圆小学数学PPT课件
合集下载
小学数学六年级上册《圆的认识》课件
球体的表面积公式 为:$4pi r^{2}$, 其中$r$为球的半径 。
圆是平面图形,而 球是立体图形。
球体的表面积和体 积计算公式与圆有 关。
球体的体积公式为 :$frac{4}{3}pi r^{3}$,其中$r$为 球的半径。
圆与椭圆的关系
椭圆可以看作是一个长轴和短轴 不同的圆弯曲后形成的平面图形
当圆的直径等于方的对角线长 时,圆的周长等于方的周长, 即2 × π × r = d,其中d是方 的对角线长。
04
圆的实际应用
圆在日常生活中的应用
03
交通工具
餐具
建筑
汽车、火车和飞机等交通工具的轮子都是 圆形的,因为圆可以保证轮子在转动时平 稳,减少摩擦和磨损。
碗和盘子等餐具通常设计成圆形,因为圆 可以容纳更多的食物,并且方便手持和清 洗。
圆形窗户、门和屋顶等建筑元素可以增加 建筑的通风和采光,同时使建筑看起来更 加美观。
圆在科学实验中的应用
01
天文学
天文学家使用圆来描述星球和 星系的运动轨迹,例如地球绕 太阳的公转轨迹就是一个大圆
。
02
物理学
物理学家使用圆来描述物体的 运动状态,例如速度和加速度
等物理量。
03
化学
化学家使用圆来描述化学反应 的平衡状态,例如酸碱中和反 应的平衡常数就是一个圆的方
径。
02
这个公式是通过将圆分割成 无数个小的等长弧线,然后 求和这些弧线的长度来得到
的。
03
圆的周长反映了圆的“长度 ”,是描述圆周长大小的数
学量。
圆和方之间的关系
圆和方之间存在密切的关系, 主要体现在圆的面积和周长与 方的面积和周长的关系上。
当圆的半径等于方的一边长时 ,圆的面积等于方的面积,即 π × r^2 = a^2,其中a是方的 一边长。
小学六年级数学《圆的周长》ppt课件
性质
圆的周长是连续的,没有起点和终 点,且任意一点到圆心的距离都相 等。
圆周率π介绍
定义
应用
圆周率π是一个数学常数,表示圆的 周长与直径的比值。它是一个无理数, 约等于3.14159。
π在几何、三角学、数学分析、物理 学等多个领域都有广泛应用。
历史
π的概念可以追溯到古代,许多文明 都独立地发现了它的重要性。古希腊 数学家阿基米德首次给出了π的近似 值。
圆的周长公式:C = 2πr 或 C = πd,其中 r 是半径,d 是直
径。
如何使用公式计算给定半径或 直径的圆的周长。
通过实例和练习,加深对圆的 周长计算的理解和掌握。
学生自我评价报告
01
我已经理解了圆的周长 的概念和计算公式。
02
我能够准确地使用公式 计算给定半径或直径的 圆的周长。
03
通过本节课的学习,我 对数学中的圆形有了更 深入的了解。
圆的周长公式
01
02
03
公式
C = πd 或 C = 2πr,其 中C是圆的周长,d是圆的 直径,r是圆的半径。
推导
该公式基于圆周率的定义 推导而来,表示圆的周长 等于圆周率乘以直径或两 倍的半径。
应用
该公式用于计算圆的周长, 进而可以解决与圆相关的 各种问题,如面积、弧长 等。
02
计算圆的周长方法
答案解析及思路点拨
• 题目3答案:根据圆的周长公式C=2πr,可以求出 半径r=C/2π=62.8/2π≈10cm。
答案解析及思路点拨
01
• 题目1答案
两个圆的半径比是2:3,根据圆的周长公式C=2πr,可以求出两个圆的
周长比也是2:3。
02
• 题目2答案
圆的周长是连续的,没有起点和终 点,且任意一点到圆心的距离都相 等。
圆周率π介绍
定义
应用
圆周率π是一个数学常数,表示圆的 周长与直径的比值。它是一个无理数, 约等于3.14159。
π在几何、三角学、数学分析、物理 学等多个领域都有广泛应用。
历史
π的概念可以追溯到古代,许多文明 都独立地发现了它的重要性。古希腊 数学家阿基米德首次给出了π的近似 值。
