第三章:函数的应用

合集下载

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
a>0, ff((kk12))><00,, f(k3)>0.
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),

高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1

高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1

三章函数的应用章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________;(2)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点.法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知,若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2 (2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是( )A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c=0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c<0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.a答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)( )A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题. 【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x . ∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5). (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0,即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减, ∴f (x )<f (5)=3.2(万元).综上,当工厂生产4百台产品时,可使盈利最多,为3.6万元.【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时,y =(x -3 500)·3%=0.03x -105.③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455.综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.基础过关1.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)解析 易知f (x )在(1,+∞)上单调递减,f (2)=1>0,f (3)=23+ln 12=23-ln 2<0,所以f (x )在(2,3)内只有一个零点.答案 B2.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少是2解析 由零点存在性定理,f (a )f (b )<0,f (c )f (b )<0,则y =f (x )在区间(a ,b )上至少有一个零点,在(b ,c )上至少有一个零点,而f (b )≠0,所以y =f (x )在区间(a ,c )上的零点个数为至少2个.选D. 答案 D3.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)解析 易知当x >0时,2x -1=0有一个根,所以需使函数y =e x+a (x ≤0)有一个零点,即方程e x +a =0(x ≤0)有一个根,即a =-e x .由x ≤0,得-e x∈[-1,0),故a ∈[-1,0). 答案 D4.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算________次.解析 设至少需要计算n 次,则n 满足0.12n <0.001,即2n >100,由于27=128,故要达到精确度要求至少需要计算7次. 答案 75.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.解析 在同一个坐标系中作出函数y =|x 2-2x |和y =a 2+1的图象,如图所示,易知a 2+1>1,由图知方程有2个解.答案 26.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解 不存在.理由如下:因为当x <0时,-1x >0,所以x 2-1x>0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.7.某地的出租车价格规定:起步价为a 元,可行3公里,3公里以上按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a ,b ,c 规定为正的常数,且c >b ),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取a =14,b =2.4,c =3.6,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(2)求车费y (元)与行车里程x (公里)之间的函数解析式y =f (x ).解 (1)由题意可知,起步价(3公里以内)是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8-3=5(公里)的收费是5×2.4=12(元),总共收费14+12=26(元),故他应付出租车费26元.(2)3公里以内,即起步价是a 元,即0<x ≤3时,y =a (元);大于3公里而不超过10公里时,即3<x ≤10时,收费y =a +(x -3)b =bx +a -3b (元);大于10公里时,即x >10时,收费y =a +7×b +(x -10)c =cx +a +7b -10c (元).所以y =⎩⎪⎨⎪⎧a ,0<x ≤3,bx +a -3b ,3<x ≤10,cx +a +7b -10c ,x >10.能力提升8.已知函数f (x )的图象如图所示,则它的一个可能的解析式为( )A.y =2xB.y =4-4x +1C.y =log 3(x +1)D.y =3x解析 由于图象过点(1,2),可排除C ,D ;由图象与直线y =4无限接近,但到达不了,即y <4,而y =2x 可无限大,排除A ,选B.答案 B9.若函数f (x )是定义在R 上的偶函数,在区间(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ) A.(-∞,-2] B.(-∞,-2]∪(2,+∞) C.(2,+∞)D.(-2,2)解析 ∵函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴函数f (x )在[0,+∞)上为增函数,且f (-2)=f (2)=0,作出函数f (x )的示意图,如图,则不等式f (x )<0的解为-2<x <2,故选D.答案 D10.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是________.解析 ∵f (x )的两个零点一个大于2,一个小于2, ∴f (2)<0,∴22+2a +a -1<0,解得a <-1. 答案 (-∞,-1)11.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 答案 2012.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解 (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x ⎝ ⎛⎭⎪⎫100-x -3 00050-x -3 00050×50-⎝⎛⎭⎪⎫100-x -3 00050×150=-x 250+162x -21 000=-150(x -4 050)2+307 050.当x =4 050时,y max =307 050.所以每辆车的月租金定为4 050元时,租赁公司的月收益最大,为307 050元.13.(选做题)设a ∈R ,试讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根的个数.解 原方程等价于⎩⎪⎨⎪⎧x -1>0,3-x >0,a -x >0,(x -1)(3-x )=a -x ,⇒⎩⎪⎨⎪⎧x -1>0,3-x >0,(x -1)(3-x )=a -x ,整理得-x 2+5x -3=a (1<x <3).在同一平面直角坐标系中分别作出函数y =a , 及y =-x 2+5x -3,x ∈(1,3)的图象,如图所示.(1)当a >134或a ≤1时,两个函数的图象无交点,故原方程无实数根;(2)当a =134或1<a ≤3时,两个函数的图象有一个交点,故原方程有一个实数根;(3)当3<a <134时,两个函数的图象有两个交点,故原方程有两个实数根.章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )解析由二分法的定义可知选A.答案 A2.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点解析∵f(a)·f(b)<0,∴f(a)与f(b)异号,即:f(a)>0,f(b)<0或者f(a)<0,f(b)>0,显然,在[a,b]内,必有一点c,使得f(c)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个,故选B.答案 B3.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )解析A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2只在区间(0,+∞)上有交点,不符合题意,故不正确;D :与直线y =2在(-∞,0)上有交点,故正确.故选D. 答案 D4.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点解析 由题图可知,甲到达终点用时短,故选D. 