2014广州南沙区中考数学一模试卷(含答案)-已排版

合集下载

广东省广州市2014年中考数学试题(word版含答案)

广东省广州市2014年中考数学试题(word版含答案)

2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( )A .B .C .D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35 B .45 C .34 D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+C .624a a a ÷=D .2353()a b a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( ) A .2x - B .2x + C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A .2B .2C .6D .229.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( )A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x=-的图象交于A B 、两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos 5C =. (1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。

南沙区初中毕业班综合测试(一)数学试题及答案

南沙区初中毕业班综合测试(一)数学试题及答案

2011年南沙区初中毕业班综合测试(一)数学本试卷分选择题和非选择题两部分,共三大题25小题,共5页,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己所在学校、姓名、考场试室号、座位号、考生号,再用2B铅笔把考生号对应的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4-的绝对值是(※)A.4-B.4C.14-D.142. 下列汽车标志中既是轴对称图形又是中心对称图形的是(※)A.B.C.D.3.下列运算正确的是(※)A.246a a a+=B.246a a a=C.246()a a=D.1025a a a÷=4. 将如图所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是(※)CBA5. 命题:①对顶角相等;②两直线平行,内错角相等;③全等三角形的对应边相等。

其中逆命题为真命题的有( ※ )个。

A .0B .1C .2D .36. 已知⊙1O 的半径为4cm ,⊙O 2的半径为5cm ,若两圆相切,则两圆的圆心距是( ※ ) A .9cm B .1cm C .9cm 或1cmD .不能确定7. 实数a 、b 在数轴上的位置如图所示,则下列关系式正确的是( ※ ) A .0<-b a B .b a =C .0>abD .0>+b a8. 为了解初三学生的体育锻炼时间,小华调查了某班 45名同学一周参加体育锻炼的情况,并把它绘制成 折线统计图.那么关于该班45名同学一周参加体育 锻炼时间的说法错误的是( ) A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人 9. 一元二次方程2430x x ++=的解是( ※ ). A.1-=xB. 3-=xC. 无解D. 1-=x 或 3-=x10.如图,沿AE 折叠矩形ABCD ,点D 落在BC 边上的点F 处,已知AB=8,BC=10,则EC 的长是( ※ ) A .2 B .3C .4D .5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11.使2-x 有意义的x 的取值范围是 ﹡﹡﹡ . 12.内角和为900°的多边形是 ﹡﹡﹡ 边形.13. 二次函数2)1(2+-=x y 的图象的顶点坐标是 ﹡﹡﹡ . 14.已知扇形的半径为3,圆心角为120°,则该扇形的弧长是﹡﹡﹡, 面积等于﹡﹡﹡.(结果保留π)15. 现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.80米,方差分别为2S 甲= 0.31、2S 乙= 0.36,则身高较整齐的球队是 ﹡﹡﹡ 队(填“甲”或“乙”).FDACE10 15 20 0 7 8 9 10 11 学生数(人)518104锻炼时间(h )16. 如图,图(1)中含有1条线段,图(2)中含有3条线段,图(3)中含有6条线段, 则接下去的图(4)中应含有 ﹡﹡﹡ 条线段.(1) (2) (3)三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分9分)解不等式组20260x x ->⎧⎨-+>⎩ ,并把解集在数轴上表示出来.18.(本小题满分9分)如图有一个等腰三角形ABD ,AB =AD(1)请你用尺规作图法作出点A 关于轴BD 的对称点C ; (不用写作法,但保留作图痕迹)(2)连结(1)中的BC 和CD ,请判断四边形ABCD 的形状,并证明你的结论。

(2021年整理)2014年广州中考数学试卷答案详解

(2021年整理)2014年广州中考数学试卷答案详解

2014年广州中考数学试卷答案详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2014年广州中考数学试卷答案详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2014年广州中考数学试卷答案详解的全部内容。

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.a(0a≠)的相反数是( ).(A)a-(B)a(C)a(D)1a 【考点】相反数的概念【分析】任何一个数a的相反数为a-.【答案】A2.下列图形是中心对称图形的是().(A ) (B) (C ) (D)【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形. 【答案】D3.如图1,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =( ). (A )35 (B )45(C )34 (D )43【考点】正切的定义.【分析】4tan 3BC A AB == . 【答案】 D4.下列运算正确的是( ).(A )54ab ab -= (B)112aba b+=+ (C )624a a a ÷= (D )()3253a b a b = 【考点】整式的加减乘除运算. 【分析】54ab ab ab -=,A 错误;11a ba b ab++=,B 错误; 624a a a ÷=,C 正确;()3263a b a b =,D 错误.【答案】C5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( ).(A )外离 (B ) 外切 (C)内切 (D)相交 【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算242xx--,结果是( ).(A)2x-(B)2x+(C)42x-(D)2xx+【考点】分式、因式分解【分析】()()22242 22x xxxx x+--==+ --【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是().(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是8。

2014年广东省广州市中考数学试卷(答案)

2014年广东省广州市中考数学试卷(答案)

参考答案一、选择题1.A2.D3.D4.C5.A6.B7.B8.A9.C 10.B二、填空题11.14012.1013.x≠±114.24π15.如果两个三角形的面积相等,那么这两个三角形全等;假16.三、解答题17.解:5x-2≤3x,移项,得5x-3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.18.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).19.解:(1)A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2+x-2x-x2-3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.20.解:(1)根据题意得:a=1-(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:.21.解:(1)把x=2代入y=-,得:y=-k,把A(2,-k)代入y=kx-6,得:2k-6=k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x-6,y=-,则A点坐标为(2,-2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x-6,y=-,解方程组,得:或,所以B点坐标为(1,-4),所以B点在第四象限.22.解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:-=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.23.解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,=∴BM =,∴DM=.24.解:(1)∵抛物线y=ax2+bx-2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y =x2-x-2;∵y =x2-x-2=(x-)2-,∴C (,-).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,5,2MP∴∴P在⊙M上,∴P的对称点(3,-2),∴当-1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,-2),又∵C(,-)∴C'(-t,-),P'(3-t,-2),∵AB=5,∴P″(-2-t,-2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(-t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴-+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.25.解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN =B C.由轴对称性质,可知BF=BC,∴BN =BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG =CF=2,CF⊥BE.在Rt△CEG中,cos30CGx CE===︒∴当点F落在梯形ABCD的中位线上时,x 的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG•BE①同理可得:BC2=BG•BE②①÷②得:==.22112.162CEFBCFCF EGS S EG x S S BG CF BG ∆∆∴====∴=(0<x ≤5).(3)当△BFE 的外接圆与AD 相切时,依题意画出图形,如答图3所示. 设圆心为O ,半径为r ,则r =BE =.设切点为P ,连接OP ,则OP ⊥AD ,OP =r =.过点O 作梯形中位线MN ,分别交AD 、BC 于点M 、N ,则OM 为梯形ABED 的中位线,∴OM =(AB +DE )=(3+5-x)=(8-x ). 过点A 作AH ⊥CD 于点H ,则四边形ABCH 为矩形, ∴AH =BC =4,CH =AB =3,∴DH =CD -CH =2. 在Rt △ADH 中,由勾股定理得:AD ===2.∵MN ∥CD ,∴∠ADH =∠OMP ,又∵∠AHD =∠OPM =90°, ∴△OMP ∽△ADH ,1(8)2,,4x OM OP AD AH -∴== 化简得:16-2x =,两边平方后,整理得:x 2+64x -176=0, 解得:x 1=-32+20,x 2=-32-20(舍去) ∵0<-32+20≤5∴x =-32+20符合题意,22113916S x S ∴==-。

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案

2014年市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、;走宝考场室号、座位号,再用2B 铅笔把对应这两个的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( )A .B .C .D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b+=+ C .624aa a ÷=D .2353()ab a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .切D .相交6.计算242x x --,结果是 ( )A .2x -B .2x +C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A B .2C D .图2-①图2-②9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒.12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PEOB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”). 16. 若关于x 的方程222320xmx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分) 如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分) 已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分) 已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中,①求证:DECE =;②求点D 到BC 的距离。