圆的周长公式:C = 2πr 或 C = πd,其中 r 是半径,d 是直
径。
如何使用公式计算给定半径或 直径的圆的周长。
通过实例和练习,加深对圆的 周长计算的理解和掌握。
学生自我评价报告
01
我已经理解了圆的周长 的概念和计算公式。
02
我能够准确地使用公式 计算给定半径或直径的 圆的周长。
03
通过本节课的学习,我 对数学中的圆形有了更 深入的了解。
圆的周长公式
01
02
03
公式
C = πd 或 C = 2πr,其 中C是圆的周长,d是圆的 直径,r是圆的半径。
推导
该公式基于圆周率的定义 推导而来,表示圆的周长 等于圆周率乘以直径或两 倍的半径。
应用
该公式用于计算圆的周长, 进而可以解决与圆相关的 各种问题,如面积、弧长 等。
02
计算圆的周长方法
答案解析及思路点拨
• 题目3答案:根据圆的周长公式C=2πr,可以求出 半径r=C/2π=62.8/2π≈10cm。
答案解析及思路点拨
01
• 题目1答案
两个圆的半径比是2:3,根据圆的周长公式C=2πr,可以求出两个圆的
周长比也是2:3。
02
• 题目2答案
小学数学圆的认识PPT课件
1. 想一想,与你的伙伴讨论下,如何画一个半径是2厘米的圆。
2. 试一试,请你用你的方法在纸上尝试把圆画出来。
3. 说一说,你在画圆的过程中有什么发现,请与你的伙伴一起分享。
切割成圆
圆出于方,方出于矩。
—《周髀算经》
圆的画法
① 定长(半径)
0cm 1
2
3
4
5
圆的画法
① 定长(半径)
② 定点(圆心)
圆的半径
半径 r O
在同一个圆里,半径有无数条,
它们的长度都相等。
圆的直径
直径 d O
在同一个圆里,直径有无数条,
它们的长度都相等。
半径与直径的关系
d=r+r
直径 d 半径 r r r O
d=2r
d r=2
在同一个圆里,直径是半径的2倍,半径是直径的一半。
你知道了吗?
圆,一中同长也。
直径 d 半径 r O
谢谢!
(完)
澧县银谷国际实验学校 郑先丽
大胖无意中获得一幅 藏宝图,可是宝物到
底在哪呢?小胖冥思
苦想,不得其解。
大胖无意中获得一幅 藏宝图,可是宝物到
底在哪呢?小胖冥思
苦想,不得其解。
如果地图上1厘米表示1米,你能将宝物找出来吗?
0cm 1
0cm 1 0cm 3 1 2 2 4 3 5 0 2cm 3 1 4 2 5 3 6 4 7 5 8 6 宝物藏在距离标红 星的大树2米处。
边 角
由3条(或3条以上)线段首尾连接所围成 有角
由1条曲线围成 没有角
圆,一中同长也。
——墨子
小组合作研究
请与你的伙伴一起研究,并把结果填在汇报表里。
1. 在圆纸片上可以画出多少条半径?多少条直径? 2. 用直尺量一量它们的长度,你发现了什么? 3、在同一个圆里,直径与半径有什么关系?
2. 试一试,请你用你的方法在纸上尝试把圆画出来。
3. 说一说,你在画圆的过程中有什么发现,请与你的伙伴一起分享。
切割成圆
圆出于方,方出于矩。
—《周髀算经》
圆的画法
① 定长(半径)
0cm 1
2
3
4
5
圆的画法
① 定长(半径)
② 定点(圆心)
圆的半径
半径 r O
在同一个圆里,半径有无数条,
它们的长度都相等。
圆的直径
直径 d O
在同一个圆里,直径有无数条,
它们的长度都相等。
半径与直径的关系
d=r+r
直径 d 半径 r r r O
d=2r
d r=2
在同一个圆里,直径是半径的2倍,半径是直径的一半。
你知道了吗?
圆,一中同长也。
直径 d 半径 r O
谢谢!
(完)
澧县银谷国际实验学校 郑先丽
大胖无意中获得一幅 藏宝图,可是宝物到
底在哪呢?小胖冥思
苦想,不得其解。
大胖无意中获得一幅 藏宝图,可是宝物到
底在哪呢?小胖冥思
苦想,不得其解。
如果地图上1厘米表示1米,你能将宝物找出来吗?