答案 D5.据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 答案 C6.若函数f (x )=log 3x +x -3的一个零点附近的函数值用二分法逐次计算的参考数据如下:那么方程x -3+3A.2.1 B.2.2 C.2.3D.2.4解析 由参考数据可知f (2.25)·f (2.312 5)<0,且|2.312 5-2.25|=0.062 5<0.1,所以当精确度为0.1时,可以将2.3作为函数f (x )=log 3x +x -3零点的近似值,也即方程x -3+log 3x =0的根的近似值. 答案 C7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )C.3D.4解析 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数,即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1.∵⎩⎪⎨⎪⎧-x >0,x -3≠0,解得x <0,∴函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1.故选A.答案 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)解析 由已知可知,函数f (x )=3x+12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数零点存在性定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.答案 C9.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A.2 B.3C.4D.与a 的值有关解析 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.答案 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x(a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )C.± 5D.- 5解析 设投放x (0≤x ≤20)万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a2·20-x ≥5,∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x ≤20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.答案 A11.已知函数f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析 f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,即y =|lg x |与y =2-x有两个交点,由题意x >0,分别画y =2-x 和y =|lg x |的图象,发现在(0,1)和(1,+∞)上分别有一个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有2-x 1=-lg x 1,即-2-x 1=lg x 1.①在(1,+∞)上有2-x 2=lg x 2.②①②相加有2-x 2-2-x 1=lg x 1x 2,∵x 2>x 1,∴2-x 2<2-x 1, 即2-x 2-2-x 1<0,∴lg x 1x 2<0, ∴0<x 1x 2<1,故选D. 答案 D12.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0,n ≤10,100,10<n ≤15,200,15<n ≤20,300,20<n ≤25,400,n >25.现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A.600元B.900元C.1 600元D.1 700元解析∵k(18)=200(元),∴f(18)=200×(18-10)=1 600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3 300(元),∴f(21)-f(18)=3 300-1 600=1 700(元).故选D.答案 D二、填空题(本大题共4个小题,每小题5分,共20分)13.如果函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.解析函数f(x)=x2+mx+m+3的一个零点为0,则f(0)=0,∴m+3=0,∴m=-3,则f(x)=x2-3x,于是另一个零点是3.答案 314.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.解析由|x2-4x|-a=0得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4,故答案为(0,4).答案(0,4)15.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品销售价应定为每个________元.解析设每个涨价x元,则实际销售价为(10+x)元,销售的个数为100-10x.则利润为y =(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.答案1416.给出下列四个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点.其中正确的序号是________.解析 对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y =log 2x 2与函数y =2log 2x 的定义域不相同,故不是相等函数,故②错;对于③,当x 0取大于等于4的值都可使当x >x 0时,有2x >x 2成立,故③正确;对于④,函数y =f (x )的图象在区间[a ,b ]上不连续时,既使有f (a )·f (b )<0,f (x )在(a ,b )内也不一定有零点.故④错. 答案 ③三、解答题(本大题共6个小题,共70分)17.(10分)判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=x 3+1.解 (1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1), 令f (x )=0,可解得x =-18,或x =1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x +2,令x 2+x +2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x +2=0无实数解.所以f (x )=x 2+x +2不存在零点. (3)因为f (x )=x 3+1=(x +1)(x 2-x +1), 令(x +1)(x 2-x +1)=0,解得x =-1. 所以函数f (x )的零点为-1.18.(12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.解 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增,∴当log 14x ≤0,即x ≥1时,log 14x ≥-12,解得x ≤2,即1≤x ≤2.由对称性可知,当log14x >0,即0<x <1时,log 14x ≤12,解得12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(12分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).解 令y 1=x -1,y 2=-12x 2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x 轴的交点分别为(-2,0),(2,0),y 1与y 2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.20.(12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q=10,即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.21.(12分)如图,直角梯形OABC 位于直线x =t (t ≥0)右侧的图象的面积为f (t ).(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 解 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2,当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,0≤t ≤2,10-2t ,2<t ≤5.(2)函数f (t )的图象如图所示.22.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解 (1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600. 当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000;当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,∴当x =550时,y 最大,此时y =6 050. 显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.模块检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4}D.{0,2,3,4}解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 答案 C2.可作为函数y =f (x )的图象的是( )解析 由函数的定义可知:每当给出x 的一个值,则f (x )有唯一确定的实数值与之对应,只有D 符合.故正确答案为D. 答案 D3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数 A.f (x )=-(x +1)2+2B.f (x )=3|x |C.f (x )=⎝ ⎛⎭⎪⎫12|x |D.f (x )=x -2解析 A.