(完整版)《反比例函数》小结与复习课件(30张ppt)
合集下载
反比例函数知识点总结PPT
在化学中的应用:浓度=溶质质量/溶液体积, 电导率=电阻/电流等。
浓度=溶质质量/溶液体积 在化学实验中,浓度常用于描述溶液中溶质的质量分数。例如,当一个溶液中溶质的质量占总 质量的50%时,我们称之为50%的浓度。这种计算方法简单、直观,便于理解和操作。 电导率=电阻/电流 电导率是衡量物质导电能力的物理量,其定义为电阻与电流的比值。例如,铜的电导率约为 58.0 MS/m,这意味着每米长度的铜导线上,每通过1毫安的电流,就会有58毫西门子的电压 降。这种定义使得电导率的测量和比较变得简单,有助于科学研究和工程设计。 反比例函数的定义与性质在化学中的应用 在化学中,反比例函数的定义与性质被广泛应用于描述化学反应的过程。例如,阿伦尼乌斯方 程就是一个典型的反比例函数,它描述了反应速率与温度之间的关系。这种关系在化学工程和 环境科学等领域有着重要的应用。 浓度=溶质质量/溶液体积 在化学实验中,浓度常用于描述溶液中溶质的质量分数。例如,当一个溶液中溶质的质量占总 质量的50%时,我们称之为50%的浓度。这种计算方法简单、直观,便于理解和操作。
03
反比例函数的图像
Image of inverse proportional function
> 0时,反比例函数的图像 在第一象限和第三象限。
反,当x=1时,y=2,图像经过点(1,2),位于第一象限。
反比例函数y=k/x,当k<0时,图像在第三象限。
Logo/Company
反比例函数知识点总结
《反比例函数的定义与性质》是数学中重要的概念,它揭示了两个变量之间 的特殊关系。
汇报人: 2023.10.13
目录
CONTENTS
01
反比例函数的定义
Definition of inverse proportional function
第26章反比例函数复习与小结ppt课件
(1)过P作x轴的垂线 , 垂足为 A, 则:
SOAP
1 2
OA
AP
1 2
|
m
|
•
|
n
|
1 2
|
k
|
y
y
P(m,n)
P(m,n)
o
Ax
oA
x
想一想
若将此题改为过P点 作y轴的垂线段,其结
论成立吗?
y
P(m,n) oA x
y A P(m,n)
o
x
SOAP
1 2
OA
AP
1 2
|
m
|
•
|
n
|
1 2
p(Pa)
4000
3000
2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
解:(1)设 p与S之间的函数关系式为p=k/s ∵该函数的图像经过点A(0.25,1000) ∴1000=k/0.25,即k=250 所以p与s之间的函数关系式为p=250/s
(2)把S=0.5代人P=250/S中,得 P=500
2.反比例函数的图象和性质:
(1).反比例函数的图象是双曲线; (2).图象性质见下表:
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
的两个分支分别在第 的两个分支分别在第
性 一、三象限,在每个 二、四象限,在每个
质 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
x
足分别为A、B,则
S矩形OAPB
=OA·AP=|m|
关于反比例函数的ppt课件
05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
反比例函数图象性质及应用复习课件
04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
最新浙教版初中数学中考复习反比例函数 (共38张PPT)教育课件
30
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
解析:
31
考点三:一次函数与反比例函数的综合应用
32
解析:
• 【解析】(1)如图,过点A作AD⊥OC于点D.
•
∵AC=AO,
•
∴CD=DO.
•
∴S△ADO=S△ACO=6,
•
∴k=-12.•源自(2)x<-2或0<x<2.