0cm 1
0cm 1 0cm 3 1 2 2 4 3 5 0 2cm 3 1 4 2 5 3 6 4 7 5 8 6 宝物藏在距离标红 星的大树2米处。
边 角
由3条(或3条以上)线段首尾连接所围成 有角
由1条曲线围成 没有角
圆,一中同长也。
——墨子
小组合作研究
请与你的伙伴一起研究,并把结果填在汇报表里。
1. 在圆纸片上可以画出多少条半径?多少条直径? 2. 用直尺量一量它们的长度,你发现了什么? 3、在同一个圆里,直径与半径有什么关系?
北师大版小学6年级数学上册第一单元(圆的周长)PPT教学课件(1)
0
圆的周长(1)
方法二:滚动法
0cm
1
20
30
40
0
圆的周长(1)
方法二:滚动法
d=10cm
0cm
1
20
30
40
0
圆的周长(1)
圆周长的与直径(半径)有关。 直径(半径)越长,圆周长就越大。
圆的周长(1)
自己动手量一量
物品名称
周长
直径
周长 直径
的比值
(保留两位小数)
你发现圆的周长和直径之间有什么关系?
圆的周长(1)
方法一:绳绕法
圆的周长(1)
方法一:绳绕法
圆的周长(1)
方法一:绳绕法
圆的周长(1)
方法一:绳绕法
圆的周长(1)
方法一:绳绕法
圆的周长(1)
方法一:绳绕法
0
1
2
3
4
圆的周长(1)
方法二:滚动法
d=10cm
0cm
1
20
0
30
40
圆的周长(1)
方法二:滚动法
0cm
1
20
30
圆的周长(1)
物品名称 圆形物品1 圆形物品2 圆形物品3
……
周长
31.5cm 6.28cm 9.42cm ……
直径
10cm 2cm 3cm ……
周长 直径
的比值
(保留两位小数)
3.15
3.14
3.14 ……
通过比较,可以发现 (1)圆的周长与直径有关,直径越长,周长就越长; (2)圆的周长总是它的直径的3倍多一些。
1.从教材课后习题中选取; 2.从课时练中选取。
《圆的面积》PPT课件
人教版小学数学六年级第十一册
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
提问:(1)圆的面积指的是什么?(2) 我们是怎么样测量计算这个圆的面积?如 果这个圆的半径是r,你能猜出它的面积是 多少?
× 的面积是12.56平方厘米。 ()
3、判断对错:
(2)两个圆的周长相等,面
积也一定相等。
√
()
3、判断对:
(3)圆的半径越大,圆所占 的面积也越大。 ( )
√
3、判断对错:
(4)圆的半径扩大3倍,它
× 的面积扩大6倍。 ( )
4、思考题:
已知半圆中三角形ABC的高是 5厘米,面积是30平方厘米, 半圆的直径是多少?求阴影 部分面积。
1、求下面各圆的面积。 (口头列式)
3.14×12
3.14×(4÷2)2
2、一个雷达屏幕的直径 是40厘米,它的面积是 多少平方厘米?
半径:40÷2=20(厘米) 面积: 3.14×202
=3.14×400 =1256(平方厘米)
答:它的面积是1256平方厘米。
3、判断对错:
(1)直径是2厘米的圆,它
例1
圆形花坛的直径是20m,它的 面积是多少平方米?
20÷2=10(m)
3.14×102 =3.14×100 = 314(m2)
答:它的面积是314平方米。
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
做一做:
根据下面所给的条件,求圆 的面积。 (1)半径2分米 (2)直径10厘米
r
长方形的面积 = 长 × 宽 长等于圆周长的一半
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
提问:(1)圆的面积指的是什么?(2) 我们是怎么样测量计算这个圆的面积?如 果这个圆的半径是r,你能猜出它的面积是 多少?
× 的面积是12.56平方厘米。 ()
3、判断对错:
(2)两个圆的周长相等,面
积也一定相等。
√
()
3、判断对:
(3)圆的半径越大,圆所占 的面积也越大。 ( )
√
3、判断对错:
(4)圆的半径扩大3倍,它
× 的面积扩大6倍。 ( )
4、思考题:
已知半圆中三角形ABC的高是 5厘米,面积是30平方厘米, 半圆的直径是多少?求阴影 部分面积。
1、求下面各圆的面积。 (口头列式)
3.14×12
3.14×(4÷2)2
2、一个雷达屏幕的直径 是40厘米,它的面积是 多少平方厘米?
