高等数学等价替换公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。x→0,时x→sinx ; x→arcsinx ; x→tanx ;x→arctanx; x→ln(1+x); x→(e^x-1); [(1+x)^n-1]→nx;(1-cosx)→x*x/2;a^x-1→xlna, ln(1+x)→x;麦克劳林公式也是,那个符号不好写,你课本上或者习题里有.例1 limx →0tanx-sinxx3 给你举几个利用无穷小的例子例1 limx→0tanx-sinxx3 解:原式=limx →0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵sinx~x,1-cosx~x22)=12 此题也可用罗比塔法则做,但不能用性质④做。∵tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。例 2 limx→0e2x-31+xx+sinx2 解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53 例3 limx→0(1x2-cot2x) 解法1:原式=limx→0sin2x-x2cos2xx2sin2x =limx→0(sinx+xcosx)(sinx-xcosx)x4 =limx→0x2(1+cosx)(1-cosx)x4 (∵sinx~x) =limx→0(1+cosx)(1-cosx)x2 =limx→012x2·(1+cosx)x2=1 解法2:原式=limx→0tan2x-x2x2tan2x =limx→0(tanx+x)(tanx-x)x4 =limx→02x(tanx-x)x44 (∵tanx~x) =limx→02(tanx-x)x3 =limx→02(sec2x-1)3x2 =23limx→0tan2xx2=23 (∵tanx~x) 例4[3]limx→0+tan(sinx)sin(tanx) 解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则)=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子)=limx→0+sin(tanx)tan(sinx) (算出非零极限)=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则)=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx) =limx→0+tan(sinx)sin(tanx) 出现循环,此时用罗比塔法则求不出结果。怎么办?用等价无穷小代换。∵x~sinx~tanx(x →0) ∴原式=limx→0+xx=1而得解。

相关文档
最新文档