2014广州中考数学一模(四中)试题

2014广州中考数学一模(四中)试题

2013学年下学期初三一模测试数学科测试试题(四中)第Ⅰ卷(30分)一、选择题(每题3分,共30分)1.16的算术平方根是()A.±2B.2C. ± 2D. 22.下列运算正确的是()A.3x-2x=1B.-2x2=-12x2C.(-a)2a3=a6D. (-a2)3=-a53.下列图形中,既是中心对称图形又是周对称图形的是()A.等边三角形B.菱形C. 等腰三角形D. 平行四边形4.实数a、b在数轴上的位置如图所示,那么化简|b-a|-b2的结果是()A.2b-aB. a-2bC. aD.-a5.如图,点A、B、C是⊙O上的三点,∠BAC=30°,BC=1,则⊙O的半径为()A.1.5B.2C. 12D. 16.袋中有同样大小的4个小球,其中3个红色,1个白色,从袋中任意地同时摸出两个球,这两个球颜色相同的概率是()A. 12B.13C.23D.147抛物线y=x2-2x+2的顶点坐标是()A.(1,1)B.(-1,1)C.(-1,2)D.(1,2)8.二次函数(a≠0)的图形不经过第三象限,则一次函数y=ax+b的图像不经过第()象限A.一B.二C. 三D. 四9.在如图所示的扇形中,∠AOC=90°,面积为4πcm2,用这个扇形围成一个圆锥的侧面,这个圆锥底面半径为()A.1cmB.2cmC.4cmD. 15 cm第5题第9题第10题10.如图⊙O1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A不重合),直线PA交⊙O2于点C,PB切⊙O2于点B,则BPPC的值为()A. 2B. 3C. 32D.62b 0 aOAC B第Ⅱ卷(120分)二、填空题(本题有6个小题,每小题3分,共18分)11.若1x代数式在实数范围内有意义,则x 的取值范围是 。

12.若2x 2-6x -1=0,则3x 2-9x = 。

13.不等式组的整数解能使一元二次方程x 2+2x +k =0没有实数解的概率为 。

广州市2014年中考数学试卷及答案(Word解析版)

广州市2014年中考数学试卷及答案(Word解析版)

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A2.下列图形是中心对称图形的是( ).(A)(B) (C) (D) 【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D4.下列运算正确的是( ).(A)(B)(C)(D)【考点】整式的加减乘除运算.【分析】,A错误;,B错误;,C正确;,D错误.【答案】C5.已知和的半径分别为2cm和3cm,若,则和的位置关系是().(A)外离(B)外切(C)内切(D)相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算,结果是().(A)(B) (C) (D)【考点】分式、因式分解【分析】【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ).(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)图2-①图2—②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为,当=60°时,菱形较短的对角线等于边长,故答案为.【答案】A9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A) (B) (C)(D)【考点】反比例函数的增减性【分析】反比例函数中,所以在每一象限内随的增大而减小,且当时,,时,∴当时,,故答案为【答案】C10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.中,已知,,则的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为【答案】12.已知是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】1013.代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.【答案】15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真"或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于的方程有两个实数根、,则的最小值为___。

2014年广州一模数学试题及答案

2014年广州一模数学试题及答案

试卷类型:A2014年广州市普通高中毕业班综合测试(一)数学(理科)2014.3本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2-B .2±C .D .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则c b为 A .2sin C B .2cos B C .2sin B D .2cos C 3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++=4.若函数()f x =R ,则实数a 的取值范围为A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞D .[]2,2-5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制2成如图1的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有A .5个B .6个C .8个D .10个 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是A .=a bB .⊥a bC .λ=a b ()0λ>D .ab8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2011B .2012C .2013D .2014 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 . 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 . 11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .12.设α为锐角,若cos 65α⎛⎫+= ⎪⎝⎭,则sin 12απ⎛⎫-= ⎪⎝⎭. 侧(左)视图图3俯视图爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 313.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB =3a 的值为 .15.(几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,. (1)求实数a 的值;(2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间.17.(本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立. (1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).18.(本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的PEABCD 图4O 1C 1D DE1A 1B4中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF A C ⊥;(2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;(3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S . (注:{}min ,a b 表示a 与b 的最小值.) 20.(本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,离心率为35,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上. 21.(本小题满分14分)已知函数()()221e x f x x x =-+(其中e 为自然对数的底数). (1)求函数()f x 的单调区间;(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.2014年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可C爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 5根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.题号 1 23 4 5 6 7 8答案 A B A D B C D A二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 11 12131415答案23421020112-1-或5- 23三、解答题:本大题共6小题,满分80分. 16.(本小题满分1)(本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 即302a+=. 解得3a =(2)方法1:由(1)得()sin 3f x x x =.所以2()[()]2g x f x =-()2sin 32x x=+-22sin 23cos 3cos 2x x x x =++-62cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z , 所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z . 方法2:由(1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z , 所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增.爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 7即ππππ36k x k -≤≤+(k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.(本小题满分1)(本小题主要考查相互独立事件、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) 解:(1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =. 所以乙,丙各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=. 所以ξ的分布列为所以19613252525E ξ=⨯+⨯=.ξ 1 3P1925625818.(本小题满分1)(本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)推理论证法:(1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D ,所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. (2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FGBH ,则FGAE .连结EG ,则A ,E ,G ,F 四点共面.因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面.(3)延长EF ,DB ,设EFDB M =,连结AM ,则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成二面角的平面角.因为123132aMB BF MD DE a ===,23=,1D ABCD EF 1A1B1C MN1D ABCD EF 1A1B1C 1DABCDE F 1A1B 1C G H爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 9所以22MB a =.在△ABM 中,AB a =,135ABM ∠=, 所以2222cos135AM AB MB AB MB =+-⨯⨯⨯ ()222222222a aa a ⎛=+-⨯⨯⨯- ⎝⎭213a =. 即13AM a =. 因为11sin13522AM BN AB MB ⨯=⨯⨯, 所以222sin13521321313a a AB MB BN a AMa⨯⨯⨯===.所以2222121371331339FN BF BN a a ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以6cos 7BN FNB FN ∠==.故平面AEF 与平面ABCD 所成二面角的余弦值为67.空间向量法:(1)证明:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则(),0,0A a ,()1,0,A a a ,()10,,C a a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭,所以()11,,0AC a a =-,1,,6EF a a a ⎛⎫=- ⎪⎝⎭. 因为221100AC EF a a =-++=, 所以11AC EF ⊥.1D ABC D EF 1A1B1C xyz10所以11EF A C ⊥.(2)解:设()0,,G a h ,因为平面11ADD A 平面11BCC B ,平面11ADD A 平面AEGF AE =,平面11BCC B 平面AEGF FG =,所以FGAE .所以存在实数λ,使得FG AE λ=. 因为1,0,2AE a a ⎛⎫=- ⎪⎝⎭,1,0,3FG a h a ⎛⎫=-- ⎪⎝⎭, 所以11,0,,0,32a h a a a λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 所以1λ=,56h a =. 所以1C G 15166CC CG a a a =-=-=. 故当1C G 16a =时,A ,E ,G ,F 四点共面. (3)解:由(1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 11()()2220302667326a a⨯+⨯-+⨯==+-+⨯. 故平面AEF 与平面ABCD 所成二面角的余弦值为67.第(1)、(2)问用推理论证法,第(3)问用空间向量法: (1)、(2)给分同推理论证法. (3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭,则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭.设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)()()2220302667326a a⨯+⨯-+⨯==+-+⨯. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 19.(本小题满分1)(本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)1D ABC DEF 1A1B1C xyz12解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2,所以112n n b -=⨯, 即12n n b -=.(2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立.②假设当n k =()6k ≥时,不等式成立,即1228k k ->+.则有()()()()122222821826218kk k k k k -=⨯>+=++++>++.这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 13则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n=-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦ ()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.(本小题满分1)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设双曲线E 的半焦距为c ,由题意可得22354.c a c a ⎧=⎪⎨⎪=+⎩解得5a =.14(2)证明:由(1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y , 因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-. 因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.(3)证法1:设点(),H x y ,且过点5,13P ⎛⎫⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥,爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 15得2221224451x x y λλ-=⨯--. ⑦ 将⑤代入⑦,得443y x =-. 所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在. 设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩消去y 得()()()22229453053255690k x k k x k k -+---+=. 因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩设点(),H x y ,由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④①② ③16因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤ 联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.) 21.(本小题满分1)(本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) 解:(1)因为()()221e x f x x x =-+,所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e x x x =+-. 当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞. 当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. (2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由(1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩也就是方程2(1)e xx x -=有两个大于1的相异实根. 设2()(1)e (1)xg x x x x =-->,则2()(1)e 1xg x x '=--. 设()h x =2()(1)e 1xg x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增. 因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->,爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 17所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e xx x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”.。

中考数学试卷2014年广州卷(有答案)

中考数学试卷2014年广州卷(有答案)