半径:40÷2=20(厘米) 面积: 3.14×202
=3.14×400 =1256(平方厘米)
答:它的面积是1256平方厘米。
3、判断对错:
(1)直径是2厘米的圆,它
例1
圆形花坛的直径是20m,它的 面积是多少平方米?
20÷2=10(m)
3.14×102 =3.14×100 = 314(m2)
答:它的面积是314平方米。
2米
在长满青草的草地
上一匹马被主人用一根 两米长的绳子栓在一棵 树,这匹马最多能吃到 多少青草?
做一做:
根据下面所给的条件,求圆 的面积。 (1)半径2分米 (2)直径10厘米
r
长方形的面积 = 长 × 宽 长等于圆周长的一半
人教版小学数学六年级上册PPT课件认识圆 1
(人教版)六年级数学上册
1. 把圆规的两脚分开, 定好两脚间的距离。
0 1 2 3 4 5 6
2.把有针尖的一 只脚固定在一点上。 3.把装有铅笔尖的 一只脚旋转一周,就画 出一个圆。
1. 把圆规的两脚分开, 定好两脚间的距离。
0 1 2 3 4 5 6
2.把有针尖的一 只脚固定在一点上。 3.把装有铅笔尖的 一只脚旋转一周,就画 出一个圆。
圆是由曲线围成的平面图形。
通过圆心并且两端都在圆上的线段叫做直径。
圆心
直径
d
在同一个圆里,有无数条直径, 长度都相等。
•
o
连接圆心和圆上任意一点的线段叫做半径。
O
在同一个圆里,有无数条半径, 长度都相等。
•
o
下图中哪些是半径?哪些是直径? 哪些不是,为什么?
①
② ③
o
1、在同一个圆里,直径和半径有 什么关系? 2、可以通过画一画、量一量、 比一比等方法验证你的猜想。
d
r o
•
rd=2r 或源自r= 2d想一想:
1.针尖固定的这一 点也就是什么?
圆心 决定圆的位置。
2.圆规两脚间的距 离也就是什么?
半径 决定圆的大小。
①
②
③
④
⑤
⑥
(1)这样设计比赛场地公平吗? (2)你认为应该怎样设计比赛场地?
① ② ⑥
③
⑤
④
1. 把圆规的两脚分开, 定好两脚间的距离。
0 1 2 3 4 5 6
2.把有针尖的一 只脚固定在一点上。 3.把装有铅笔尖的 一只脚旋转一周,就画 出一个圆。
1. 把圆规的两脚分开, 定好两脚间的距离。
0 1 2 3 4 5 6
2.把有针尖的一 只脚固定在一点上。 3.把装有铅笔尖的 一只脚旋转一周,就画 出一个圆。
圆是由曲线围成的平面图形。
通过圆心并且两端都在圆上的线段叫做直径。
圆心
直径
d
在同一个圆里,有无数条直径, 长度都相等。
•
o
连接圆心和圆上任意一点的线段叫做半径。
O
在同一个圆里,有无数条半径, 长度都相等。
•
o
下图中哪些是半径?哪些是直径? 哪些不是,为什么?
①
② ③
o
1、在同一个圆里,直径和半径有 什么关系? 2、可以通过画一画、量一量、 比一比等方法验证你的猜想。
d
r o
•
rd=2r 或源自r= 2d想一想:
1.针尖固定的这一 点也就是什么?
圆心 决定圆的位置。
2.圆规两脚间的距 离也就是什么?
半径 决定圆的大小。
①
②
③
④
⑤
⑥
(1)这样设计比赛场地公平吗? (2)你认为应该怎样设计比赛场地?
① ② ⑥
③
⑤
④
小学数学六年级上册《圆的认识》课件
制作:
蒋盛建
单位: 德光小学
圆中心的这一点叫做圆心.圆心 一般用字母 O表示 。
直径 d 圆心
· o
通过圆心并且两端都在圆上的线段 叫做直径 ,直径一般用字母d表示。
在一个圆里,直 径有无数条;并且在 同圆或等圆中,所有 直径的长度都相等。
பைடு நூலகம்
圆心O
·
连接圆心和圆上任意一点的线段 叫做半径,半径一般用字母 r 表示。
A.圆心
B.圆外
C.圆上
)叫直径.
