八年级数学正方形

合集下载

人教版数学八年级下册课件:正方形的判定

人教版数学八年级下册课件:正方形的判定

定义 性质
有一组邻边相等,并且有一个角 是直角的平行四边形叫做正方形.
1.四个角都是直角 2.四条边都相等
3.对角线相等且互相垂直平分
课堂小结
平行四边形、矩形、菱形、正方形的判定小结
5种判 定方法
一个角是直角且一组邻边相等
当堂练习
1.平行四边形、矩形、菱形、正方形都具有的是( A) A.对角线互相平分 B.对角线互相垂直 C.对角线相等 D.对角线互相垂直且相等
E
F
B
C
又∵CE=CF.
∴△BCE≌△DCF.
∴BE=DF.
延长BE交DF于点M, ∵△BCE≌△DCF , ∴∠CBE =∠CDF. ∵∠DCF =90° , ∴∠CDF +∠F =90°, ∴∠CBE+∠F=90° , ∴∠BMF=90°. ∴BE⊥DF.
A
D
EM
B
CF
9.如图,在四边形ABCD中, AB=BC ,对角线BD平分
思考 前面学菱形时我们探究了顺次连接任意四边形
各边中点所得的四边形是平行四边形.顺次连接矩形各
边中点能得到菱形,那么顺次连接正方形各边中点能
得到怎样的特殊平行四边形?
A
H
A
E平行四边形 D G
E
B
F
CB
任意四边形
H 菱形
F 矩形
A HD D G E 正方形 G
CB F C 正方形
课堂小结
正方形 的性质
ABC , P是BD上一点,过点P作PMAD , PNCD ,垂
足分别为M、N.
(1) 求证:ADB=CDB;
(2) 若ADC=90,求证:四边形MPND是正方形.
证明:(1)∵AB = BC,BD平分∠ABC.