2014年广州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.a(a≠0)的相反数是( )A.-aB.a2C.|a|D.12.下列图形中,是中心对称图形的是( )3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=( )A. B. C. D.4.下列运算正确的是( )A.5ab-ab=4B.1+1=C.a6÷a2=a4D.(a2b)3=a5b35.已知☉O1和☉O2的半径分别为2 cm和3 cm,若O1O2=7 cm,则☉O1和☉O2的位置关系是( )A.外离B.外切C.内切D.相交6.计算-,结果是( )-A.x-2B.x+2C.-D.7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )A.中位数是8B.众数是9C.平均数是8D.极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图①,测得AC=2.当∠B=60°时,如图②,AC=()A. B.2 C. D.29.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<010.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连结BG、DE,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a-b)2·S△EFO=b2·S△DGO.其中结论正确的个数是( )A.4个B.3个C.2个D.1个第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角..的度数是°.12.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D,E,PD=10,则PE的长度为.有意义时,x应满足的条件为.13.代数式1-114.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积...为.(结果保留π)15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是命题(填“真”或“假”).16.若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+的最小值为.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:5x- ≤ x,并在数轴上表示解集.18.(本小题满分9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别交于点E、F,求证:△AOE≌△COF.19.(本小题满分10分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数y=kx-6的图象与反比例函数y=-的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,△ABC中,AB=AC=4,cos C=.(1)动手操作:利用尺规作以AC为直径的☉O,并标出☉O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0)、B(4,0),抛物线y=ax2+bx- (a≠0)过点A、B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t0个单位,点C、P平移后对应的点分别记为C'、P',是否存在t,使得首尾依次连接A、B、P'、C'所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB= ,BC= ,CD= ,点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连结CF,设CE=x,△BCF的面积为S1,△CEF 的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;,并写出x的取值范围;(2)试用x表示1的值.(3)当△BFE的外接圆与AD相切时,求1答案全解全析:一、选择题1.A 因为a+(-a)=0,所以-a 为a 的相反数,故A 选项正确.2.D A 选项不是中心对称图形,故本选项错误;B 选项是轴对称图形,不是中心对称图形,故本选项错误;C 选项是轴对称图形,不是中心对称图形,故本选项错误;D 选项是中心对称图形,故本选项正确.故选D.3.D ∵AB= ,BC= ,∠ABC=90°,∴tan A= =.故选D.4.C A 选项,合并同类项的结果为4ab,不是4,故本选项错误;B 选项,1 +1 =,故本选项错误;C 选项,a 6÷a 2=a 6-2=a 4,故本选项正确;D 选项,(a 2b)3=(a 2)3·b 3=a 6b 3,故本选项错误.故选C.5.A ∵r 1=2 cm,r 2=3 cm,O 1O 2=7 cm,∴O 1O 2>r 1+r 2,∴两圆外离.故选A.6.B -- =( )( - )- =x+2,故选B.7.B 将这组数据按从小到大的顺序排列为7,7,8,8,9,9,9,10.由此可得这组数据的中位数是8 9=8.5,众数是9,平均数是18(7× +8× +9× +10×1)=678,极差是10-7=3,故选B.8.A ∵题图①为正方形,AC 为其对角线,∴BC=AC= .∵题图②为菱形,∠B=60°,连结AC,∴△ABC 为等边三角形,∴AC=BC= .故选A. 9.C ∵k<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2,∴y 1-y 2>0.故选C. 评析 本题考查了正比例函数的增减性,可借助函数图象求解,属容易题.10.B 延长BG 交DE 于P,∵四边形ABCD 和四边形CEFG 都是正方形,∴BC=DC,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE;∵∠DCE=90°,∴∠CDE+∠CED=90°,∵△BCG≌△DCE,∴∠CDE=∠CBG,∴∠CBG+∠CED=90°,∴∠BPE=90°,∴BG⊥DE;∵OG∥CE,∴△DGO∽△DCE,∴= ,∴≠;易知△DGO∽△EFO,∴S △DGO ∶S △EFO == -,∴(a -b)2·S △EFO =b 2·S △DGO .∴ 个结论中有3个是正确的,故选B. 二、填空题 11.答案 140解析 ∵∠C=180°-∠A -∠B=180°-60°-80°= 0°, ∴∠C 的外角的度数是180°- 0°=1 0°. 12.答案 10解析 ∵角平分线上的点到角两边的距离相等,∴PE=PD=10. 13.答案 x≠±1解析 ∵分式的分母不能为0,∴ x -1≠0,∴x≠±1.评析 本题考查了分式的意义和绝对值的性质,属于容易题. 14.答案 π解析 由三视图知,该几何体为圆锥,其中底面直径为6,高为4,所以母线长为 =5,所以侧面积为1× π× × =1 π,又底面积为9π,所以该几何体的全面积为 π. 评析 本题将几何体的三视图与圆锥的全面积结合起来进行考查,既考查了学生的观察能力,又考查了运用公式的能力以及计算能力,属中等难度题.15.答案 如果两个三角形的面积相等,那么这两个三角形全等;假解析 一个命题的逆命题,就是将原命题的条件与结论互换,因为面积相等的两个三角形不一定全等,所以其逆命题为假命题.16.答案解析 ∵关于x 的方程x 2+2mx+m 2+3m-2=0有两个实数根,∴( m)2-4(m 2+3m- )≥0,∴m≤,由根与系数的关系知x 1+x 2=-2m,x 1x 2=m 2+3m- ,∴x 1(x 2+x 1)+ =(x 1+x 2)2-x 1x 2=4m 2-(m 2+3m-2)=3 -1+,当m=1时,x 1(x 2+x 1)+ 取得最小值,最小值为.评析 本题考查了一元二次方程根的判别式,根与系数的关系,以及二次函数的最值问题,是一道综合性较强的试题,对考生的综合能力要求较高,属较难题. 三、解答题17.解析 5x- ≤ x, x≤ , x≤1.解集在数轴上表示如下:18.证明 ∵四边形ABCD 为平行四边形, ∴AB∥CD,OA=OC, ∴∠EAO=∠FCO, 在△AOE 和△COF 中,∠ ∠ ,,∠ ∠ ,∴△AOE≌△COF(ASA).19.解析 (1)A=(x+2)2+(1-x)(2+x)-3=x 2+4x+4-x 2+x-2x+2-3=3x+3.( )∵(x+1)2=6,∴x+1=± 6,∴A= x+ = (x+1)=± 6. 20.解析 (1)a=0.24,b=16. ( ) 60°×0.16= 7.6°.(3)男生编号为A 、B 、C,女生编号为D 、E,由枚举法可得AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE,共10种, 其中DE 为女女组合,∴所抽取的两名学生中至多有一名女生的概率为10-110=910. 21.解析 (1)联立两函数解析式可得 -6, - ,即kx-6=- . 将x=2代入该方程得2k-6=-,解之得k=2, 则两函数分别为y=2x-6,y=- .将x=2代入y=2x-6得y=-2,则点A 的坐标为(2,-2).(2)由 -6, -得2x-6=- ,∴x 2-3x+2=0, 解之得x 1=1,x 2=2,∴y 1=-4,y 2=-2,即点B 的坐标为(1,-4),位于第四象限. 22.解析 (1) 00×1. = 0(千米).(2)设高铁的平均速度为x 千米/时,则普通列车的平均速度为x÷ . =x 千米/时,由题意可得 00+3= 0x,解得x=300,经检验,x=300是原分式方程的解.∴高铁的平均速度是300千米/时.答:(1)普通列车的行驶路程为520千米.(2)高铁的平均速度是300千米/时. 23.解析(1)如图所示即为所求.( )①证明:如图,连结AE,∵AC为直径,∴∠AEC=90°,又AB=AC,∴∠BAE=∠CAE,∴=.②如图,连结CD,过点D作DF⊥BC于F, ∵AB=AC= ,cos∠ACB=,∴EC=AC·cos∠ACB= ,∴BC= CE=8,AE=-C=8.∵AC为直径,∴∠ADC=90°,∴S△ABC=1AB·CD,又∠AEC=90°,∴S△ABC=1AE·BC,∴1AB·CD=1AE·BC.∴CD=16,∴AD=-C=1 ,∴BD=AB-AD=8.∵S△DBC=S△DBC,∴1BD·CD=1DF·BC,∴DF=16,∴点D到BC的距离为16.24.解析(1)∵抛物线过A,B两点,∴--0,16-0,解得1,-,∴抛物线的解析式为y=1x2-x-2.解析式转化为顶点式为y=1 - - 8, ∴点C 的坐标为 ,- 8. (2)由题意知点P 在x 轴的下方,设抛物线和y 轴的交点为D,则D(0,-2),连结AD,BD.当点P 与点D 重合时,AD= O = ,BD= O =2 ,AB=5,故AD 2+BD 2=AB 2,即∠ADB=90°.由抛物线的对称性可得,点D 关于抛物线对称轴的对称点E(3,-2)满足∠AEB=90°,以AB 为直径作圆,则D,E 均在圆上,抛物线上点A 到D 及E 到B 之间的部分在圆内,当P 在这两个范围内运动时,满足∠APB 为钝角,∴m 的取值范围为-1<m<0或3<m<4.( )∵m> ,∴P 的坐标为(3,-2),将BP 沿PC 方向平移,使得P 与C 重合,B 落在B'处,作y=- 8,则C 在这条直线上,以y=- 8这条直线为对称轴,作B'的对称点B″,连结AB″,∵AB 与CP 为定值,则只需求AC+BP 的最小值即可,∴AC+BP=AC+B'C=AC+CB″≥AB″,∴当C 为AB″与直线y=- 8的交点时,AC+BP 最小,根据平移性质可得,B'的坐标为 ,-98 ,B″的坐标为 ,- 18 ,设直线AB″的解析式为y=kx+b(k≠0),∴ - 0,k b - 18,解得 - 1 8,- 1 8,∴y=- 1 8x- 1 8,当y=- 8时,x=9 8 ,-9 8 =1 1.∴t=1 1,抛物线应该向左平移.25.解析 (1)如图所示,点F 在直角梯形ABCD 的中位线MN 上,设CF 与EB 交于点G,由题意可知BF=BC=4,∵MN为直角梯形ABCD的中位线,∴MN⊥BC,BN=1BC= ,∴BN=1BF,∴∠BFN= 0°,∠FBN=60°,又BF=BC,∴△BFC为等边三角形,∴FC= ,∠FCB=60°,∴∠ECG= 0°,由题意可知EB垂直平分FC,∴GC=1FC= ,∠EGC=90°,∴CE=cos∠=,即x=.(2)如图所示,设CF与EB交于点G.∵∠EGC=90°,∠ECB=90°,∴∠GEC+∠ECG=90°,∠ECG+∠GCB=90°,∴∠GEC=∠GCB,又∠EGC=∠CGB=90°,∴△ECG∽△CBG,∴△△==16,∵G为FC的中点,∴S1=2S△BGC,S2=2S△EGC,∴1=△△=△△=16(0<x≤ ).(3)如图所示,不妨设EB与MN交于点O,∵MN是梯形ABCD的中位线,∴MN=1(AB+CD)= ,MN∥CD,∴==1,∴BO=OE.又∠BFE=90°,∴点O为△BFE的外接圆的圆心,∵BO=OE,NB=NC,∴NO=1CE=1x,OM=4-1x.不妨设△BFE的外接圆与AD相切于点H,连结OH, 故OH=1BE,OH⊥AD,过点A作AP⊥CD于P,可得四边形APCB为矩形,∴CP=AB= ,AP=BC= ,∴DP= ,∴AD=D=2,∴sin D==,∵MN∥CD,∴∠D=∠OMH,∴sin∠OMH=,∴OH=OM·sin∠OMH=-1x,∴BE= OH=-1x.在Rt△BCE中,∠BCE=90°,∴EC2+BC2=EB2,∴ 2+x2=-1x,解得x=20-32或x=-20-32(舍去), ∵0< 0- ≤ ,∴x= 0-32符合题意,此时1=16=139-80.。