(3)通过圆心并且两端都在圆上的( B A.直径 B.线段
C.射线
说一说为什么车轮 都要做成圆的?车轴应 装在哪里?
分析:车轮做成圆的,有利 于车轮向前滚动,根据圆的圆心 到圆上任意一点的距离都相等的 特征,车轴应装在圆心的位置, 车轮滚动时车轴保持平稳状态, 使行进的车辆也保持平稳的状 态. 解:车轮做成圆的,有利于 车轮滚动;车轴应装在圆心的位 置。
这节课我们学习了 什么?通过这节课的学 习你有什么收获?
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
蒋盛建
单位: 德光小学
圆中心的这一点叫做圆心.圆心 一般用字母 O表示 。
直径 d 圆心
· o
通过圆心并且两端都在圆上的线段 叫做直径 ,直径一般用字母d表示。
在一个圆里,直 径有无数条;并且在 同圆或等圆中,所有 直径的长度都相等。
பைடு நூலகம்
圆心O
·
连接圆心和圆上任意一点的线段 叫做半径,半径一般用字母 r 表示。
A.圆心
B.圆外
C.圆上
)叫直径.
(3)通过圆心并且两端都在圆上的( B A.直径 B.线段
C.射线
说一说为什么车轮 都要做成圆的?车轴应 装在哪里?
分析:车轮做成圆的,有利 于车轮向前滚动,根据圆的圆心 到圆上任意一点的距离都相等的 特征,车轴应装在圆心的位置, 车轮滚动时车轴保持平稳状态, 使行进的车辆也保持平稳的状 态. 解:车轮做成圆的,有利于 车轮滚动;车轴应装在圆心的位 置。
这节课我们学习了 什么?通过这节课的学 习你有什么收获?
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
小学六年级数学《圆的周长》PPT课件
0cm
10
20
30
11
方法二:滚动法
d=10cm
0cm
10
20
30
12
方法二:滚动法
0cm
10
20
30
13
方法二:滚动法
0cm
d=10cm
10
20
30
14
方法二:滚动法
0cm
10
20
30
15
方法二:滚动法
d=10cm
0cm
10
20
30
16
方法二:滚动法
0cm
10
20
30
17
方法二:滚动法
23
判断辨析
1、π=3.14
( ×)
2、只要知道圆的直径或者半 径,就可以知道圆的周长(√ )
3、大圆的圆周率比小圆的圆
周率大。
(×)24ຫໍສະໝຸດ 下面各圆的周长。r=1.5米
3.14×4=12.56(厘米) 2×3.14×1.5=9.42(米)
25
﹋ 一张圆桌的直径是0.95米。
这张圆桌的周长是多少米?
π≈3.14
直径d
(2)我还知道圆的周长总是直 径的( )π倍。已知圆的直径就 可以用公式( )C=求π周d长;已 知圆的半径就可以用公式 ( C=)求2π周r长。
我的收获 30
选择填空
1、车轮滚动一周,前进的距离是求车轮的(C)
A.半径 B.直径 C.周长 2、圆的周长是直径的( B )倍。
A. 3.14 B. π C. 3
1
思考:
什么是周长
平面上封闭图形一周的 长度,就是它的周长。
2
想一想:什么叫圆的周长
人教版小学六年级数学上册第五单元《圆》课文课件
r
o d
巩固练习
(教材第60页第2题)
3.看图填空。
3 cm O
d =_6__c_m__
6 cm O
r =_3__c_m__OFra bibliotek10cm
d =_1_0__c__m
O
高3.5 cm
r =_3_._5__c_m__
课堂总结
用圆规画圆时,针尖所在的点叫做圆心,一般
用字母O表示。连接圆心和圆上任意一点的线段叫
(教材第65页第1题)
1.一个圆形喷水池的半径是5m,它的周长 是多少米?
3.14×5×2=31.4(米) 答:它的周长是31.4米。
巩固练习
(教材第65页第2题)
2.在一个圆形亭子里,小丽沿着直径从一端
走12步到达另一端,每步长大约是55cm。
这个圆的周长大约是多少米?