33
考点三:一次函数与反比例函数的综合应用
34
解析:
35
方法归纳: • 1.求两个函数图象的交点坐标的方法是把两个函数图象的表达
2
考点一:反比例函数的图象与性质
3
考点一:反比例函数的图象与性质
原点
双曲线 y=±x
4
考点一:反比例函数的图象与性质
函数
图象
k>0
k<0
所在象限
性质
第 一、三 象限(x, 在每个象限内,y随x
y同号)
的增大而 减小
第 二、四 象限(x,y 在每个象限内,y随x
异号)
的增大而 增大
5
考点一:反比例函数的图象与性质
•
•
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。
反比例函数复习课件
详细描述
反比例函数的一个重要性质是,随着 x 的增大,y 的值会减 小;随着 x 的减小,y 的值会增大。此外,由于分母不能为 零,反比例函数在 x = 0 处没有定义。
02
反比例函数的解析式
反比例函数的表达式
反比例函数的一般表达式为 y = k/x,其中 k 是常数且 k ≠ 0。
当 k > 0 时,反比例函数图像分布在第一象限和第三象限;当 k < 0 时,反比例函 数图像分布在第二象限和第四象限。
详细描述
利用数形结合的方法,通过绘制反比 例函数的图像,可以直观地观察函数 的单调性、对称性、渐近线等性质, 有助于理解函数的变化规律和解题思 路。
代数法解题
总结词
运用代数技巧解决反比例函数的 数学问题
详细描述
掌握反比例函数的性质和公式, 运用代数运算、方程求解、不等 式证明等技巧,解决反比例函数 的数学问题,如求值、证明等。
体重与饮食
摄入的食物量与体重增长 成反比,即吃得越多,体 重增长越快。
物理中的反比例现象
磁场与电流
在电磁感应现象中,磁场与感应 电流成反比关系。
声音传播
声音的传播速度与介质的密度和弹 性成正比,与介质的阻尼成反比。
光学透镜
透镜的焦距与透镜的曲率半径成反 比,即曲率半径越大,焦距越短。
数学中的反比例问题
在坐标轴上,反比例函数的图像是双曲线,且随着 |k| 的增大,图像逐渐远离坐标轴 。
反比例函数的变体
当 k > 0 时,反比例函数可以表示为 y = k/(x - h) + k,其中 h 是常数 且 h ≠ 0。
当 k < 0 时,反比例函数可以表示为 y = k/(x - h) - k,其中 h 是常数 且 h ≠ 0。
反比例函数的一个重要性质是,随着 x 的增大,y 的值会减 小;随着 x 的减小,y 的值会增大。此外,由于分母不能为 零,反比例函数在 x = 0 处没有定义。
02
反比例函数的解析式
反比例函数的表达式
反比例函数的一般表达式为 y = k/x,其中 k 是常数且 k ≠ 0。
当 k > 0 时,反比例函数图像分布在第一象限和第三象限;当 k < 0 时,反比例函 数图像分布在第二象限和第四象限。
详细描述
利用数形结合的方法,通过绘制反比 例函数的图像,可以直观地观察函数 的单调性、对称性、渐近线等性质, 有助于理解函数的变化规律和解题思 路。
代数法解题
总结词
运用代数技巧解决反比例函数的 数学问题
详细描述
掌握反比例函数的性质和公式, 运用代数运算、方程求解、不等 式证明等技巧,解决反比例函数 的数学问题,如求值、证明等。
体重与饮食
摄入的食物量与体重增长 成反比,即吃得越多,体 重增长越快。
物理中的反比例现象
磁场与电流
在电磁感应现象中,磁场与感应 电流成反比关系。
声音传播
声音的传播速度与介质的密度和弹 性成正比,与介质的阻尼成反比。
光学透镜
透镜的焦距与透镜的曲率半径成反 比,即曲率半径越大,焦距越短。
数学中的反比例问题
在坐标轴上,反比例函数的图像是双曲线,且随着 |k| 的增大,图像逐渐远离坐标轴 。
反比例函数的变体
当 k > 0 时,反比例函数可以表示为 y = k/(x - h) + k,其中 h 是常数 且 h ≠ 0。
当 k < 0 时,反比例函数可以表示为 y = k/(x - h) - k,其中 h 是常数 且 h ≠ 0。
《反比例函数》_PPT
概念辨析:
下列关系式中的y是x的反比例函数吗?