若f (x )=-(x +1)2+2,则函数图象关于x =-1对称,不是偶函数,不满足条件③.B.若f (x )=3|x |,则f (x )在区间(0,+∞)上单调递增,不满足条件②.C.若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D.若f (x )=x -2,则f (0)无意义,不满足条件①.故选C. 答案 C4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))等于( ) A.0 B.1 C.2D.3 解析 f (2)=log 3(22-1)=1,f (1)=2e1-1=2,即f (f (2))=2. 答案 C5.函数f (x )=2x -1+log 2x 的零点所在区间是( )A ⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D.(1,2)解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.答案 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( ) A.13 B.-13C.3D.-3解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得:α=-3,所以幂函数解析式为y =x -3,由f (x )=27,得:x -3=27,所以x =13.答案 A7.函数f (x )=2-x +ln(3x +2)+12x-1的定义域为( ) A.⎝ ⎛⎭⎪⎫-23,0∪(0,2] B.⎝ ⎛⎦⎥⎤23,2 C.⎝ ⎛⎭⎪⎫-23,1∪(1,2] D.⎝ ⎛⎦⎥⎤-23,2 解析 由⎩⎪⎨⎪⎧2-x ≥0,3x +2>0,2x -1≠0,解得-23<x ≤2且x ≠0,故f (x )的定义域为⎝ ⎛⎭⎪⎫-23,0∪(0,2].答案 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A.c <a <b B.b <a <c C.c <b <aD.a <b <c解析 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5,所以b <a <c .故选B.答案 B9.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析 由f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确. 答案 A10.定义在R 上的函数f (x )满足f (-x )=f (x ),f (x -2)=f (x +2)且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2)⇒f (x )=f (x +4), 因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0, 所以f (log 220)=f (log 220-4)=f (4-log 220) =f ⎝ ⎛⎭⎪⎫log 245=2log 245+15=1.故选A. 答案 A11.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解集是( )A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎪⎨⎪⎧x -1<0,f (x )>0或⎩⎪⎨⎪⎧x -1>0,f (x )<0,可解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D. 答案 D12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[23,+∞) B.(0,1]∪[3,+∞) C.(0,2]∪[23,+∞)D.(0,2]∪[3,+∞)解析 y =(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2,相当于y =x 2向右平移1m 个单位,再将函数值放大m 2倍得到的;y =x +m 相当于y =x 向上平移m 个单位.①若0<m ≤1,两函数的图象如图1所示,可知两函数图象在x ∈[0,1]上有且只有1个交点,恒成立;②若m >1,两函数的大致图象如图2所示,为使两函数在x ∈[0,1]上有且只有1个交点,需要(m -1)2≥1+m ,得m ≥3.综上,m ∈(0,1]∪[3,+∞). 答案 B二、填空题(本大题共4个小题,每小题5分,共20分) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.解析 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=a x -2-3必过定点(2,-2).答案 (2,-2)14.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析 ∵f (2)·f (4)<0,f (2)·f (3)<0, ∴f (3)·f (4)>0,故x 0∈(2,3). 答案 (2,3)15.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.解析 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6}, 所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.答案 {2,4,8,9} {3,4,7,9}16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x ,(x ≥4),log 2x ,(0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图.由图可知实数k 的取值范围是(1,2). 答案 (1,2)三、解答题(本大题共6个小题,共70分) 17.(10分)计算下列各式的值: (1)1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42-;(2)(log 3312)2+log 0.2514+9log 55-log 31.解 (1)原式=⎝ ⎛⎭⎪⎫2313×1+23×14×214-⎝ ⎛⎭⎪⎫2313=2.(2)原式=⎝ ⎛⎭⎪⎫122+1+9×12-0=14+1+92=234.18.(12分)已知函数f (x )是R 上的奇函数,当x ∈(0,+∞)时,f (x )=2x+x ,求f (x )的解析式.解 由题意,当x =0时,f (x )=0.∵x >0时,f (x )=2x+x ,∴当x <0时,-x >0,f (-x )=2-x-x ,又∵函数y =f (x )是定义在R 上的奇函数, ∴x <0时,f (x )=-f (-x )=-2-x+x , 综上所述,f (x )=⎩⎪⎨⎪⎧-2-x+x ,x <0,0,x =0,2x +x ,x >0.19.(12分)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解 (1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}. A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3; 综合①②,可得a 的取值范围是(-∞,3].20.(12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1). (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>0,1-2x >0,∴-12<x <12.∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x |-12<x <12.(2)由(1)知F (x )的定义域关于原点对称, 又F (-x )=f (-x )-g (-x )=log a (-2x +1)- log a (1+2x )=-F (x ), ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0.②当a >1时,2x +1>1-2x >0,∴0<x <12.21.(12分)甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大还是缩小了?说明理由; (3)哪一年的规模(即总产量)最大?说明理由.解 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点.从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规模比第1年缩小了. (3)设当第m 年时的规模,即总出产量为n , 那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34) =-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2, 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条. 22.(12分)已知函数f (x )=a ·2x -2+a2x+1(a ∈R ).(1)试判断f (x )的单调性,并证明你的结论; (2)若f (x )为定义域上的奇函数, ①求函数f (x )的值域;②求满足f (ax )<f (2a -x 2)的x 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),关于原点对称,且f (x )=a -22x +1.任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f (x 2)-f (x 1)=a -22x 2+1-a +22x 1+1=2(2x2-2x1)(2x 2+1)(2x1+1). ∵y =2x在R 上单调递增,且x 1<x 2, ∴0<2x1<2x2,2x2-2x1>0,2x1+1>0,2x2+1>0, ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )是(-∞,+∞)上的单调增函数.(2)∵f (x )是定义域上的奇函数,∴f (-x )=-f (x ),即a -22-x +1+⎝ ⎛⎭⎪⎫a -22x +1=0对任意实数x 恒成立,化简得2a -⎝ ⎛⎭⎪⎫2·2x2x +1+22x +1=0,。