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案D③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒.12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOECOF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ; (2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x=-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案2014年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. (0)a a≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( )A .B .C .D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b+=+ C .624aa a ÷=D .2353()ab a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒.12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PEOB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分) 如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOECOF ∆≅∆.19.(本小题满分10分) 已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分) 已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos 5C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中,①求证:DECE =;②求点D 到BC 的距离。

广州市南沙一中2014届九年级上期中考试数学试卷及答案

广州市南沙一中2014届九年级上期中考试数学试卷及答案

A、6 答案:DC
B、 5
C、5
6
D、
10、若关于 X 的方程 x2 2 1 2 0 有实数根,则 k 的取值范围是:( )
1 A、k<2
B、k≤12 k
x C 、k k
1 >2
1 D、k≥2
答案:B
二、填空题(每小题 3 分,共 18分)
11.若二次根式 x 1
x

有意义,则 的取值范围是
A
B
C
15.已知⊙O1 与⊙O2 相切,⊙O 1的半径为 3cm,且O1O2 =8,则
⊙ O2 的半径为

答案:5cm或 11cm
16、Rt△ABC 中,∠C=90°,其内切圆⊙O,切点分别是 D、E、F,如果 AC=3cm,BC=4cm,则内切
圆⊙O 的半径等于
.
答案:1cm
三、解答题(共 102分)
B C
O
E
A
答案:D
7 图
8、4 张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转 180°后得到如图(2)所示,那么
她所旋转的牌从左起是(

A.第一张、第二张
B.第二张、第三张
C.第三张、第四张
D.第四张、第一张
答案:A
(1)
(2)
9.已知点 A(a, 3) 是点 B(2,b) 关于原点 O 的对称点,则 a+b 的值为( )
答案:C
7、在一幅长为 80cm,宽为 50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形
挂图,如图 5 所示,如果要使整个挂图的面积是 5400cm2

,设金色纸边的宽为 x cm,那么 x 满足的

广州市2014年中考数学试题和答案

广州市2014年中考数学试题和答案

广州市2014年初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分)1.a(0a≠)的相反数是( A )(A)a-(B)a(C)a(D)1a 2.下列图形是中心对称图形的是( D ).(A)(B)(C)(D)3.如图1,在边长为1的小正方形组成的网格中,ABC△的三个顶点均在格点上,则tan A=( D )(A)35(B)45(C)34(D)434.下列运算正确的是( C )(A)54ab ab-=(B)112a b a b+=+(C)624a a a÷=(D)()3253a b a b=5.已知1O和2O的半径分别为2cm和3cm,若127cmO O=,则1O和2O的位置关系是( A )(A)外离(B)外切(C)内切(D)相交6.计算242xx--,结果是( B )(A)2x-(B)2x+(C)42x-(D)2xx+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( B )(A)中位数是8 (B)众数是9(C)平均数是8 (D)极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当90B=︒∠时,如图2-①,测得2AC=,当=60B︒∠时,如图2-②,AC=( A )(A(B)2 (C(D)AB CDDCBA图2-①图2-②9.已知正比例函数y kx=(0k<)的图象上两点A(1x,1y)、B(1x,2y),且12x x<,则下列不等式中恒成立的是( C ).(A)12y y+>(B)120y y+<(C)12y y->(D)120y y-<10.如图3,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG DE、,DE和FG相交于点O.设A B a=,CG b=(a b>).下列结论:①BCG DCE△≌△;②BG DE⊥;③DG GOGC CE=;④()22EFO DGOa b S b S-⋅=⋅△△.其中结论正确的个数是( B )(A)4个(B)3个(C)2个(D)1个第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.ABC△中,已知60A=︒∠,80B=︒∠,则C∠的外角的度数是_____.【答案】140︒12.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D E、,10PD=,则PE的长度为_____.【答案】1013.代数式11x-有意义时,x应满足的条件为______.【答案】1x≠±FEGODCBA14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留π). 【答案】24π俯视图左视图主视图15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则()21212x x x x ++的最小值为 。