3.14×(55×12)=2072.4(厘米)
对应练习
(教材第58页“做一做”1)
1.对于借助杯子盖、三角尺画出的圆,如 何找到圆心?请你自己画一画,试一试。
因为直径所在的直线即是圆对称轴,
所以两条直径的交点是圆的圆心。
对折两次,两条折痕的交点即为圆心。
(画一画略)
对应练习
(教材第58页“做一做”2)
2.用圆规画一个半径是2cm的圆,并用字母 O、r、d标出它的圆心、半径和直径。
2072.4厘米=20.724(米)
答:这个圆的周长大约是20.724米。
巩固练习
3.圆的周长从15.7cm减少到9.42cm,它的 半径比原来减少了多少厘米? 15.7÷3.14÷2=2.5(cm) 9.42÷3.14÷2=1.5(cm) 2.5-1.5=1(cm)
《小学数学圆》课件
OP=7 cm时,点A与⊙O的位置关系是( A
A.点A在⊙O内
B.点A在⊙O上
C.点A在⊙O外
D.不能确定
)
解:∵ OP=7 cm,A为OP的中点,∴OA=3.5cm.
∵ 3.5cm<4 cm,∴点A在⊙O内.
直线与圆的位置关系
设r为圆的半径,d为圆心到直线的距离.
相离
相切
相交
d>r
0个
d=r
1个
解:∵用扇形铁皮围成圆锥后,扇形的弧长与圆锥的底
面圆的周长相等,∴弧长l=80π,
300×
180 180×80
又l=
,∴r=
=
180
300
300
=48(cm).
正多边形的相关概念
1.中心:正多边形外接圆和内切圆有公共的圆心,称其
为正多边形的中心.
2.半径:外接圆的半径叫做正多边形的半径.
是⊙O上两点,且 EC BC ,连接AE,AC.过点C作
CD⊥AE交AE的延长线于点D.
(1)判定直线CD与⊙O的位置关系,
D
E
并说明理由;
,.
(2)若AB=4,CD= 3 ,求图中阴影
部分的面积.
A
C
O
B
(1)判定直线CD与⊙O的位置关系,并说明理由;
(
(
解: (1) CD是⊙O的切线. 理由如下:
切点
d<r
2个
交点
切线
割线
图形
d与r的关系
公共点个数
公共点名称
例:设⊙O的半径为2,圆心O到直线l的距离OP=m,
2
且m使得关于x的方程2 x 2 2 x m 1 0 有实数
A.点A在⊙O内
B.点A在⊙O上
C.点A在⊙O外
D.不能确定
)
解:∵ OP=7 cm,A为OP的中点,∴OA=3.5cm.
∵ 3.5cm<4 cm,∴点A在⊙O内.
直线与圆的位置关系
设r为圆的半径,d为圆心到直线的距离.
相离
相切
相交
d>r
0个
d=r
1个
解:∵用扇形铁皮围成圆锥后,扇形的弧长与圆锥的底
面圆的周长相等,∴弧长l=80π,
300×
180 180×80
又l=
,∴r=
=
180
300
300
=48(cm).
正多边形的相关概念
1.中心:正多边形外接圆和内切圆有公共的圆心,称其
为正多边形的中心.
2.半径:外接圆的半径叫做正多边形的半径.
是⊙O上两点,且 EC BC ,连接AE,AC.过点C作
CD⊥AE交AE的延长线于点D.
(1)判定直线CD与⊙O的位置关系,
D
E
并说明理由;
,.
(2)若AB=4,CD= 3 ,求图中阴影
部分的面积.
A
C
O
B
(1)判定直线CD与⊙O的位置关系,并说明理由;
(
(
解: (1) CD是⊙O的切线. 理由如下:
切点
d<r
2个
交点
切线
割线
图形
d与r的关系
公共点个数
公共点名称
例:设⊙O的半径为2,圆心O到直线l的距离OP=m,
2
且m使得关于x的方程2 x 2 2 x m 1 0 有实数
小学六级数学圆的周长PPT课件(共33张PPT)
《周髀(bì)算经》 中就有了“周三径 一”的说法,意思 是指圆的周长是它 的直径的3倍。
大约1500年前,中国 有一位伟大的数学家和天 文学家祖冲之,他计算出圆
周率应在和之间,成为世界 上第一个把圆周率的值精确
到7位小数的人。他的这项 伟大成就比国外数学家得 出这样精确数值的时间, 至少要早1000年。
已知圆的周长,如何求 摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3.