高一上数学必修一第三章《3.3 函数的应用》知识点梳理

高一上数学必修一第三章《3.3 函数的应用》知识点梳理

高一上必修一第三章《函数》知识点梳理3.3 函数的应用【学习目标】能够运用一次函数、二次函数、分段函数的性质解决某些简单的实际问题.(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学道理,弄清题中出现的量及其数学含义.(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题(即建立数学模型),并运用函数的相关性质解决问题。

(3)能处理有民生、经济、物里等方面的实际问题。

【重点】1.通过运用函数的有关知识解决实际生活中的问题,加深对函数概念的理解2.会应用一次函数、二次函数、分段函数模型解决实际问题3.了解数学知识来于生活,又服务于生活.【难点】1、增强运用函数思想理解和处理问题的意识,理解数学建模中将实际问题抽象、转化为数学问题的一般方法。

【典型例题】例1 为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示。

解(1)不难看出,f(x)是一个分段函数,而且:当0<x≤220时,有f(x)=3.45x;当220<x≤300时,有f(x)=220×3.45+(x-220)×4.83=4.83x-303.6;当x>300时,有f(x)=220×3.45+(300-220)×4.83+(x-300)×5.83=5.83x-603.6.因此=3.45x,0<x≤220,f(x)=14.83x-303.6,220<x≤300,=5.83x-603.6,x>300.(2)因为220<260≤300,所以f(260)=4.83×260-303.6=952.2,因此张明一家2015年应缴纳水费952.2元。

由例1可知,可以用分段函数来描述生活中的阶梯水价、阶梯电价等内容.例2 城镇化是国家现代化的重要指标,据有关资料显示,1978-2013年,我国城镇常住人口从1.7亿增加到7.3亿。

高中数学必修一第三章函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1○24(1(2(356Eg7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上连续,且()()0f a f b <②在区间(),a b 上单调。

Eg :求函数2)1lg(2)(-++=x x f x 的零点个数。

8、函数零点的性质:从“数”的角度看:即是使0)(=x f 的实数;从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点; 若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点.Eg :一元二次方程根的分布讨论一元二次方程根的分布的基本类型 设一元二次方程02=++c bx ax (0≠a)的两实根为1x ,2x ,且21x x ≤.表二:(两根与k的大小比较)k k k表三:(根在区间上的分布)Eg :(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围?(2)关于x 的方程0142)3(22=++++m x m x 有两实根在[0,4]内,求m 的取值范围?(3)关于x 的方程0142)3(22=++++m x m mx 有两个实根,且一个大于4,一个小于4,求m 的取值范围?9)(x f10(1(2(3①若f ②若f ③若f (4~(41112① ② ③ ④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义.13、函数的模型不符合14。

人教A版高中数学必修1第三章《函数的应用》思维导图

人教A版高中数学必修1第三章《函数的应用》思维导图

人教A版高中数学必修1第三章《函数
的应用》思维导图
用思维导图复习,一天顶一个月。

高中数学必修和选修课本共计13本,通常两年内学完,平均一年6本,每学期3本。

每本平均三到四章,每学期5个月,大约半月学完一章。

而高考总复习的时间则更为宝贵,如果高考一轮复习的时候,在基础知识模块,大家还需要消耗大量时间去翻看教材显然得不偿失。

当然,我们并不是说教材不重要,相反,教材非常重要。

而是希望大家在平时的学习过程中,养成总结梳理的习惯,尤其是在高一高二的时候。

只要大家学会使用思维导图梳理,这样在高三的时候就可以快人一步,将更多的宝贵时间拿来突破自己的弱项,争取取得更好的成绩。

已经进入高三的同学,也不用担心,后续我们会持续更新,大家关注我们的文章即可,我们会帮大家梳理好,大家可以通过文章末尾留言免费获取。

本文,我们主要梳理了人教版A版高中数学必修1(也就是高一数学)第三章《函数的应用》。

主要内容大纲如下:
其中重点在于零点问题、函数模型及函数的应用。

下面我们逐一展开回忆下。

一、函数与方程
二、函数模型及其应用
到本文为止,有关人教版A版高中数学必修一(也就是高一数学必修1)的内容,我们就在前面三篇文章给大家梳理完了,至于第一章《集合与函数的概念》及第二章《基本初等函数(I)》,请大家查阅我们前面两天的文章即可。

大家如果觉得这种方式好,可以自己下载思维导图软件尝试下。

时间紧迫,需要x mind 思维导图原图进行复习的同学,可以在评论区联系我们获取。

2023新教材高中数学第三章函数的概念与性质3-4函数的应用一课件新人教A版必修第一册

2023新教材高中数学第三章函数的概念与性质3-4函数的应用一课件新人教A版必修第一册

解析 由已知得,该户每月缴费 y 元与实际用水量 x 立方米满足的关系 式为 y=m2mx,x-0≤ 10xm≤,1x0>,10. 由 y=16m,得 x>10,所以 2mx-10m=16m.解 得 x=13.故选 A.
7.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为 y
4x,1≤x<10,x∈N, =2x+10,10≤x<100,x∈N,
1.5x,x≥100,x∈N,
其中,x 代表拟录用人数,y 代表面试人
数,若面试人数为 60,则该公司拟录用人数为( ) A.15 B.40 C.25 0,若 4x=60,则 x=15>10,不符合题意;若 2x+10= 60,则 x=25,满足题意;若 1.5x=60,则 x=40<100,不符合题意.故拟 录用人数为 25.
销售单价(元) 6 7 8 9 10 11 12 日销售量(桶) 480 440 400 360 320 280 240 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?最 大利润是多少?
解 设每桶水在进价的基础上上涨 x 元出售,利润为 y 元,由表格中的 数据可知,价格每上涨 1 元,日销售量就减少 40 桶,所以涨价 x 元后,日 销售桶数 480-40(x-1)=520-40x>0,∴0<x<13.
答案 C
解析 设公司在甲地销售 x 辆,则在乙地销售(15-x)辆,公司获利为 L =-x2+21x+2(15-x)=-x2+19x+30=-x-1292+30+1492,∴当 x=9 或 10 时,L 最大为 120 万元.
4.某桶装水经营部每天房租、工作人员工资等固定成本为 200 元,每 桶水进价为 5 元,销售单价与日销售量的关系如下表:

高中数学 第三章 函数的概念与性质 3.4 函数的应用(一)

高中数学  第三章 函数的概念与性质 3.4  函数的应用(一)

3.4函数的应用(一)知识解读•必须会知识点1 常见的几种函数模型1.(2022·安徽亳州高一期中)商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该商店现推出两种优惠方案:①买一个茶壶赠送一个茶杯;②按购买总价的92%付款。

某顾客需购买茶壶4个,茶杯若干个(不少于4个)。

当购买茶杯x个时,付款为y 元,试分别建立两种优惠方案中的y与x之间的函数解析式,并指出如果该顾客需购买茶杯40个,应选择哪种优惠方案。

解析:由优惠方案①,得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N*)。

由优惠方案②,得函数解析式为y2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N*)。

当该顾客需购买茶杯40个时,采用优惠方案①应付款y1=5×40+60=260(元),采用优惠方案②应付款y2=4.6×40+73.6=257.6(元)。

由于y2<y1,故应选择优惠方案②。

知识点2 用函数模型解决实际问题的方法与步骤2.(2021·山东菏泽23校高一期末联考)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元。

根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆。

为了便于结算,每辆电动观光车的日租金x(元)(x只取整数),并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得)。

(1)求函数y=f(x)的解析式及其定义域;答案:(1)当x≤5时,y=60x-120,令60x-120>0,解得x>2,因为x∈N*,所以3≤x≤5。

当x>5时,y=[60-2(x-5)]x-120=-2x2+70x-120,令-2x2+70x-120>0,有x2-35x+60<0,上述不等式的整数解为2≤x ≤33(x ∈N *),所以5<x ≤33(x ∈N *)。

【授课习题】第三章 函数的应用

【授课习题】第三章 函数的应用

设所购的标准板材全部裁完,其中按裁法 一裁x张、按裁法二裁y张、按裁法三裁z张,
且所裁出的A、B两种型号的板材刚好够
用. (1)上表中,m=_______,n=________; (2)分别求出y与x和z与x的函数关系式; (3)若用Q表示所购标准板材的张数,求Q
与x的函数关系式,并指出当x取何值时Q
解:小亮在半圆上散步,到点M的距离始终不变,且所 花时间大于小亮在MA、MB上的时间,应选C.
2 2.如图,是一次函数y=kx+b与反比例函数y=x 的图像, 2 则关于x的方程kx+b= 的解为 ( )C x
A.x1=1,x2=2 B.x1=-2,x2=-1 C.x1=1,x2=-2 D.x1=2,x2=-1
∵抛物线y=a(x-6)2+6经过点(0,0).
∴0=a(0-6)2+6,36a=-6,a=-1 .
6 1 2+6=- 1 x2+2x ∴抛物线解析式为:y=- (x-6) 6 6 (3)设A(m,0),则B(12-m,0),C(12-m, - 1m2-2m), 6 D(m,- 1m2+2m). 6 1 2 ∴“支撑架”总长AD+DC+CB= m +2m +(12-2m) - 6 +-1m2+2m =-1 m2+2m+12=- 1(m-3)2+15. 3 3 6 ∵a=-1 <0. ∴当m=3时,AD+DC+CB有最大值为15米. 3
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4 3 =7) (3)运动员乙要抢到第二个落点D,他应再向前跑多少米? (取2 6 =5)
解:(1)设第一次落地时,
抛物线的表达式为y=a(x-6)2+4,
由已知得,x=0时,y=1,∴1=36a+4,a=- 1 .

【红对勾】高中数学 第三章 函数的应用本章小结课件 新人教版必修1

【红对勾】高中数学 第三章 函数的应用本章小结课件 新人教版必修1

20 km/h,巡逻艇不停地往返于A,B两港口巡逻(巡逻艇掉 头的时间忽略不计).
(3)有,x=0,它来源于2x-1=0;x=-1,它来源于 -x-1=0. (4)规定k的范围是{k|k≤-1}.
【例2】
已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x) )
的零点,且m<n,则实数a,b,m,n的大小关系是( A.m<a<b<n C.a<m<b<n B.a<m<n<b D.m<a<n<b
确定函数零点的个数有两个基本方法:一是利用图象 研究与x轴的交点个数或转化成两个函数图象的交点个数 定性判断.二是利用零点存在性定理判断,但还需结合函 数的图象和单调性,特别是二重根容易漏掉.
【例1】
x 2 ,x≥0, 设f(x)= -x,x<0.
(1)f(x)有零点吗? (2)设g(x)=f(x)+k,为了使方程g(x)=0有且只有一个 根,k应该怎样限制? (3)当k=-1时,g(x)有零点吗?如果有,把它求出 来,如果没有,请说明理由; (4)你给k规定一个范围,使得方程g(x)=0总有两个 根.
3.二分法的定义:对于在区间[a,b]上连续不断,且 f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在 区间一分为二,使区间的两个端点逐步逼近零点,进而得 到零点近似值的方法叫做二分法.
4.几种不同增长的函数模型. (1)一次函数型模型:y=kx+b(k≠0); (2)二次函数型模型:y=ax2+bx+c(a≠0); (3)指数函数型模型:y=abx+c(a≠0); (4)对数函数型模型:y=mlogax+n(m≠0,且a>0, a≠1,x>0); (5)幂函数型模型:y=axn+b(a≠0).