广州市2014年中考模拟试题1数学(附答案)资料

广州市2014年中考模拟试题1数学(附答案)资料

2014年广州市中考数学模拟试题1本试卷分选择题和非选择题两部分,共三大题25小题,共5页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.用四舍五入法取267304的近似值,要求保留二个有效数字,结果是( )A.2.7×105B.270000C.2.67×105D.2.6×1052.下列说法正确的是( )A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数3.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2﹣1D.2+14.若,则代数式x y的值为( )A.4B.C.﹣4D.5.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为( )A.3B.-3C.9D.﹣96.若不等式3x﹣m≤0的正整数解是1、2、3.则m的取值范围为( )A.m<12B.m≥9C.9≤m≤12D.9≤m<127.若a、b、c为△ABC的三边,那么关于代数式(a﹣b)2﹣c2的值,以下判断正确的是( )A.大于0B.等于0C.小于0D.以上均有可能8.自由转动转盘,指针停在白色区域的机会为的转盘是( )A. B. C. D.9.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )A.3cmB.5cmC.6cmD.8cm10.如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.其中正确的个数是( )ABOA.1个B.2个C.3个D.4个第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.﹣3的倒数是.12.不等式组的整数解为.13.若x2﹣2ax+16是完全平方式,则a= .14.如图,一次函数y=z+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为 .第14题第15题第16题15.如图,AB是⊙O的直径,CD是圆上的两点(不与A、B重合),已知BC=2,tan∠ADC=,则AB= .16.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n 个正方形对角线交点M n的坐标为.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(每小题5分,共10分)(1)解方程:; (2)解不等式组:.18.已知a+b+c=0,a2+b2+c2=1,求代数式a(b+c)+b(a+c)+c(a+b)的值.(8分)19.已知,如图,点D在边BC上,点E在△ABC外部,DE交AC于F,若AD=AB,∠1=∠2=∠3.求证:BC=DE.(10分)20.如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.(10分)21.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?(12分)22.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(12分)(1)根据图示填写下表;班级平均数(分) 中位数(分) 众数(分)九(1) 85 85九(2) 80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.(方差公式:.23.如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.(12分)24.如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(14分)(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.25.(14分)如图,抛物线与直线交于点A(4,2)、B(0,﹣1).(1)求抛物线的解析式;(2)点D在直线l下方的抛物线上,过点D作DE∥y轴交l于E、作DF⊥l于F,设点D的横坐标为t.①用含t的代数式表示DE的长;②设Rt△DEF的周长为p,求p与t的函数关系式,并求p的最大值及此时点D的坐标;(3)点M在抛物线上,点N在x轴上,若△BMN是以M为直角顶点的等腰直角三角形,请直接写出点M的坐标.D、两个数互为倒数,则它们的相同次幂仍互为倒数,正确.故选D.3、解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选D.4、解:根据题意,得,解得x=,∴y=﹣2; ∴x y==4.故选A.5、解:若a是方程2x2﹣x﹣3=0的一个根,则有2a2﹣a﹣3=0, 变形得,2a2﹣a=3, 故6a2﹣3a=3×3=9.故选C.故选C.8、解:A停在白色区域的概率为:=; B停在白色区域的概率为:=;C停在白色区域的概率为:=;D停在白色区域的概率为:=.故选C.9、解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5∴扇形的半径为5cm,故选B.∵EF∥BC,∴∠OGH=∠OBC,∠OHG=∠OCB,已知四边形ABCD是梯形,不一定是等腰梯形,即∠OBC和∠OCB不一定相等,即∠OGH和∠OHG不一定相等,∠GOH和∠OGH或∠OHG也不能证出相等, ∴说△OGH是等腰三角形不对,∴③错误;∵EF∥BC,AE=BE(E为AB中点),∴BG=DG,∴④正确;∵EF∥BC,AE=BE(E为AB中点),∴AH=CH,∵E、F分别为AB、CD的中点,∴EH=BC,FG=BC,∴EH=FG,∴EG=FH,∴EH﹣GH=FG﹣GH,∴EG=HF,∴⑤正确;∴正确的个数是4个,故选D.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11、解:﹣3的倒数是﹣.12、解:由①得x>﹣, 由②得x<,不等式组的解集为﹣<x<,则不等式组的整数解为0,1,2.13、解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.14、解:由P(a,b),Q(c,d)两点在一次函数y=z+5的图象上,则b=a+5,d=c+5,即:a﹣b=﹣5,c﹣d=﹣5.16、解:设正方形的边长为1,则正方形四个顶点坐标为O(0,0),C(0,1),B1(1,1),A1(1,0); 根据正方形对角线定理得M1的坐标为();同理得M2的坐标为(,);M3的坐标为(,),…,依此类推:M n坐标为(,)=(,)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17、解:(1)去分母得,2+2x﹣4=x+1,移项得,2x﹣x=1+4﹣2,合并同类项得,x=3,经检验,x=3是原方程的根;(2),由①得,x>1;由②得,x≤3,∴∠2+∠DAC=∠1+∠DAC,∴∠BAC=∠DAE,又∵∠DFC=∠AFE,∠3=∠1,∴由三角形的内角和定理得:∠C=∠E,∵在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴BC=DE.20、解:由直线与x轴交于点A的坐标为(﹣1,0), ∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.22、解:(1)=(70+100+100+75+80)=85分,众数为100分中位数为:85分;班级平均数(分) 中位数(分) 众数(分)九(1) 85 85 85九(2) 85 80 100(2)九(1)班成绩好些,因为两个班级的平均数相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好些;(3)S12=[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70分2,S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160分2.23、解:解法一、连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.=(26﹣10)×,=8.解法二、连接HE、EF、FG、GH,证△DHG≌△BFE, 推出HG=EF, 推理HE=GF,则四边形EFGH由条件知是平行四边形,面积为4×6﹣×3×2﹣×3×2﹣×4×1﹣×4×1=14,24、(1)直线DE与⊙O的位置关系是相切,证明:连接OD,∵AO=BO,BD=DC,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为半径,直线DE是⊙O的切线,即直线DE与⊙O的位置关系是相切;(2)解:∵OD∥AC,∠BAC=60°,∴∠DOB=∠A=60°,∵DE是⊙O切线,∴∠ODF=90°,∴∠F=30°,∴FO=2OD=12,由勾股定理得:DF=6,∴阴影部分的面积S=S△ODF﹣S扇形DOB=×6×6﹣=18﹣6π.∴BG==,∴△OBG的周长为1++=4;∵DE∥y轴,∴△GBO∽△DEF,∴=∴p=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,p max=,此时D(2,﹣).(3)以点M在y轴左侧为例,如右图;过M作x轴的垂线,设垂足为R;若点B作MR的垂线,设垂足为S; ∵在△MNR与△BMS中,,∴△MNR≌△BMS,MR=BS=OR;当点M在x轴左侧时,与上相同,所以可设M(a,±a);当点M的坐标为(a,a)时,有:a2﹣a﹣1=a,解得:a=; 当点M的坐标为(a,﹣a)时,有:a2﹣a﹣1=﹣a,解得:a=;。

2014年广东省广州市中考数学试卷(附答案与解析)

2014年广东省广州市中考数学试卷(附答案与解析)

