于G , E是AG上一点,D为△BCE 内心,BE交AD于F ,且∠DBE=∠BAD .(1)求证:BC是⊙O的切线;(2)求证:DF=DG .20. (10分)如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A到最高点B的距离为10,A,B两点正前方有垂直于地面的旗杆DE.在A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角)(1)求AE的长;(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?21. (8分)(2018·番禺模拟) 九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1) ________, ________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.22. (10分) (2017七下·嘉祥期末) 某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)1435售价(元/件)2043(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23. (10分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)若AB=5,BC=4,OA=1,求线段DE的长.24. (10分)已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)证明4c=3b2(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共15分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共8题;共73分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、。

河北省唐山市中考数学模拟试卷(3月份)

河北省唐山市中考数学模拟试卷(3月份)

河北省唐山市中考数学模拟试卷(3月份)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)有理数a、b在数轴上的对应点的位置如图所示:则()A . a+b<0B . a+b>0C . a-b=0D . a-b<02. (2分)有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,15000000这个数用科学记数法表示应是()A . 15×106B . 0.15×108C . 1.5×108D . 1.5×1073. (2分)(2020·宽城模拟) 右图是由5个相同的小正方体组成的立体图形,这个立体图形的主视图是()A .B .C .D .4. (2分)(2019·抚顺) 一组数据1,3,,3,4的中位数是()A . 1B .C .D . 35. (2分) (2019七上·徐汇月考) 下列运算中,计算结果正确的是()A .B .C .D .6. (2分) (2016七上·庆云期末) 某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A . 7B . 5C . 2D . ﹣27. (2分)(2019·邹平模拟) 一元二次方程mx2+mx- =0有两个相等实数根,则m的值为()A . 0B . 0或-2C . -2D . 28. (2分)(2020·南县) 如图,在矩形中,E是上的一点,是等边三角形,交于点F,则下列结论不成立的是()A .B .C .D .9. (2分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A . 4﹣2B . 3﹣4C . 1D .10. (2分)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=()A . 3B . -1.5C . -3D . -6二、填空题 (共6题;共6分)11. (1分) (2019七下·长兴期末) 若a+b=2,ab=1,则a2b+ab2=________ 。

河北省唐山市中考数学三模试卷

河北省唐山市中考数学三模试卷

河北省唐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·衢州) -2的倒数是()A .B .C . -2D . 22. (2分) (2017八下·顺义期末) 下列交通标志中是中心对称图形的是()A .B .C .D .3. (2分)(2017·黄石模拟) 下列运算正确的是()A . a6÷a2=a3B . 5a2﹣3a2=2aC . (﹣a)2•a3=a5D . 5a+2b=7ab4. (2分)下列说法中,正确的是()A . 近似数117.08精确到十分位B . 按科学记数法表示的数5.04×105 ,其原数是50400C . 将数60340保留2个有效数字是6.0×104D . 用四舍五入法得到的近似数8.1750精确到千分位5. (2分)(2017·营口模拟) 如图,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A . 4B . ﹣4C . 8D . ﹣86. (2分)下列命题中,不正确的是()A . 有一个角是60°的等腰三角形是等边三角形B . 对角线互相垂直且相等的四边形是矩形C . 一组对边平行且一组对角相等的四边形是平行四边形D . 对角线相等的菱形是正方形7. (2分)(2019·上城模拟) 将一把直尺与一块含30°和60°角的三角板ABC按如图所示的位置放置,直尺的一边恰好经过点A,如果∠CDE=50°,那么∠BAF的度数为()A . 15°B . 20°C . 30°D . 40°8. (2分)某班有x人,分y组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人.求全班人数,下列方程组中正确的是()A .B .C .D .9. (2分) (2017九上·曹县期末) 如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A . π cmB . 2π cmC . 3π cmD . 5π cm10. (2分)(2016·济南) 如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2017·禹州模拟) 分解因式:a3﹣4a2b+4ab2=________.12. (1分)已知|x|=4,|y|=,且xy<0,则的值等于________.13. (1分) (2016九上·盐城开学考) 一次函数y=ax+b图象过一、三、四象限,则反比例函数y= (x >0),在每一个象限内,函数值随x的增大而________.14. (1分)(2014·盐城) 如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=________°.15. (1分)已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.16. (1分)圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=________°.17. (1分)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