如果是,k是多少?
y4x, y3,y6x1,yx2 1, x
y
1 x2
,xy12,3y2x1,
y 3 2x
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
四、例题探究
例1.当m =
k x
∵当x=2时,y=6 ∴ 6 k
解得
k=12
2
因此
y 12 x
( 2 )x 把 4代y 入 1,2 得 y1 23
x4
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
拓展练习
已知 y 与 x2 成反比例,并且当 x=3 时,y=4. (1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值; (3)当 y=6 时,求 x 的值.
x 叫做反比例函数。其中x是k有自什变么量要,求y?是x的函数 反比例函数中自变量x的取值范围是
不为0的一切实数
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
一般表达式:
y k(k 0) x
ykx( -1 k0)
xyk(k0)
总学生数n 的关系。
s 30682 n
1、u 2 0 0 2、 y 1000
t
x
3、s 3 0 6 8 2 n
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
【获奖课件ppt】《反比例函数》_ppt 1-课件 分析下 载
反比例函数的图像和性质复习ppt课件
反比例函数的图像和性 质复习ppt课件
演讲人: 日期:
目录 CONTENT
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举
例 • 典型例题解析与讨论 • 练习题与课堂互动环节
01
反比例函数基本概念
定义与表达式
定义
形如 $y = frac{k}{x}$ (其中 $k$ 是 常数,$k neq 0$) 的函数称为反比 例函数。
渐近线与x轴、y轴平行
反比例函数的图像有两条渐近线,分别与x轴和y轴平行。
图像对称性
原点对称
反比例函数的图像关于原点对称 ,即如果点(x,y)在图像上,那么 点(-x,-y)也在图像上。
中心对称
反比例函数的图像还关于其中心 (即原点)对称,这意味着图像 在旋转180度后保持不变。
03
反比例函数性质分析
奇偶性判断方法
奇函数定义
对于所有x,都有f(-x) = -f(x),则函数f(x)为奇函数。反比例函数满足f(-x) = f(x),因此是奇函数。
图像法
观察反比例函数的图像,可以发现图像关于原点对称,这也是奇函数的一个特征 。
周期性讨论
• 反比例函数不具有周期性。因为其图像不呈现周期性的变化规 律,即不满足f(x+T)=f(x)的性质,其中T为周期。
设生产 A 种产品 x 吨,生产 B 种产品 y 吨。根据题意可得方 程组
2x + 3y = 14
2. 利润方程
3x + 4y = z(z 为总利润)
06
练习题与课堂互动环节
练习题一:绘制反比例函数图像
题目
请绘制反比例函数 y = 1/x (x > 0) 的图像。
演讲人: 日期:
目录 CONTENT
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举
例 • 典型例题解析与讨论 • 练习题与课堂互动环节
01
反比例函数基本概念
定义与表达式
定义
形如 $y = frac{k}{x}$ (其中 $k$ 是 常数,$k neq 0$) 的函数称为反比 例函数。
渐近线与x轴、y轴平行
反比例函数的图像有两条渐近线,分别与x轴和y轴平行。
图像对称性
原点对称
反比例函数的图像关于原点对称 ,即如果点(x,y)在图像上,那么 点(-x,-y)也在图像上。
中心对称
反比例函数的图像还关于其中心 (即原点)对称,这意味着图像 在旋转180度后保持不变。
03
反比例函数性质分析
奇偶性判断方法
奇函数定义
对于所有x,都有f(-x) = -f(x),则函数f(x)为奇函数。反比例函数满足f(-x) = f(x),因此是奇函数。
图像法
观察反比例函数的图像,可以发现图像关于原点对称,这也是奇函数的一个特征 。
周期性讨论
• 反比例函数不具有周期性。因为其图像不呈现周期性的变化规 律,即不满足f(x+T)=f(x)的性质,其中T为周期。
设生产 A 种产品 x 吨,生产 B 种产品 y 吨。根据题意可得方 程组
2x + 3y = 14