数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前广东省广州市2014年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(0)a a ≠的相反数是( ) A .a -B .2aC .||aD .1a 2.下列图形中,是中心对称图形的是( )AB C D3.如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .43 4.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+ C .624a a a ÷= D .2353()a b a b =5.已知1O 和2O 的半径分别为2 cm 和3 cm ,若12O O =7 cm ,则1O 和2O 的位置关系是( ) A .外离B .外切C .内切D .相交6.计算242x x --,结果是( )A .2x -B .2x +C .42x - D .2x x+ 7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ) A .中位数是8B .众数是9C .平均数是8D .极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=时,如图1,测得2AC =.当60B ∠=时,如图2,AC =( )AB .2CD.9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y ,22(,)B x y ,且12x x <,则下列不等式中恒成立的是( ) A .120y y +> B .120y y +< C .120y y ->D .120y y -<10.如图,四边形ABCD ,CEFG 都是正方形,点G 在线段CD 上,连接BG ,DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ≅△△;②BG DE ⊥;③DG GOGC CE=; ④22()EFO DGO a b S b S -=△△.1cm其中结论正确的个数是()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)11.已知ABC △中,60A ∠=,80B ∠=,则C ∠的外角的度数是.12.已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D ,E ,10PD =,则PE 的长度为 .13.代数式1|1|x -有意义时,x 应满足的条件为 .14.一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积...为 (结果保留π).15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”.写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16.若关于x 的方程222320x mx m m +++-=有两个实数根1x ,2x ,则21212()x x x x ++的最小值为 .三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别交于点E ,F ,求证:AOE COF ≅△△.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-. (1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.21.(本小题满分12分)数学试卷 第5页(共46页) 数学试卷 第6页(共46页)已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A ,B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍. (1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,ABC △中,AB AC ==cos C =(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中, ①求证:DE CE =; ②求点D 到BC 的距离.24.(本小题满分14分)已知平面直角坐标系中两定点(1,0)A -,(40)B ,,抛物线22(0)y ax bx a =+-≠过点,,A B 顶点为C ,点(,)(0)P m n n <为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标; (2)当APB ∠为钝角时,求m 的取值范围;(3)若3,2m >当APB ∠为直角时,将该抛物线向左或向右平移5(0)2t t <<个单位,点C ,P 平移后对应的点分别记为,C P '',是否存在t ,使得首尾依次连接,,,A B P C ''所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=,3AB =,4BC =,5CD =,点E 为线段CD 上一动点(不与点C 重合),BCE △关于BE 的轴对称图形为BFE △,连接CF ,设CE x =,BCF △的面积为1S ,CEF △的面积为2S . (1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示21SS ,并写出x 的取值范围;(3)当BFE △的外接圆与AD 相切时,求21S S 的值.数学试卷 第7页(共46页)数学试卷 第8页(共46页)广东省广州市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为任何一个数a 的相反数都为a -,故选A . 2.【答案】D 【考点】相反数.【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是寻找对称中心,旋转180度后与原图重合.选项A ,B 既不是轴对称图形也不是中心对称图形;选项C 是轴对称图形,不是中心对称图形;选项D 是中心对称图形不是轴对称图形,故选D. 【考点】轴对称图形,中心对称图形. 3.【答案】D【解析】由图可知,在Rt ABC △中,4tan 3BC A AB ==,故选D. 【考点】正切 4.【答案】C【解析】因为54ab ab ab -=,A 错误;11a ba b ab++=,B 错误;62624a a a a -÷==,C 正确;2363()a b a b =,D 错误,故选C. 【考点】整式运算 5.【答案】A【解析】因为2357+=<,根据两圆圆心距大于两半径之和,两圆外离,故选A. 【考点】圆,圆的位置关系. 6.【答案】B【解析】先将分式的分子因式分解,再约分,即原式(2)(2)22x x x x +-==+-,故选B.【考点】分式的化简. 7.【答案】B【解析】中位数是将一组数据按从大到小或从小到大的顺序排列后,最中间的一个数据或中间两个数据的平均数;众数是一组数据中出现次数最多的数;求平均数的方法是将这组数据的总和除以这组数据的5 / 23个数;求极差的方法是用最大值减去最小值.故这组数据的中位数是8.5;众数是9;平均数是8.375;极差是3,故选B.【考点】中位数,众数,平均数,极差. 8.【答案】A【解析】由正方形的对角线长为2可知正方形和菱形的边长为AB 当60B ∠=°时,ABC △是等边三角形,所以AC AB == A.【考点】正方形,有60°内角的菱形的对角线与边长的关系. 9.【答案】C【解析】正比例函数y kx =,当0k <时,y 随x 的增大而减小,因为12x x <,故12y y >,所以120y y ->,故选C.【考点】正比例函数. 10.【答案】B【解析】①由BC DC =,CG CE =,BCG DCE ∠=∠可证(SAS)BCG DCG △≌△,故①正确;②延长BG交DE 于点H ,由①可得CDE CBG ∠=∠,DGH BGC ∠=∠(对顶角相等),∴90BCG DHG ∠=∠=°,即BG DE ⊥,故②正确;③由DGO DCE △∽△可得DG GODC CE=,故③不正确;④EFO DGO △∽△,∴222()()EFO DGO S EF b S DG a b ==-△△,∴22()EFO DGO a b S b S -=△△,故④正确.所以正确的结论有3个,故选B. 【考点】正方形的性质,全等三角形,相似三角形.第Ⅱ卷二、填空题 11.【答案】140°【解析】根据三角形的一个外角等于它不相邻的两个内角的和,因此C ∠的外角6080=140A B =∠+∠=+°°°,故答案是140°. 【考点】三角形外角的计算. 12.【答案】10【解析】根据角平分线的点到角的两边距离相等,所以10PE PD ==,故答案是10. 【考点】角平分线的性质. 13.【答案】1x ≠±数学试卷 第11页(共46页)数学试卷 第12页(共46页)【解析】由题意知分母不能为0,即||10x -≠,解得1x ≠±,故答案是1x ≠±. 【考点】绝对值,分式成立的意义. 14.【答案】24π【解析】从三视图得到该几何体为圆锥,全面积=侧面积+底面积,由三视图得圆锥的底面半径3r =,底面周长2π6πl r ==,圆锥的母线长为R ,根据勾股定理5R ==,底面积为圆的面积22ππ39πr ==g ,侧面积为扇形的面积116π515π22lR =⨯⨯=,全面积为9π15π24π+=,故答案是24π.【考点】三视图,圆锥面积的计算.15.【答案】如果两个三角形的面积相等,那么这两个三角形全等; 假【解析】将命题的条件与结论互换可得到它的逆命题;判断该逆命题的真假可举一个反例,如同底等高的三角形面积相等,却不一定全等. 【考点】命题与逆命题的转换,判断真假命题. 16.【答案】54【解析】由根与系数的关系得122x x m +=-,21232x x m m =+-,原式222212121212121212()2()x x x x x x x x x x x x x x =++=++-=+-, 代入得原式222215(2)(32)3323()24m m m m m m =--+-=-+=-+, 因为方程有实数根,∴0∆≥,即22(2)4(32)0m m m -+-≥,解得23m ≤,因为1223<,所以当12m =时,2153()24m -+取到最小值,最小值是54.【考点】一元二次方程根与系数的关系,最值的求法.【提示】本题应利用根与系数的关系解题,利用根的判别式求最值;不少考生找不到解题思路,另外计算也易错误. 三、解答题17.【答案】移项得532x x -≤. 合并同类项得22x ≤. ∴ 1x ≤解集在数轴上表示如下:7 / 23【考点】一元一次不等式的解法,数轴,代数运算能力. 18.【答案】证法一:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠,AEO CFO ∠=∠.∵EAO FCO ∠=∠,AEO CFO ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法二:在平行四边形ABCD 中,AB CD ∥, ∴AEO CFO ∠=∠.∵AEO CFO ∠=∠,AOE COF ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法三:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠.∵EAO FCO ∠=∠,AO CO =,AOE COF ∠=∠. ∴(AAS)AOE COF △≌△.【考点】平行四边形的性质,全等三角形的判定,考查几何推理能力和空间观念.19.【答案】(1)解法一:2(2)(1)(2)3A x x x =++-+-2244223x x x x x =++++---33x =+.解法二:2(2)(1)(2)3A x x x =++-+-(2)(21)3x x x =+++-- 3(2)3x =+-33x =+(2)解法一:∵2(1)6x +=,∴1x +=∴333(1)A x x =+=+=±解法二:∵2(1)6x +=,∴1x =-±,数学试卷 第15页(共46页)数学试卷 第16页(共46页)∴333(13A x =+=-+=±.【考点】整式的运算,完全平方公式,一元二次方程解法等.20.【答案】(1)解法一:10.180.160.320.100.24a =----=,501285916b =----=. 解法二:∵9120.18a=, ∴0.24a =, ∵90.180.32b =, ∴16b =.(2)“一分钟跳绳”对应的扇形的圆心角度数为3600.1657.6°°⨯=. (3)解法一:分别用男1、男2、男3、女1、女2表示这5位同学.从中抽取2名,所有可能出现的结果有(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共有10种,它们出现的可能性相同.所有的结果中,满足抽取两名,至多有一名女生的结果有9种. ∴9()=10P 至多有一名女生.由表知所有出现等可能的结果有20种,其中满足条件的结果有8种. ∴9()=10P 至多有一名女生 【考点】统计,概率等.21.【答案】(1)解法一:∵两个函数图像相交于A ,B ,且点A 的横坐标为2, ∴把2x =分别代入两个函数解析式,得26,2,2y k k y =-⎧⎪⎨=-⎪⎩9 / 23解得2,2,k y =⎧⎨=-⎩∴k 的值为2,点A 坐标为(2,2)-. 解法二:依题意,得2262kk -=-, 解得2k =,∴一次函数的解析式为26y x =-. 再将2x =代入得2y =-, ∴点A 坐标为(2,2)-.(2)由(1)得,一次函数的解析式为26y x =-,反比例函数的解析式为4y x=-,判断点B 所在象限有以下两种解法:解法一:∵一次函数26y x =-的图像经过第一、三、四象限,反比例函数4y x=-的图像经过第二、四象限,∴它们的交点只能在第四象限,即点B 在第四象限.解法二:解方程组26,4,y x y x =-⎧⎪⎨=-⎪⎩,得112,2,x y =⎧⎨=-⎩221,4,x y =⎧⎨=-⎩ ∴点B 坐标为(1,4)-. ∴交点B 在第四象限.【考点】一次函数,反比例函数的图像及性质等,待定系数法,数形结合. 22.【答案】(1)400 1.3520⨯=, 答:普通列车的行驶路程是520千米.(2)解法一:设普通列车的平均速度为/x 千米时,则高铁的平均速度为2.5/x 千米时,根据题意列方程得52040032.5x x-=, 解得120x =.经检验,120x =是原方程的解且符合题意, 所以2.5300x =.答:高铁的平均速度为300/千米时. 解法二:设普通列车的行驶时间为y 小时,数学试卷 第19页(共46页)数学试卷 第20页(共46页)则高铁的行驶时间为(3)y -小时,根据题意列方程得5204002.53y y ⨯=-, 解得143y =.经检验,143y =是原方程的解且符合题意, 所以4003003y =-. 答:高铁的平均速度为300/千米时. 解法三:设高铁的平均速度为/z 千米时,依题意,得52040032.5z z-=, 解得300z =.经检验,300z =是原方程的解且符合题意. 答:高铁的平均速度为300/千米时. 【考点】行程问题,解分式方程. 23.【答案】(1)如图1,⊙O 为所求.图1(2)①证明:如图2,连接AE ,图2∵AC 为⊙O 的直径,点E 在⊙O 上,∴90AEC ∠=°,∵AB AC =,∴BAE CAE ∠=∠,∴DE CE =.②如图3,过点D 作DF BC ⊥,垂足为F ,连接CD ,图3∵在Rt ACE △中,cos CE ACB AC ∠==,AC =∴cos 45CE AC ACB =∠==g . ∵AB AC =,90AEC ∠=°,∴4BE CE ==,B ACB ∠=∠,∵AC 为⊙O 的直径,点D 在⊙O 上,∴90ADC ∠=°. 求点D 到BC 的距离DF 有以下两种解法:解法一:在Rt BCD △中,cos BD B BC ∠=,∵cos cos B ACB ∠=∠=,8BC =,数学试卷 第23页(共46页)∴cos 8BD BC B =∠==g ∵在Rt BDF △中,cos BF B BD ∠=,∴8cos 5BF BD B =∠==g ,∴165DF ==. 解法二:∵90BDC AEC ∠=∠=°,=B ACB ∠∠,∴CDB AEC △∽△. ∴BD CB CD CE AC AE==,即4BD ==,∴BD =,CD . 在Rt BCD △中,利用面积法可得1122BD CD BC DF =g g ,8DF =g , 解得165DF =. 【考点】尺规作图,等腰三角形性质,圆的有关性质,三角函数等基础知识.24.【答案】(1)把(1,0)A -,(4,0)B 分别代入22y ax bx =+-得02,01642,a b a b =--⎧⎨=+-⎩解得1,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线的解析式为213222y x x =--. 求顶点C 的坐标有以下三种解法: 解法一:∵221313252()22228y x x x =--=--, ∴顶点C 的坐标为325(,)28-. 解法二:由对称性可得,顶点C 的横坐标为14322-+=.当32x =时,2133325()222228y =--=-g g . ∴点C 的坐标为325(,)28-. 解法三:顶点C 的横坐标为33212222b a --=-=⨯. 纵坐标为22134(2)()4252214842ac b a ⨯⨯----==-⨯. ∴点C 的坐标为325(,)28-. (2)解法一:证明DM =半径.如图1,设AB 的中点为点M ,图1∵5AB =, ∴52AM =, ∴点M 的坐标为3(,0)2. ∵抛物线213222y x x =--与y 轴交于点(0,2)D -,连接DM ,AD ,BD , ∴在Rt ODM △中,52DM AM ===, ∴点D 在以AB 为直径的⊙M 上,这时90ADB ∠=°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M数学试卷 第27页(共46页)上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上.∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.解法二:证明ADB △是直角三角形.如图2,∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD ,又∵x 轴y ⊥轴,∴22222125AD OA OD =+=+=,222224220BD OB OD =+=+=, 222AB AD BD =+,∴90ADB ∠=°根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.图2解法三:证明AOD DOB △∽△是直角三角形.如图2, ∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD , ∴12OA OD =,2142OD OB ==, ∴OA OD OD OB =, 又∵90AOD DOB ∠=∠=°,∴AOD DOB △∽△,∴ADO DBO ∠=∠,又∵ODB DBO ∠=∠,∴90ODB ADO ∠+∠=°,即=90ADB ∠°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.(3)存在t .求t 有以下三种解法: 解法一:若32m <,且APB ∠为直角时,3m =, ∴点P 的坐标为(3,2)P -. ① 当抛物线向左平移t 个单位时,得325(,)28C t '--,(3,2)P t '--,连接AC ',C P '',BP ',图3在四边形AC P B ''中,由于线段AB ,C P ''(即CP )都是定值,则当AC P B ''+最短时,该四边形的周长最小.如图3,把线段AC '向右平移1个单位长度得线段OC '',把线段P B '向左平移4个单位长度得线段OP '',则有525(,)28C t ''--,(1,2)P t ''---, 以x 轴为对称轴作点P ''的对称点(1,2)P t '''--,当AC P B ''+最短时,即OC OP ''''+最短,则点C '',O ,P '''三点共线.设正比例函数y kx =经过点C '',O ,P '''三点,数学试卷 第31页(共46页)则分别代入点C '',P '''两点的坐标得255(),822(1),t k t k ⎧-=-⎪⎨⎪=--⎩解得1541t =. ∴当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. ②当抛物线向右平移t 个单位时,得325(,)28C t '+-,(36,2)P '+-, 与①的解法相同,可解得1541t =-, 因为502t <<,所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. 解法二:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -,所求多边形周长为AB BP P C C A ''''+++,而5AB =,52P C ''==,这两边长均为定值.所以只需BP C A ''+最小时,周长最短.如图4,设将点P '向左平移5个单位长度得到P '',则恒有AP BP '''=.图4反设抛物线不动,将点A 在x 轴上左右平移,由“将军饮马”模型,(2,2)P ''--关于x 轴对称的点(2,2)P '''-,连接CP ''',交x 轴于点F ,过P '''作x 轴于点G ,则可得P G GF CE FE '''=,即225582GF GF =-, 解得5641GF =,1GA GF =<, 所以点F 在点A 的右侧561514141-=处,即,抛物线向左平移1541, 故1541t =,方向向左. 解法三:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -, ①当抛物线向左平移5(0)2t t <<个单位时, 得325(,)28C t '--,(3,2)P t '--, 如图5,连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值,则当AC P B''+最短时,该四边形的周长最小.图5325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-, 则AC AC '''=,由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =+-+, 解得1541t =,符合题意. ②当抛物线向右平移5(0t )2t <<个单位时, 得325(,)28C t '+-,(3,2)P t '+-, 连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值, 则当AC P B ''+最短时,该四边形的周长最小.325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-,则AC AC '''=,数学试卷 第35页(共46页)由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =-++, 解得1541t =-. 因为502t <<, 所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P '',C '四点构成的多边形的周长最短. 【考点】二次函数的有关知识,图形的平移与坐标的变化,“将军饮马”模型求周长最小值问题. 25.【答案】(1)解法一:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图1∴GF CD ∥,122BG BC ==, ∴90BGF BCD ∠=∠=°, ∴21cos 42BG GBF BF ∠===, ∴60CBF ∠=°,则30CBF ∠=°. ∵在Rt BCE △中,tan CE CBE BC ∠=,即tan304x =°,∴x =. 解法二:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图2 ∴22BC CG BG ===,4BF BC ==.∴GF ===过点F 作FH CD ⊥于点H ,则2FH =,EF x =.在Rt EFH △中,222)2x x +=,解得x =. (2)解法一:如图3,∵点C ,F 关于BE 成对称点, ∴BE CF ⊥,垂足H ,数学试卷 第39页(共46页)图3又∵90BCD ∠=°,∴90BCH ECH CEH ECH ∠+∠=∠+∠=°, ∴BCH CEH ∠=∠,∴BCH CEH △∽△, ∴222()()416CEH BCH S CE x x S BC ===△△, 由对称性可知22CEH S S =△,12BCH S S =△, ∴221(05)16S x x S =<≤. 解法二:设CF 与BE 的交点为H ,由对称性可得21CEH CBH S S EH S S HB ==△△,90EHC ∠=°. ∵222216BE BC CE x =+=+,BC CE CH BE ==g ∴22222221625641616x BH BC HC x x =-=-=++, ∴24222222161616x x HE CE CH x x x =-=-=++.∴221(0x 5)16S EH x S HB ===<≤. (3)解法一:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图4,作OP AD ⊥,垂足为P ,连接OA ,OD ,21 / 23图4设⊙O 半径为r ,则有OB OE OP r ===,∴在Rt BCE △中,222BE BC CE =+,即222(2)4r x =+, 化简得2244x r =+,① 过点D 作DQ AB ⊥,交AB 的延长线于点Q ,∴4QD BC ==,5BQ CD ==,∴532AQ BQ AB =-=-=,∴在Rt ADQ △中,AD =∵OAD BCE OAB ODE ABCD S S S S S =---△△△△梯形,∴11111(35)4432(5)222222r x x ⨯=⨯+⨯-⨯-⨯⨯--⨯g g g ,化简得8x =-,②把②代入①得2641760x x +-=,解得132x =-+232x =--.∴22113916S x S ===-解法二:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图5,中位线长35422AB CD MN ++===.数学试卷 第43页(共46页)数学试卷 第44页(共46页)图5 ∴42x ON MN MO =-=-. 过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴12OR BE =. 2sin 42OR RNO x ON ∠===-,sin BC D AD ∠==, 易知RNO D ∠=∠,则85x =-, 化简得2641760x x +-=.解得132x =-+232x =--.∴2221(321391616S x S -+===-解法三:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图6,中位线长35422AB CD MN ++===.23 / 23图6 ∴42x ON MN MO =-=-. 过点A 作AK NO ⊥于点K ,则2AK =,过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴OR r =,12AN AD =22ANO AK NO OR AN S ==△g g .∴2(4)2x -g ,化简得8x =-.在Rt CBE △中,222(2)4x r =-,(*)将8x =代入(*)得22(8)416r =-.解得1r =2r =.将1r =8x =-得832x ==-+∴22113916S x S ===-【考点】梯形的概念,轴对称,直线与圆相切,三角形相似,勾股定理.。