这张圆桌的周长是多少米? 一辆自行车车轮的直径是0. 已知圆的直径就可以用公式( )求周长; 摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3.
它的直径或半径 方法二:用算术方法解。
圆的周长 = 直径×圆周率
自己动手量一量
周长 C 直径 d
c 的比值
d
(毫米) (毫米) (保留两位小数)
圆的周长除以直径的商是一个固定 的数。我们把它叫做圆周率,用字 母π表示。
π=3.141592653
π≈
圆的周长总是直径
的π倍.
C= πd
周长=π×直径
C=2 πr
或
周长=2×π×半径
约2000年前,中 国的古代数学著作
C=π d
汽车轮胎的半径是0.3米,它滚动
﹋ 1圈前进多少米?滚动1000圈前进多
﹋ 少米?(π取3.14)
(1)今天我学习了圆周长的知识。我知道圆周
率是( )和( 周长)的比值,直它径用字母( )表
示,它是我国古π代数学家( 圆的周长除以直径的商是一个固定的数。
摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3. 1、车轮滚动一周,前进的距离是求车轮的( )
小数。)
C=π d
大约1500年前,中国 有一位伟大的数学家和天 文学家祖冲之,他计算出圆
周率应在和之间,成为世界 上第一个把圆周率的值精确
到7位小数的人。他的这项 伟大成就比国外数学家得 出这样精确数值的时间, 至少要早1000年。
已知圆的周长,如何求 摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3.
这张圆桌的周长是多少米? 一辆自行车车轮的直径是0. 已知圆的直径就可以用公式( )求周长; 摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3.
它的直径或半径 方法二:用算术方法解。
圆的周长 = 直径×圆周率
自己动手量一量
周长 C 直径 d
c 的比值
d
(毫米) (毫米) (保留两位小数)
圆的周长除以直径的商是一个固定 的数。我们把它叫做圆周率,用字 母π表示。
π=3.141592653
π≈
圆的周长总是直径
的π倍.
C= πd
周长=π×直径
C=2 πr
或
周长=2×π×半径
约2000年前,中 国的古代数学著作
C=π d
汽车轮胎的半径是0.3米,它滚动
﹋ 1圈前进多少米?滚动1000圈前进多
﹋ 少米?(π取3.14)
(1)今天我学习了圆周长的知识。我知道圆周
率是( )和( 周长)的比值,直它径用字母( )表
示,它是我国古π代数学家( 圆的周长除以直径的商是一个固定的数。
摩天轮的半径是5米,坐着它转动一周,大约转过多少米?(π取3. 1、车轮滚动一周,前进的距离是求车轮的( )
小数。)
C=π d
人教版六年级上数学《圆的面积》圆PPT课件
探究圆的面积
平均分成32份
探究圆的面积
平均分成64份
探究圆的面积
平均分成32份
平均分成64份
探究圆的面积
平均分成32份
平均分成64份
近似平行四边形 近似长方形
你真棒!
近似长方形
长方形
面积不变
曲
直
你能试着推导 圆的面积公式吗?
圆周长的一半 =长方形的长 圆的半径 =长方形的宽
李大爷做了一个长18.84米长的木栅栏, 他想用这个木栅栏,做一个尽可能大的鸡圈。
18.84米
李大爷做了一个长18.84米长的木栅栏, 他想用这个木栅栏,做一个尽可能大的鸡圈。
S=22.1841m 2
S=?
已知:周长=18.84m S=πr 2
d=18.84÷ 3.14 =6m
r=6÷ 2 =3m
200 170 150 120
探究新知
(1)绿荫小学2007-2011年校园内树木总量变化情况统计表。
总量/棵 250
绿荫小学2007-2011年校园内 树木总量变化情况统计图
200
170
150 100
100
120
150
50
0 2007 2008 2009 2010
200 2011
总量/棵 250
S=πr
2
=
3.14×3
2
=
28.26m2
你真棒!