2. 利润方程
3x + 4y = z(z 为总利润)
06
练习题与课堂互动环节
练习题一:绘制反比例函数图像
题目
请绘制反比例函数 y = 1/x (x > 0) 的图像。
初三反比例函数ppt课件
揭示本质
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
从函数形式上,我们可以将反比例函 数表示为y=k/x,其中k为常数,且 k≠0。这表明函数的输出y与输入x成 反比关系。
反比例函数的表达形式基本源自式y=k/x,其中k为常数,且k≠0。
变形形式
当k>0时,函数图像位于第一、三象限,y随x的增大而减小;当k<0时,函数图 像位于第二、四象限,y随x的增大而增大。
交点与函数图像的关系
01
当两个函数有交点时,交点的横 纵坐标分别对应两个函数在某一 点处的函数值。
02
通过交点,可以观察两个函数在 某一点处的相互关系及其变化趋 势。
利用交点解决实际问题
路程问题
01
在两个物体以不同速度相对运动的问题中,交点的横坐标表示
相遇的时间,纵坐标表示相遇的地点。
工程问题
02
满足奇偶性定义
由于反比例函数满足奇函数的定义 ,即$f( - x) = - f(x)$,因此它是奇 函数。
反比例函数的凹凸性
二阶导数判定
通过求二阶导数判断函数的凹凸 性。如果二阶导数大于0,则函 数是凹函数;如果二阶导数小于 0,则函数是凸函数。对于反比 例函数,可以通过求导再求二阶
导数来判断凹凸性。
在工程进度问题中,交点的横坐标表示完成工程所需的总时间
,纵坐标表示完成工程量。
经济问题
03
在投入产出问题中,交点的横坐标表示投资额,纵坐标表示产
值。
06
CATALOGUE
复习与巩固
反比例函数的概念与性质复习
总结词:掌握基础
详细描述:通过图表和实例,复习反 比例函数的概念和性质,包括定义、 表达式、图像等。
凹函数
通过计算二阶导数发现,反比例 函数是凹函数。这意味着函数图
人教版初三数学9年级下册 第26章(反比例函数)小结与复习 课件(25张PPT)
A、x<-1 B、x>2 C、-1<x<0或x>2 D、x<-1或0<x<2
求一次函数及反比例函数的解析式
如图,已知一次函数y kx b(k 0)的图象与x轴,y轴
分别交于A,B两点,且与反比例函数y
m(m x
0)的图
象交于点C,过点C作CD垂直于x 轴,垂足为D.
若OA OB OD 1. (1)求点A,B,D的坐标;
知 400 度近视眼镜镜片的焦距为 0.25 m,则 y 与 x 的函数
表达式为( C )
A.y=400 B.y= 1
x
4x
C.y=1x00 D.y=4010x
专项讲 解
一次ቤተ መጻሕፍቲ ባይዱ数与反比例函数综合应用
考情分析
• 反比例函数与一次函数结合主要考查 • 1.判断一次函数与反比例函数在同一坐标系
中的大致图像。 • 2.利用函数图像确定自变量的取值范围 • 3.求反比例函数与一次函数解析式、点的坐
2 反比例函数的图象和性质
(1)反比例函数的图象:反比例函数 y=kx(k≠0)的图 象是__双__曲__线__,且关于__原__点____对称.
(2)反比例函数的性质
函数
图象
k>0
y=kx (k≠0)
k<0
所在象限
性质
一、 三
象限 在每个象限内,y
(x,y 同 随 x 增大而减小
号)
二、 四
象限 在每个象限内,y
(2)求一次函数和反 比例函数的解析式.
与面积有关的问题
解:(1)将
A(2,
2)
代入
y
m x
中,得
m
4
.
∴
y
4 x
求一次函数及反比例函数的解析式
如图,已知一次函数y kx b(k 0)的图象与x轴,y轴
分别交于A,B两点,且与反比例函数y
m(m x
0)的图
象交于点C,过点C作CD垂直于x 轴,垂足为D.
若OA OB OD 1. (1)求点A,B,D的坐标;
知 400 度近视眼镜镜片的焦距为 0.25 m,则 y 与 x 的函数
表达式为( C )
A.y=400 B.y= 1
x
4x
C.y=1x00 D.y=4010x
专项讲 解
一次ቤተ መጻሕፍቲ ባይዱ数与反比例函数综合应用
考情分析
• 反比例函数与一次函数结合主要考查 • 1.判断一次函数与反比例函数在同一坐标系
中的大致图像。 • 2.利用函数图像确定自变量的取值范围 • 3.求反比例函数与一次函数解析式、点的坐
2 反比例函数的图象和性质
(1)反比例函数的图象:反比例函数 y=kx(k≠0)的图 象是__双__曲__线__,且关于__原__点____对称.