唐山市中考三模数学考试试卷

唐山市中考三模数学考试试卷

唐山市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·芜湖期末) 在下列实数中:,,,0,最大的数是()A .B .C .D . 02. (2分)(2019·宣城模拟) 下列计算正确是()A . a2•a2=2a4B . (﹣a2)3=a4C . 3a2﹣6a2=﹣3a2D . (a﹣3)2=a2﹣93. (2分)下列图形中,绕某个点旋转180°后能与自身重合的有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形A . 5个B . 2个C . 3个D . 4个4. (2分)(2020·衢州模拟) 矩形ABCO如图摆放,点B在y轴上,点C在反比例函数y (x>0)上,OA=2,AB=4,则k的值为()A . 4B . 6C .D .5. (2分)(2017·临沂) 如图所示的几何体是由五个小正方体组成的,它的左视图是()A .B .C .D .6. (2分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到黑球的概率为A .B .C .D .7. (2分)有甲、乙两个大小不同的水桶,容量分别为x、y公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x、y的关系式是()A . y=20-xB . y=x+10C . y=x+20D . y=x+308. (2分) (2020八上·海拉尔期末) 如图,在中,点,分别在,上,,,若,,则线段的长为()A .B .C .D . 59. (2分) (2019八下·绿园期末) 如图,点在反比例函数,的图像上,点在反比例函数的图像上,轴于点.且,则的值为()A . -3B . -6C . 2D . 610. (2分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()A . 若通话时间少于120分,则A方案比B方案便宜20元B . 若通话时间超过200分,则B方案比A方案便宜12元C . 若通讯费用为60元,则B方案比A方案的通话时间多D . 若两种方案通讯费用相差10元,则通话时间是145分或185分二、填空题 (共10题;共11分)11. (1分) (2016七上·荔湾期末) 2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为________元.12. (1分)(2016·巴彦) 函数的自变量x的取值范围是________.13. (1分)计算:-=________14. (1分)(2014·贺州) 因式分解:a3﹣4a=________.15. (1分)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O所经过的路线长是________ 米.16. (1分) (2019七下·苏州期末) 若二元一次方程组的解,的值恰好是一个等腰三角形的腰和底边的长,且这个等腰三角形的周长为7,则的值为________.17. (1分)(2014·茂名) 如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为________米.18. (1分) (2019九上·东台期中) 如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为________19. (1分)已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是________20. (2分)(2020·石家庄模拟) 已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C ,以AC为对角线作正方形ABCD。

2023年河北省唐山市路南区中考数学二模试卷(含解析)

2023年河北省唐山市路南区中考数学二模试卷(含解析)