广州育才实验学校2014年中考数学一模试题与参考答案

广州育才实验学校2014年中考数学一模试题与参考答案

广州市育才实验学校2014年初中毕业班综合测试(一)数学试卷本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算-(-5)的结果是( ). A.5 B.-5 C.15 D.-152.如右图,小手盖住的点的坐标可能为( )A .(34)-,B . (46)--,C .(63)-,D . (52),3、三沙市是由中国国务院于2012年6月批准设立的地级市,管辖位于中国南海的海南省下的西沙、南沙、中沙三个群岛及周围海洋,面积2600000平方公里,相当于中国领土的四分之一,请用科学记数法表示三沙市面积是( )A .2.6×710平方公里B .26×610平方公里 C .2.6×610平方公里 D .0.26×710平方公里4.一个正方体的平面展开图如图所示,将它折成正方体后“建” 字对面是( ) A .和B .谐C .广D .州5.只用下列正多边形地砖中的一种,能够铺满地面的是( )A .正十边形B .正八边形C .正六边形D .正五边形 6.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( )A .2cmB .4cmC .6cmD .8cm7.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别为( ) A .3,3 B .2,3 C .2,2 D .3,58.酒店厨房的桌子上摆放着若干碟子,分别从三个方向上看,其三视图如图所示,则桌子上共有碟子( ) A.17个 B.12个 C.10个D.7个(第2题图)yxOABCD(第6题图) E建 设和 谐 广州 (第4题图)侧视图 左视图9、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm10.如图,在Rt ABC △中,9068C AC BC O ∠===°,,,⊙为ABC △的内切圆,点D 是斜边AB 的中点,则tan ODA ∠=( )A .2 BC.3 D.2第二部分 非选择题 (共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知两圆的半径分别是2和3,圆心距为5,那么这两圆的位置关系是 。