人教A版必修1第三章“函数的应用”教材分析

人教A版必修1第三章“函数的应用”教材分析

人教A版必修1第三章“函数的应用”教材分析作者:于红燕来源:《读写算·教研版》2016年第07期中图分类号:G632 文献标识码:B 文章编号:1002-7661(2016)07-189-03一、教材功能与地位本章是人教A版必修1第三章函数的应用,前两章已经学习了一些有关基本初等函数的知识,本章对函数知识进行应用,体会函数与方程、数学建模的思想。

函数与方程的思想和函数贯穿于整个高中数学学习的始终,是高中数学的重要思想和支撑高中数学的主干知识。

《普通高中课程标准》提出要发展学生的数学应用意识,而本章第一次提及数学建模,学生通过解决实际问题,感受数学建模的思想方法,认识数学在解决实际问题当中的威力,为今后进一步运用理论解决实际问题打下坚实基础。

二、内容安排本章共4节:1.1方程的根与函数零点,1.2用二分法求方程的近似解,1.3几类不同增长的函数模型,1.4函数模型的应用实例。

本章主要围绕函数的应用展开,首先介绍了函数与方程的关系,方程的根是函数的零点,借助于函数的零点来确定方程的根,这是函数的应用之一。

其次,生产和生活中的许多模型几乎都与基本初等函数有关,本章第二节就专门介绍函数模型及具体的实例。

这样我们学习完前两章的理论知识,对理论知识进行了实际应用。

三、课程目标与学习目标1、课程目标学习知识是为了进一步学习其他知识或运用到现实生活中去,尤其数学的学习,如果只是学习理论知识而不去运用与实践,这就完全违背了数学的初衷。

本章的学习是建立在前两章的基础之上,体会函数在现实生活中的应用,利用已经学习过的基本初等函数理论知识,很好的理解本章内容。

2、学习目标《普通高中数学课程标准》中对本章的要求:(1)结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的联系。

(2)根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

人教版A版必修一第三章函数的应用 函数与方程1

人教版A版必修一第三章函数的应用 函数与方程1
(1)方程x2-2x-3=0与函数y=x2-2x-3; (2)方程x2-2x+1=0与函数y=x2-2x+1; (3)方程x2-2x+3=0与函数y=x2-2x+3. 请列表表示出方程的根,函数的图象及图象与x轴交点的 坐标.
探要点·究所然

方程 x2-2x-3=0 x2-2x+1=0 x2-2x+3=0
在区间[2,4]上有零点3,而f(2)<0,f(4)>0,即f(2)· f(4)<0.
由以上两步探索,你可以得出什么样的结论?
探要点·究所然

函数零点存在性定理:如果函数 y=f(x)在区间
[a , b] 上的图象是连续不断的一条曲线 ,并且有
f(a)· f(b)<0,那么函数 y = f(x) 在区间 (a, by=lg(x+1); ③y=2x;
④y=2x-2的零点. 答 ①y=lg x的零点是1;
②y=lg(x+1)的零点是0;
③y=2x没有零点; ④y=2x-2的零点是1.
探要点·究所然
例1
已知函数 y = ax2 + bx + c ,若 ac < 0 ,则函数 f(x) 的零
a 1 令 bx -ax=0,得 x=0 或 x= =- . 2 b
2
答案 A
探要点·究所然

探究点二 函数零点存在性定理
思考1 观察二次函数f(x)=x2-2x-3 的图象,发现这个二次函数在区间 [-2,1]上有零点-1,而f(-2)>0, f(1)<0,即f(-2)· f(1)<0.二次函数
连续不断的一条曲线,函数y=f(x)在区间(a,b)上存在零点,
f(a)· f(b)<0是否一定成立?
答 不一定成立,由下图可知.
探要点·究所然

函数的应用(含幂函数)(必修1第三章)巩固训练题

函数的应用(含幂函数)(必修1第三章)巩固训练题

函数的应用(含幂函数)(必修1第三章)巩固训练题满分100分,时间80分钟一、选择题(本大题共6小题,每小题5分,共30分。

)1 若函数)(x f y =在区间[],a b 上的图象为连续不断的一条曲线,则下列说法正确的是( )A 若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;B 若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c f ;C 若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;D 若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f ;2 方程0lg =-x x 根的个数为( )A 无穷多B 3C 1D 03 若1x 是方程lg 3x x +=的解,2x 是310=+x x的解,则21x x +的值为( )A23 B 32 C 3 D 31 4 设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间 ( )A (1,1.25)BC (1.5,2)D 不能确定 5 直线3y =与函数26y x x =-的图象的交点个数为 ( )A 4个B 3个C 2个D 1个6 若方程0xa x a --=有两个实数解,则a 的取值范围是 ( )A (1,)+∞B (0,1)C (0,2)D (0,)+∞ 二、填空题(本大题共5小题,每小题6分,共30分。

)7 2000年底世界人口达到59.8亿,若人口的年平均增长率为%x , 2013年底世界人口 为y 亿,那么y 与x 的函数关系式为8 942--=a a xy 是偶函数,且在),0(+∞是减函数,则整数a 的值是9 函数12(0.58)xy -=-的定义域是10 已知函数2()1f x x =-,则函数(1)f x -的零点是__________11 函数2223()(1)mm f x m m x--=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =______三、解答题(本大题共4题,共40分。