2023年河北省唐山市路南区中考数学二模试卷一、选择题(本大题共16小题,共42.0分。

在每小题列出的选项中,选出符合题目的一项)1. −(+3)=( )A. −3B. 3C. −2D. 12.如图,用圆规比较两条线段的大小,其中正确的是( )A. A′B′>A′C′B. A′B′=A′C′C. A′B′<A′C′D. 不能确定3.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A. −3B. −1C. 1D. 24.如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=( )A. 2B. 3C. 4D. 55. 已知a、b都是正整数,若18=a2,8=2b,则( )A. a=bB. a<bC. a+b=4D. a−b=16. 如图,将线段AB绕点A旋转,下列各点能够落到线段AB上的是( )A. 点CB. 点DC. 点ED. 点F7. 由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体( )A. 4个B. 8个C. 16个D. 27个8. 能与−(34−65)相加得0的是( )A. −34−65B. 65+34C. −65+34D. −34+659. 如图,数轴上的点A 、B 分别表示数1、−2x +3,则表示数−x +2的点P 与线段AB 的位置关系是( )A. P 在线段AB 上B. P 在线段AB 的延长线上C. P 在线段BA 的延长线上D. 不能确定10. 若x <y ,且(a−3)x >(a−3)y ,则a 的取值范围是( )A. a <3B. a >3C. a ≥3D. a ≤311. 设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为( )A. 5B. 4C. 3D. 212.如图,从笔直的公路l 旁一点P 出发,向西走4km 可到达公路l上的A 点;从点P 出发沿与l 垂直的方向走4km 可到达点P 关于公路l的对称点B 点;从点P 出发向正北方向走到l 上,需要走的路程是( )A. 2kmB. 2.5kmC. 4 33kmD. 432km 13. 对于点P (2a 3b ,23)和直线l :y =x ,下列说法正确的是( )A. 若a =b =0,则l 经过点PB. 若a =b =2,则l 不经过点PC. 若a =3,b =1,则点P 在l 上方D. 若a =2,b =1,则点P 在l 下方14. 我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则下列结论正确的是(( )A. 设共有x 人,根据题意得:x 3−2=x−92B. 共有37人C. 设共有车y 辆,根据题意得:3(y +2)=2y +9D. 共有15辆车15. 在数据4,5,6,5中去掉n (n >0)个数据,若平均数没有发生变化,则n 的值是( )A. 1或3B. 2或3C. 1或2或3D. 1或216. 如图,已知A B 的半径为5,所对的弦AB 长为8,点P 是A B 的中点,将A B 绕点A 逆时针旋转90°后得到A B ′,三位同学提出了相关结论:嘉嘉:点P 到AB 的距离为2淇淇:AP 的长为2 3嘉淇:线段AP 扫过的面积为2 5π下列结论正确的是( )A. 嘉嘉对,淇淇错B. 淇淇对,嘉淇错C. 嘉嘉错,嘉淇错D. 淇淇错,嘉淇对二、填空题(本大题共3小题,共12.0分)17. 已知b 4=b ×8,则b = ______ ,b 的倒数为______ .18. 四边形具有不稳定性:如图,将面积为5的矩形“推”成面积为4的平行四边形,则cosα的值为______ ;若α=30°,则平行四边形的面积为______ .19. 如图,在平面直角坐标系xOy中,等边△AOB的顶点A在第一象限,点B(3,0),双曲线y=k(k>0,x>0)把△AOB分成两部分.x(1)双曲线与边OA,AB分别交于C,D两点,若OC=2,点D的横坐标为______ ;(2)连接CD,则△ACD的面积为______ .三、解答题(本大题共7小题,共66.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山市数学中考模拟试卷(3月)
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2018七上·灌阳期中) 在下面的四个有理数中,是负数的是()
A . 1
B . 0
C . 2
D .
2. (2分) (2019七上·萝北期末) 如图中几何体由一些完全相同的小立方体组成,从上面看到图形的形状是()
A .
B .
C .
D .
3. (2分) (2015八上·郯城期末) 如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()
A . 70°
B . 80°
C . 90°
D . 100°
4. (2分)化简m-n-(m+n)的结果是()
A . 0
B . 2m
C . -2n
D . 2m-2n
5. (2分)(2019·贵池模拟) 下表,是池州市今年“五一”这周内日最高气温的统计表,关于这7天的日最高气温的众数,中位数,方差分别是:()
日期29日30日5月1日2日3日4日5日
日最高气温16°C19°C22°C24°C26°C24°C23°C
A . 24,23,10
B . 24,23,
C . 24,22,10
D . 24,22,
6. (2分) (2017八下·丹阳期中) 平行四边形中,,是两条对角线,如果添加一个条件,即可推出平行四边形是矩形,那么这个条件是()
A .
B .
C .
D .
7. (2分)(2019·五华模拟) 某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x件,则下列方程正确的是()
A . =4
B . =4
C . =4
D .
8. (2分)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()
A . 8
B . 4
C . 8
D . 6
9. (2分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第8个图形需要黑色棋子的个数是()
A . 48
B . 80
C . 90
D . 86
10. (2分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()
A . 6cm
B . 4cm
C . 2cm
D . 1cm
二、填空题 (共6题;共7分)
11. (1分) (2018七上·云南期中) 地球与太阳之间的距离约为149600000千米,将149600000用科学计数法表示应为________。

12. (1分)若m2﹣5m+2=0,则2m2﹣10m+2012=________
13. (1分)如图1所示的梯形符合________条件时,可以拼成如图2所示的图形.
14. (1分)(2013·常州) 如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=________.
15. (1分)已知直线y=kx+b经过点(﹣2,3),并且与直线y=-2x+1平行,那么b=________.
16. (2分)如图,反比例函数y= 的图象经过Rt△ABC斜边AB的中点M 及顶点B,点C在y轴正半轴上,连结MC并延长与x轴交于点E.
(1)若点M的坐标为(2,3),则点B的坐标为________;
(2)若k=7,则△AEC的面积为________.
三、解答题 (共8题;共75分)
17. (5分)(2018·阳新模拟) |﹣ |﹣ +20180
18. (5分)(2016·陕西) 化简:(x﹣5+ )÷ .
19. (5分)如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连结FE并廷长交BC的延长线于点G,连接BF、BE。

且BE⊥FG;
(1)求证:BF=BG。

(2)若tan∠BFG=,S△CGE=6,求AD的长。

20. (10分)(2018·台湾) 一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每
次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:
次数第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次
号码13442141
若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:
(1)请求出第1次至第8次得分的平均数.
(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.
21. (10分)关于x的方程kx2+(k+1)x+ =0有实数根.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.
22. (15分) (2016九上·淅川期末) 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
23. (10分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)
求证:∠BAD=∠E
(2)
若⊙O的半径为5,AC=8,求BE的长.
24. (15分)(2018·重庆模拟) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y 轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
16-2、
三、解答题 (共8题;共75分)
17-1、
18-1、
19-1、
20-1、
20-2、
21-1、
21-2、22-1、22-2、
22-3、23-1、
23-2、
24-1、
24-3、。

相关文档
最新文档