【初中数学】广东省广州市南沙区2014学年第二学期八年级学生学业水平测试数学试题 人教版

【初中数学】广东省广州市南沙区2014学年第二学期八年级学生学业水平测试数学试题 人教版

(第6题)南沙区2014学年第二学期八年级学生学业水平测试数 学本试卷分选择题和非选择题两部分,共三大题24小题,满分100分.用时90分钟. 注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考试时可使用广州市中考规定型号的计算器.第Ⅰ卷(选择题,20分)一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.若使二次根式3+x 在实数范围内有意义,则x 的取值范围是( ※ )A. 3->xB. 3-≥xC. 3-<xD. 3-≤x 2.在□ABCD 中,AB=3,BC=4,则CD 等于( ※ )A .2B .3C .4D .53.下列计算正确的是( ※ )A.752=+ B.2)2(2-=- C. 222=-)( D. 222=÷4.2015年广州将举办以“从小不浪费”为主题的第九届羊城“小市长”评选系列活动,我区通过初选从11名同学抽选最好成绩的6名同学去参加决赛,他们的决赛成绩各不相同,其中小明知道自己的成绩,但能否参加决赛,他还必须要清楚这11名同学成绩的( ※ )A. 平均数B. 众数C. 中位数D. 方差5.在△ABC 中,如果三边满足关系222AC AB BC +=,则△ABC 的直角是( ※ ) A .∠A B .∠B C .∠C D .不能确定 6.如图,在AB C ∆中,E 、F 分别是边AC 、BC 的中点,且DF//AC , BD =3,则EF 的长为( ※ ) A .2B .3C .4D .57. 已知一次函数3-=kx y 中,y 随着x 的增大而减小,则这个函数的图像不经过( ※ ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8. 星期天,小明参加南沙自行车协会组织的“南沙横琴骑行游”活动,早上8:00出发骑车从南沙前往珠海横琴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年南沙区初中毕业班综合测试(一)数 学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面、第7面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)3.点A ()2,3向左平移3个单位长度得到点A’,则点A’的坐标为(※)A . ()2,0B . ()-1,3 C. ()-2,3D. ()5,34.某红外线的波长为0.000 000 94m ,用科学记数法表示这个数是(※)A .m 7104.9-⨯B .m 7104.9⨯C .m 8104.9-⨯D . m 8104.9⨯ 5.下列运算正确的是(※)A .030=B .33--=-C .133-=-D 3=±6.将如右图所示的Rt ABC ∆绕直角边AC 旋转一周,所得几何体的俯视图是(※)7.关于x 的方程0122=--x x 的根的情况叙述正确的是(※)A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定P第16题8.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图像经过(※)A .第二、三、四象限B .第一、二、三象限C .第一、三、四象限D .第一、二、四象限9.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有(※)A .0<+b aB .0a b ->C .0ab >D .0ab> 第10题第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.如图,ABC ∆中,AB=AC ,∠B=50°,则∠A= * * * 度. 12x 的取值范围为 * * * .13.若方程 220x px --=的一个根为2,则它的另一个根为 * * * . 这些运动员跳高成绩的中位数是 * * * m.15.一个扇形的圆心角为60°,半径为2,则这个扇形的面积为 * * * .(结果保留π) 16.如图,矩形ABCD 中,AB=6,BC=8,E 是BC 边上的一定点, P 是CD 边上的一动点(不与点C 、D 重合),M ,N 分别是AE 、PE 的中点,记MN 的长度为a ,在点P 运动过程中,a 不断变化, 则a 的取值范围是 * * * .第11题三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解分式方程123x x=-18.(本小题满分9分)化简()()23a b a a b ab +---19.(本小题满分10分)如图,在ABC ∆中,∠B=90°,O 为AC 的中点(1)用直尺和圆规作出ABC ∆关于点O 的中心对称图形(保留作图痕迹,不写作法); (2)若点B 关于点O 中心对称的点为D ,判断四边形ABCD 的形状并证明.20.(本小题满分10分)如图,在Rt ABC ∆中,090A ∠=,点O 在AC 上,⊙O 切BC 于点E ,A 在⊙O 上,若AB=5,AC=12,求⊙O 的半径.第20题第19题21.(本小题满分12分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)求样本容量,并估计全校同学在暑假期间平均每天做家务活时间在40分钟以上(含40分钟)的人数;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.22.(本小题满分12分)为了帮助贫困学生,姐妹两人分别编织28个中国结进行义卖,已知妹妹单独编织一周(7天)不能完成,而姐姐单独编织不到一周就已完成.姐姐平均每天比妹妹多编2个.求:(1)姐姐和妹妹平均每天各编多少个中国结?(答案取整数)(2)若妹妹先工作2天,姐姐才开始工作,那么姐姐工作几天,两人所编中国结数量相同?23.(本小题满分12分)如图,已知直线y 4x =-与反比例函数A 、B 两点,与x 轴、y 轴分别相交于C 、D 两点.(1)如果点A 的横坐标为1,求m 的值并利用函数图象求关于x(2)是否存在以AB 为直径的圆经过点P (1,0)?若存在,求出m 的值;若不存在,请说明理由.y xDCOBAP第23题(1)试求点B 、D 的坐标,并求出该二次函数的解析式;(2)P 、Q 分别是线段AD 、CA 上的动点,点P 从A 开始向D 运动,同时点Q 从C 开始向A 运动,它们运动的速度都是每秒1个单位,求:①当P 运动到何处时,△APQ 是直角三角形?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?DO C BA yx第24题25(本小题满分14分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D图①DE图②图③2014年南沙区初中毕业班综合测试参考答案及评分标准数 学说明:1.本解答给出了一种解法供参考,如果考生的解法与本解答不同,各学校可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不 得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分)11. 80 12.2x ≥ 13.-1 14. 1.70 15.23π 16. 45a <<三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.) 17. (本小题满分9分)解:()23x x -=…………………………………………3分26x x -=………………………………………………6分6x =…………………………………………………8分经检验得6x =是原方程的解。

……………………9分 18.(本小题满分9分)解:原式=22223a ab b a ab ab ++-+-……………………4分 =()()22223a a ab ab ab b -++-+……………………6分 =2b …………………………………………………………9分19. (本小题满分10分) 解:(1)如图所示注:作得射线得1分,弧1分作出完整的中心对称图形得4分(2)四边形ABCD 为矩形…………………………………5分 证明:∵ABC ∆中,∠B=90°,O 为AC 的中点 ∴AO=CO=BO ……………………………………6分∵B 关于点O 的对称点为D∴BO=DO …………………………………………8分 ∴AO=CO=BO=DO∴AC=BD …………………………………………9分 ∴四边形ABCD 是矩形……………………………10分 其他正确解法也给分20. (本小题满分10分)解:连接BO 、EO ,设⊙O 半径为x ,在Rt ABC ∆中,根据勾股定理,有:13BC ===……………………………………………1分则:ABC ABO BCO S S S ∆∆∆=+111222AC AB AB AO BC EO ∴∙∙=∙∙+∙………………………………………5分 即111125513222x x ∴⨯⨯=⨯∙+⨯∙ ……………………………………………7分解得103x =O ∴⊙的半径长为103……………………………… ……………10分其他正确解法也给分21.(本小题满分12分)解:(1)样本容量为:8+10+16+12+4=50,……………………………………2分1000×=320人;………………………………………4分(2)列表如下:………………………8分共有12种情况,恰好抽到甲、乙两名同学的是2种, 所以P (恰好抽到甲、乙两名同学)==.………………………………12分其他正确解法也给分22.(本小题满分12分)解:(1)设妹妹每天编x 个,姐姐每天编(+2x )个。

………………………………1分7287(2)28x x <⎧⎨+>⎩ ……………………………………………………………4分 解得24x << ……………………………………………………………………………5分 因为x 为整数,所以 =3x ,+2=5x答:姐姐每天编5个中国结,妹妹每天编3个中国结。

………………………………6分 (2)设姐姐工作y 天后两者相同,则 32+y =5⨯()y 。

………………………………………………………………9分。

解得3y = ……………………………………………………………………………11分 答:姐姐工作3天,两人所编中国结数量相同……………………………………12分 23.(本小题满分12分)解:(1)将点A 的横坐标1代入y 4x =-,得点A 的纵坐标为3,∴A (1,3).………1分将A (1,3,得m 3=,……………………………………………………2分,解得x 1y 3=⎧⎨=⎩或x 3y 1=⎧⎨=⎩…………………………………………………4分 ∴B (3,1).∵关于x 的解集,就是y 4x =-的图象在x 取值范围,∴由函数图象知,关于x 的解集为0x 1<<或x 3>.……………6分(2)存在。

相关文档
最新文档