第三章公式与函数的应用

第三章公式与函数的应用

第三章公式与函数的应用在数学中,公式与函数是非常重要的概念,它们在解决实际问题中有着广泛的应用。

本章将介绍公式与函数的基本概念,以及它们在实际问题中的应用。

一、公式的概念和应用公式是一种数学表达式,用来表示数学关系。

它可以用一些变量和常数来表示,通过给这些变量赋予具体的值,可以计算得到一些具体的数值。

例如,加减乘除的运算公式就是一种常见的公式。

公式在解决实际问题中有着广泛的应用。

举个例子,假设一个工人每小时生产100个产品,那么他生产n小时可以生产多少个产品呢?我们可以用公式P=100n来表示,其中P表示产品的数量,n表示小时数。

通过给n赋予具体的值,就可以得到相应的产品数量。

公式的应用不仅仅局限于数学问题,它还可以应用在物理、化学、经济等各个领域。

例如,质能方程E=mc^2就是一个著名的物理公式,它描述了质量和能量之间的关系。

再比如,在经济学中,成本函数就是一个经济公式,它描述了生产成本与生产要素之间的关系。

二、函数的概念和应用函数是一种特殊的公式,它描述了输入与输出之间的关系。

函数通常用f(x)表示,其中x是输入,f(x)是输出。

函数可以用来解决各种问题,比如求函数的值、求函数的最大值或最小值等。

函数的应用非常广泛。

在数学中,函数常常用来描述不同变量之间的关系。

例如,直线函数y=ax+b就是一种常见的函数,它描述了自变量x与因变量y之间的线性关系。

再比如,指数函数y=a^x描述了自变量x与因变量y之间的指数关系。

函数在实际问题中也有着广泛的应用。

例如,在物理学中,速度函数v(t)可以描述运动物体的速度随时间的变化规律;在经济学中,需求函数D(p)可以描述产品需求量与产品价格之间的关系。

三、实际问题中的公式与函数应用举例1.面积计算问题假设有一个植物园,它是一个长方形,长50m,宽30m。

如何计算这个植物园的面积呢?可以使用长方形的面积公式,即面积=长×宽。

将具体的数值代入公式中,可以计算得到面积=50×30=1500平方米。

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用
当 < 0时,′ > 0;当 > 0时,′ < 0.
所以函数 在 −∞, 0 上单调递增,在 0, +∞ 上单调递减.所以当 = 0时, 有最
大值 0 = − 1.
当 < 1时, 0 = − 1 < 0,函数 无零点.
返回至目录
当 = 1时, 0 = − 1 = 0,函数 有1个零点.
式的值的方法,称为洛必达法则.需要说明的是,洛必达法则在解答题中直接使用一
般至少会扣步骤分,属于考场中时间紧迫时的一种抢分技巧.
返回至目录
1.设函数 = e − 1 − − 2 .当 ≥ 0时, ≥ 0恒成立,求实数的取值范围.
解:当 = 0时, = 0.
当 > 0时, ≥ 0等价于 ≤
恒成立,即ln >
1
3
− 2 − − 4 恒成立,
4

即− < 3ln + + 在 0, +∞ 上恒成立.
令ℎ = 3ln + +
4
,则ℎ′

=
+4 −1
2

令ℎ′ < 0,得0 < < 1,令ℎ′ > 0,得 > 1.
则ℎ 在 0,1 上单调递减,在 1, +∞ 上单调递增.

则′
令ℎ
e −−1
=
>0 ,
2
e −2e ++2
=
.
3
= e − 2e + + 2
e −−1
.
2
> 0 ,则ℎ′ = e − e + 1.

人教A版高中数学必修第一册第三章3-4函数的应用(一)课件

人教A版高中数学必修第一册第三章3-4函数的应用(一)课件

分析:根据3.1.2例8中公式②,可得应纳税所得额t关于综合所得收 入额x的解析式t=g(x),再结合y=f (t)的解析式③,即可得出y关于x 的函数解析式. 解:(1)由个人应纳税所得额计算公式,可得 t=x-60 000-x(8%+2%+1%+9%)-9 600-560=0.8x-70 160. 令t=0,得x=87 700. 根据个人应纳税所得额的规定可知,当0≤x≤87 700时,t=0.所以, 个人应纳税所得额t关于综合所得收入额x的函数解析式为
√D.y=-0.1x+1 200(0≤x≤4 000)
) 题号
1 2 3 4
D [因为自行车为x辆,所以电动车为(4 000-x)辆,
存车总收入y=0.2x+0.3(4 000-x)=-0.1x+1 200(0≤x≤4 000).]
3.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电
线时,其电流强度I(单位:安)与电线半径r(单位:毫米)的三次方 题号
1
故选C.]
2
3
4
2.据调查,某存车处在某星期日的存车量为4 000辆次,其中电动车
存车费是每辆一次0.3元,自行车存车费是每辆一次0.2元.若自行车
存车量为x辆次,存车总收入为y元,则y关于x的函数关系式是( A.y=0.1x+800(0≤x≤4 000) B.y=0.1x+1 200(0≤x≤4 000) C.y=-0.1x+800(0≤x≤4 000)
探究建构
探究1 一(二)次函数模型的应用 [典例讲评] 1.为了迎接五一小长假的购物高峰,某商场决定将一批 进价为40元/件的商品降价出售,在市场试销中发现,此商品的销售单 价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章:函数的应用考纲要求:1.方程的根和函数的零点:(1)理解函数(结合二次函数)零点的概念 (2)领会函数零点与相应方程根的关系 (3)掌握零点存在的判定条件. 2.用二分法求方程的解:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解 (2)体会程序化解决问题的思想,为算法的学习作准备 3.函数模型的应用:(1)结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性(2)能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题(3)能够利用给定的函数模型或建立确定性函数模型解决实际问题第一课时;方程的根和函数的零点:(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。