(2)反比例函数的性质
函数
图象
k>0
y=kx (k≠0)
k<0
所在象限
性质
一、 三
象限 在每个象限内,y
(x,y 同 随 x 增大而减小
号)
二、 四
象限 在每个象限内,y
(2)求一次函数和反 比例函数的解析式.
与面积有关的问题
解:(1)将
A(2,
2)
代入
y
m x
中,得
m
4
.
∴
y
4 x
第二十六章反比例函数章末复习 课件(共25张PPT) 2024-2025学年人教版九年级数学下册
例4
如图,两个反比例函数
y
1 x
和y
2 x
的图象
分别是 l1 和 l2.设点 P 在 l1 上,PC⊥x 轴,垂足为 C,
交 l2 于点 A;PD⊥y 轴,垂足为 D,交 l2 于点 B,则△PAB 的面积为
y
l2
l1
x0,x10
( C ).
BDP
A.3 B.4 C.9 D.5 2
OC x A
关系? 关于原点成中心对称.
②本章知识结构框图
现实世界中的 反比例关系
归纳 抽象
反比例函数 y k x
实际应用
y k 的图象和性质 x
典例精析
考点1 反比例函数的概念
例1 下列函数中是反比例函数的有
.
(√1)y
5 x
(5)y
x π
(2)y=5-x
(6)y
6 x2
(3)y x 2
(√4)xy=2
在每个象限内, y 都随 x 的增 大而增大
c.怎样求反比例函数的解析式? 一般采用待定系数法,设y k .
x
d.如图,过 y k 的图象上任意一点 P 作两坐 x
标轴的平行线与两坐标轴所围成的矩形的面积
为__| _k_|__.
e.如果反比例函数 y k 与正比例函数y = mx x
有两个交点,那么这两个交点坐标之间有什么
考点2 反比例函数的性质
例3 在函数 y a2 1(a 为常数)的图象上有
x 三个点(-1,y1),(
1
, 4
y2),(
,12 y3)
则 y1,y2,y3 的大小关系是( D ).
A.y2<y3<y1 C.y1<y2<y3
初三反比例函数ppt课件ppt课件
反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 反比例函数的图象和性质
(1)
反比例函数的图象:反比例函数y
k x
(k≠0)的
图象是 双曲线 ,它既是轴对称图形又是中心
对称图形.
反比例函数的两条对称轴为直线 y = x 和 y=-x ;
对称中心是: 原点 .
(2) 反比例函数的性质
图象
k>0
y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
针对训练
已知点 A (x1,y1),B (x2,y2) (x1<0<x2)都在反比
例函数
yk x
(k<0) 的图象上,则 y1 与 y2 的大小关系
(从大到小) 为 y1 >0>y2 .
考点三 与反比例函数 k 有关的问题
例2 如图,两个反比例函数
y
4 x
和
y
2 x
在第一象
限内的图象分别是 C1 和 C2,设点 P 在 C1 上,PA ⊥
第二十六章《反比例函数》 小结与复习
要点梳理
1. 反比例函数的概念 定义:形如__y___kx___ (k为常数,k≠0) 的函数称为反 比例函数,其中x是自变量,y是x的函数,k是比例 系数. 三种表达式方法:y k 或 xy=kx 或y=kx-1 (k≠0). x 防错提醒:(1)k≠0;(2)自变量x≠0;(3)函数y≠0.
S四边形AEOC)
= 1 (k- 1 k)= 1 k = 6.
F
2
24
∴ k =24.
考点四 反比例函数的应用
例3 如图,已知 A (-4,1 ),B (-1,2) 是一次函数 2
y =kx+b 与反比例函数 y m (m<0)图象的两个交点, x
AC⊥x 轴于点 C,BD⊥y 轴于点 D.
(1) 根据图象直接回答:在第二象限内,当 x 取何值 时,一次函数的值大于反比例函数的值; y
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
异号) 随 x 的增
x
大而增大
(3) 反比例函数比例系数 k 的几何意义
k 的几何意义:反比例函数图象上的点 (x,y) 具有 两坐标之积 (xy=k) 为常数这一特点,即过双曲线 上任意一点,向两坐标轴作垂线,两条垂线与坐 标轴所围成的矩形的面积为常数 |k|.
考点一 反比例函数的概念
针对训练
1. 下列函数中哪些是正比例函数?哪些是反比例函数?