李大爷做了一个长18.84米长的木栅栏, 他想用这个木栅栏,做一个尽可能大的鸡圈。
S=22.1841m 2
S=28.26m 2
总结经验: 周长一样的图形: 围成直线的图形的面积 < 圆形的面积
1、圆的面积的计算方法; 2、周长相等的正方形和圆,圆的面 积要比正方形的大;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心决定圆的位置 半径决定圆的大小
圆心相同、半径不同的圆称为同心圆
20
6.圆的对称性
.O
圆的对称轴:任意一条经过圆心的直线(每一条直径所在的直线),有无数条
21
1、判断:
(1)在同一个圆内只可以画100条直径。 ( × )
(2)所有的圆的直径都相等。
( ×)
(3)两端都在圆上的线段叫做直径。 ( × )
1
长方形
正方形 平行四边形
梯形
三角形
由线段围成的封闭的平面图形。叫做直线图形
圆是由曲线围成的封闭的平面图形。
叫做曲线图形
圆
2
1.生活中的圆
3
1.生活中的圆
4
5
2.哪种方式更公平?
6
3.如何画圆?
误差大
7
绳子是软的, 容易松动,也 会有误差
较精确
画一个半径为2厘米的圆。
一、定长(半径) 二、定点(圆心) 三、一只脚旋转一周
2厘米
012345
4.认识圆
圆心
O
圆中心的这一点叫做圆心。
9
4.认识圆
圆心
连接圆心和圆上任意一点的线段叫做半径。
10
请你说说,图中哪条线是圆的半径?
.
...
11
4.认识圆
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
12
说一说,哪条线段是圆的直径?
1
2.
O 3
13
• o
在同一个圆里,有( 无数 )条半径,它们的长度都( 相等 )
14
• o
在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
பைடு நூலகம்15
r
•
r
do
16
rr
r • do
17
r
d
• o
r
r
18
r
d
d=r+r
•o
r
d=2r
r=
d 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
19
5.两个圆的位置关系
圆心不同、半径相同的圆称为等圆
圆心、半径都相同的圆称为同圆 圆心、半径都不相同的圆称为不同圆
(4)等圆的半径都相等。
(√ )
22
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度 B.直径长度
(2)从圆心到( C )任意一点的线段,叫半径。
A.圆心
B.圆外
C.圆上
(3)通过圆心并且两端都在圆上的( B )叫直径。
A.直径
B.线段
C.射线
23
圆心相同、半径不同的圆称为同心圆
20
6.圆的对称性
.O
圆的对称轴:任意一条经过圆心的直线(每一条直径所在的直线),有无数条
21
1、判断:
(1)在同一个圆内只可以画100条直径。 ( × )
(2)所有的圆的直径都相等。
( ×)
(3)两端都在圆上的线段叫做直径。 ( × )
1
长方形
正方形 平行四边形
梯形
三角形
由线段围成的封闭的平面图形。叫做直线图形
圆是由曲线围成的封闭的平面图形。
叫做曲线图形
圆
2
1.生活中的圆
3
1.生活中的圆
4
5
2.哪种方式更公平?
6
3.如何画圆?
误差大
7
绳子是软的, 容易松动,也 会有误差
较精确
画一个半径为2厘米的圆。
一、定长(半径) 二、定点(圆心) 三、一只脚旋转一周
2厘米
012345
4.认识圆
圆心
O
圆中心的这一点叫做圆心。
9
4.认识圆
圆心
连接圆心和圆上任意一点的线段叫做半径。
10
请你说说,图中哪条线是圆的半径?
.
...
11
4.认识圆
直径 d
通过圆心并且两端都在圆上的线段叫做直径。
12
说一说,哪条线段是圆的直径?
1
2.
O 3
13
• o
在同一个圆里,有( 无数 )条半径,它们的长度都( 相等 )
14
• o
在同一个圆里,有( 无数 )条直径,它们的长度都( 相等 )
பைடு நூலகம்15
r
•
r
do
16
rr
r • do
17
r
d
• o
r
r
18
r
d
d=r+r
•o
r
d=2r
r=
d 2
在同一个圆里,直径是半径的2倍,半径是直径的一半.
19
5.两个圆的位置关系
圆心不同、半径相同的圆称为等圆
圆心、半径都相同的圆称为同圆 圆心、半径都不相同的圆称为不同圆
(4)等圆的半径都相等。
(√ )
22
2、 选择题:
(1)画圆时,圆规两脚间的距离是( A )。
A.半径长度 B.直径长度
(2)从圆心到( C )任意一点的线段,叫半径。
A.圆心
B.圆外
C.圆上
(3)通过圆心并且两端都在圆上的( B )叫直径。
A.直径
B.线段
C.射线
23