(2)二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。

(3)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。

既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。

(4)二次函数的基本性质(1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n 。

(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q )。

若-a b2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b2)=m ,f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M ,f (-a b2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m 。

(3)二次方程f (x )=ax 2+bx +c =0的实根分布及条件。

①方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;②二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b ③二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b ④二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立。

题型1:方程的根与函数零点1.(1)方程lg x +x =3的解所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) (2)设a 为常数,试讨论方程)lg()3lg()1lg(x a x x -=-+-的实根的个数。

解析:(1)在同一平面直角坐标系中,画出函数y =lg x 与y =-x +3的图象(如图)。

它们的交点横坐标0x ,显然在区间(1,3)内,由此可排除A ,D 至于选B 还是选C ,由于画图精确性的限制,单凭直观就比较困难了。

实际上这是要比较0x 与2的大小。

当x =2时,lg x =lg2,3-x =1。

由于lg2<1,因此0x >2,从而判定0x ∈(2,3),故本题应选C 。

x 0321321oyx(2)原方程等价于⎪⎪⎩⎪⎪⎨⎧-=-->->->-xa x x x a x x )3)(1(00301即⎩⎨⎧<<-+-=31352x x x a 构造函数)31(352<<-+-=x x x y 和a y =,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当31≤<a 或413=a 时,原方程有一解;②当4133<<a 时,原方程有两解; ③当1≤a 或413>a 时,原方程无解。

3.已知f (x )=(x +1)·|x -1|,若关于x 的方程f (x )=x +m 有三个不同的实数解,则实数m 的取值范围 .解析:由f (x )=(x +1)|x -1|=得函数y =f (x )的图象(如图).按题意,直线y =x +m 与曲线y =(x +1)|x -1|有三个不同的公共点,求直线y =x +m 在y 轴上的截距m 的取值范围.由 得x 2+x +m -1=0.Δ=1-4(m -1)=5-4m ,由Δ=0,得m =45,易得实数m 的取值范围是-1<m <45.变式训练:1.函数f (x )=x 4-2x +1的一个零点是( ). A .-1B .0C .1D .22.用二分法求函数f (x )=x 3+x 2-2x -1的一个正零点,可选作计算的初始区间的是( ).A .[-1,1]B .[0,1]C .[1,2]D .[2,3]3.方程lg 2x x +=的实根的个数是_____XY 12341234025=x ay =x 2-1,x ≥11-x 2,x <1 y =1-x 2,y =x +m1.C 解析:将-1,0,1,2分别代入到f (x )=x 4-2x +1中,只有f (1)=0,故答案选C .2.C 解析:∵f (1)=-1<0,f (2)=7>0,∴函数f (x )=x 3+x 2-2x -1的一个正零点一定在区间[1,2]里.3.2;lg 2x x =-+,作图可得 题型2:零点存在性定理1.下列四个函数的图象中,在区间(0,+∞)上有零点的是().① ② ③ ④A .①②B .①③④C .②④D .①④1.D 解析:函数有零点,即存在自变量x 0,使得f (x 0)=0,反映在图象上就是与x 轴有交点.本题要求在区间(0,+∞)上有零点,即交点在x 轴的正半轴上.变式训练1.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)f (2)f (4)<0,则下列命题正确的是( ).A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图象与x 轴相交有多种可能.所以函数f (x )必在区间(0,4)内有零点,正确选项为D .题型3:二次方程f (x )=ax 2+bx +c =0的实根分布及条件1.若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,求实数a 的取值范围.解:因为二次函数f (x )=-x 2+2ax +4a +1的图象开口向下,且在区间(―∞,(第3题)f (-1)>0 f (3)>―1),(3,+∞)内各有一个零点,所以 , 解得a >54. 2.设二次函数()()fx a x b xc a =++>2,方程()f x x -=0的两个根x x 12,满足ax x 1021<<<. 当()x x ∈01,时,证明。

证明:由题意可知))(()(21x x x x a x x f --=-,ax x x 1021<<<< , ∴ 0))((21>--x x x x a , ∴ 当()x x ∈01,时,x x f >)(。

又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,综上可知,所给问题获证。

变式训练:1.若函数f (x )=ax 2+2x -1一定有零点,则实数a 的取值范围是___________. 解析:a ≥-1.解析:若函数f (x )=ax 2+2x -1一定有零点,则方程ax 2+2x -1=0一定有实根,故a =0或a ≠0且方程的判别式大于等于零.2.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是 .解析:函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,即f (2)<0,可求实数a 的取值范围是(-∞,-1).题型4.函数零点的性质:1. 函数f (x )=⎩⎨⎧0>,ln +2-0 ,3-2+2x x x x x ≤的零点个数为( ).A .0B .1C .2D .3解析:当x ≤0时,令x 2+2x -3=0解得x =-3;当x >0时,令-2+ln x =0,得x =100,所以已知函数有两个零点,选C . 还可以作出f (x )的图象,依图判断 变式训练:1.函数y =log a x (a >0,a ≠1)有( )个零点. A .1B .2C .3D .不能确定2.方程x 3 +ax 2-(a 2+1)x = 0的根的个数是( ). A .1B .2C .3D .不能确定解析:1.A 解析:0<a <1时,1个;a >1时,1个. 2.C 解析:令x 3+ax 2-(a 2+1)x =0,可求出三个根.第二课时:用二分法求方程的解:二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。

相关文档
最新文档