① y = 3x-1 ② y = 2x2
③ y1 x
④ y 2x 3
⑤ y = 3x
⑥y1 ⑦ y 1 ⑧y 3
x3x2x来自.已知点P(1,-3)
在反比例函数
y
k x
的图象上,
则 k 的值是
( B)
A. 3
B. -3
4 10
2.
如图,已知点
A,B 在双曲线
y
k x
上,AC⊥x
轴于
点C,BD⊥y 轴于点 D,AC 与 BD 交于点 P,P 是 AC
的中点,若△ABP 的面积为6,则 k = 24 .
S△ABP=
1 2
S四边形BFCP,
=
1 2
(S四边形BDOF-S四边形OCPD)
E
=
1 2
(S四边形BDOF-
1 2
AC )],
解距( 12得离t2+:为52t)t=.-(-52 .4),P ∴ 点 P 的坐标为 (
点2 到直线 5 ,5 ).
BD
的距2 离为2 2- B
y D
24
P
A
C
Ox
方法总结:此类一次函数,反比例函数,二元一次方 程组,三角形面积等知识的综合运用,其关键是理清 解题思路. 在直角坐标系中,求三角形或四边形面积 时,是要选取合适的底边和高,正确利用坐标算出线 段长度.
解:当-4< x <-1时,一 次函数的值大于反比例 函数的值.
BD A
C
Ox
(2) 求一次函数解析式及 m 的值;
解:把A(-4,1 ),B(-1,2)代入 y = kx + b中,得 2
-4k + b = 1 ,
k= 1,
2 -k + b =2,
解得
2 b= 5,
2
所以一次函数的解析式为 y = 1 x + 5 . 22
把 B (-1,2)代入 y m 中,得 m =-1×2=-2. x
(3) P 是线段 AB 上的一点,连接 PC,PD,若△PCA 和 △PDB 面积相等,求点 P 坐标.
解的:∵∴设点△1 APCC的·A[t坐面-标积(-为和4)△(]=tP,1D12BBt面D+·积[522-)相,[等P2点,-到(1直t+线5
规律:过双曲线上任意一点,向两坐标轴作垂线, 一条垂线与坐标轴、原点所围成的三角形的面积
为常数 k . 2
3. 反比例函数的应用
◑利用待定系数法确定反比例函数: ① 根据两变量之间的反比例关系,设 y k ; x ② 代入图象上一个点的坐标,即 x、y 的一对
对应值,求出 k 的值; ③ 写出解析式.
C. 1
D. 1
3
3
3. 若 y a 1 xa22 是反比例函数,则 a 的值为 (A)
A. 1 B. -1 C. ±1 D. 任意实数
考点二 反比例函数的图象和性质
例1 已知点 A(1,y1),B(2,y2),C(-3,y3) 都在反比
例函数y 6 x
的图象上,则y1,y2,y3的大小关系是
针对训练
如图,设反比例函数的解析式为 y 3k (k>0). x
◑反比例函数与一次函数的图象的交点的求法
求直线 y=k1x+b (k1≠0) 和双曲线 y
k2 x
(k2≠0)
的交点坐标就是解这两个函数解析式组成的方
程组.
◑利用反比例函数相关知识解决实际问题
过程:分析实际情境→建立函数模型→明确 数学问题
注意:实际问题中的两个变量往往都只能取 非负值.
考点讲练
A. y3<y1<y2 C. y2<y1<y3
( D) B. y1<y2<y3 D. y3<y2<y1
解析:方法①分别把各点代入反比例函数求出y1,y2, y3的值,再比较出其大小即可. 方法②:根据反比例函数的图象和性质比较.
方法总结:比较反比例函数值的大小,在同一个象限 内根据反比例函数的性质比较,在不同象限内,不能 按其性质比较,函数值的大小只能根据特征确定.
x 轴于点A,交C2于点B,则△POB的面积为 1 .
针对训练
1. 如图,在平面直角坐标系中,点 M 为 x 轴正半轴 上
一点,过点 M 的直线 l∥ y 轴,且直线 l 分别与反比
例函数 y 8 (x>0)和 y k (x>0) 的图象交于P,Q
x
x
两点,若 S△POQ=14,
则 k 的值为 20 .