八年级数学培优——正方形

八年级数学培优——正方形

第22讲正方形考点•方法•破译1.有一组邻边相等且有一个角是直角的平行四边形叫正方形,即邻边相等的矩形或有一个角为直角的菱形叫正方形.2.熟练掌握正方形的性质,并能在解决问题时将正方形与等腰直角三角形进行替换思考.3.掌握正方形的判断方法,并应用它的对称性质解决问题.经典•考题•赏析【例1】如图,已知平行四边形ABCD中,对角线AC、BD交于点O, E是BD延长线上的点,且“CE是等边三角形.⑴求证:四边形ABCD是菱形;⑵若/AED=2Z EAD,求证:四边形ABCD是正方形.【变式题组】01.如图,已知正方形ABCD的对角线AC和BD相交于O,点M、N分别在OA、OD上, 且MN〃AD.探究:线段DM和CN之间的数童关系,写出结论并给出证明.A02.如图,点P是正方形ABCD对角线AC上的点,PE±AB, PF±BC, E、F是垂足,问PD与EF有怎样的关系?请说明理由.03 .如图,将正方形ABCD中的△ ABD绕对称中心O旋转至△ GEF的位置,EF交AB于M, GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.04.把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图.【例2】如图,正方形ABCD绕点A逆时针旋转废后得到正方形AEFG,边EF与CD交于点O.⑴以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;⑵若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为“ cm2,求旋转的角度.3【变式题组】01.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕点A顺时针旋转45°,则这两个正方形重叠部分的面积是_________ .02.我们给定两个全等的正方形ABCD、AEFG它们共顶点A(如图1),可以绕顶点A旋转,CD、EF相交于点P.⑴连接BE、DG(如图2),求证:BE=DG, BE±DG⑵连接BG、CF(如图),求证:BG//CF.【例3】数学课上,张老师提出了问题:如图1,四边形ABCD是正方形,点E是BC 边的中点.Z AEF = 90°,且EF交正方形外角N DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则似AM=EC, 易证△ AME/△ ECF,所以AE=EF.在此基础上,同学们进一步的研究:⑴小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B、C外)的任意一点”,其他条件不变,那么结论"AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是边BC的延长线上(除C点外)的任意一点,其他条件不变,结论" AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.图】图2 图3【变式题组】01.如图,已知正方形ABCD在直线MN上方,BC在直线MN上;E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.⑴连接GD,求证:△ ADG/△ ABE;⑵连接FC,观察并猜测Z FCN的度数,并说明理由.02.如图,在正方形ABCD中,点E、F分别是BC、DC边上的点,且AE± EF.⑴延长EF交正方形外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;⑵在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【例4】已知:正方形ABCD中,N MAN=45°,N MAN绕点A顺时针旋转,它的两边分别CB、DC(或它们的延长线)点M、N.当N MAN绕点A旋转至U BM=DN时(如图1), 易证BM+DN=MN.⑴当N MAN绕点A旋转至U BN W DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;⑵当N MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间有怎样的数量关系?写出猜想并明.【变式题组】01.如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:⑴N EAF的大小是否有变化?请说明理由;⑵^ECF的周长是否有变化?请说明理由.02.如图,有四个动点P、Q、E、F分别从边长为1的正方形ABCD的四个顶点出发,沿AB、BC、CD、DA以同样的速度向B、C、D、A各点移动⑴试判断四边形PQEF的形状,并证明;⑵PE是否总过某一定点,并说明理由;⑶四边形PQEF的顶点位于何处时,其面积最小和最大?各是多少?03.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、%轴的正半轴上,点O在原点.现将正方形OABC绕点O顺时针旋转,当A点第一次落在直线y=%上时停止旋转,旋转过程中,AB边交直线y=%于点M,BC边交%轴于点N(如图).⑴旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;⑵设△ MBN的周长为p,在正方形OABC旋转的过程中,p值是否有变化?请证明你的结论.【例5】小杰和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到了这样一道题:“已知正方形ABCD,点E、F、G、H只分别在AB、BC、CD、DA上,若EG± FH ,则GE=FH”经过思考,大家给出了以下两个方案:(甲)过点A做AM〃HF交BC于点M,过点B作BN〃EG交CD于点N;(乙)过点A做AM〃HF交BC于点M,作AN〃EG交CD的延长线于点N;小杰和他的同学顺利的解决了该题后,人家琢磨着想改变问题的条件,作更多的探索.⑴对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);⑵如果把条件中的“EG± HF"改为“EG与HF的夹角为45°”,并假设正方形ABCD的边长为1, FH的长为至(如图2),试求EG的长度.2【变式题组】01.若正方形ABCD的边长为4, E为BC边上一点,BE =3, M为线段AE上一点,射线BM交正方形的一边于点F,且BF = AE,则BM的长为.02.如图,已知正方形ABCD的边长为3, E为BC边上一点,BE=1.以点A为中心,把△ADE顺时针旋转90°,得4ADE',连接EE,,则EE'的长等于.03.已知正方形ABCD中,点E在边DC上,DE=2, EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.04.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M 点正好在N NDG的平分线上,矩形ABCD长与宽的比值为.E B (! B C /? C B E C H E① ②③第之题图第W题掰第4噩图05.平面内有一等腰直角三角板(N ACB=90°)和一直线MN.过点C作以CE± MN于点E,过点B作BF± MN于点F.当点E与A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,清直接写出你的猜想,并证明.演练巩固•反馈提高01.顺次连接菱形各边中点所得的四边形一定是()A .等腰梯形反 正方形C 平行四边形。

正方形的性质及判定-人教版八年级数学下册教案

正方形的性质及判定-人教版八年级数学下册教案

正方形的性质及判定-人教版八年级数学下册教案
一、教学目标
1.了解正方形的定义及性质;
2.判定一个四边形是否为正方形;
3.运用正方形的性质解决实际问题。

二、教学重难点
1.判断四边形是否为正方形的方法;
2.运用正方形的性质解决实际问题。

三、教学内容及步骤
(一)导入(5分钟)
1.通过观察物体,引出正方形的含义;
2.介绍本节课的学习目标。

(二)正片(30分钟)
1. 正方形的定义
1.学生回顾并回答正方形的定义;
2.老师引导学生深入理解正方形的定义,并与长方形、菱形等进行比较。

2. 正方形的性质
1.学生回顾并回答正方形的性质;
2.老师引导学生深入理解正方形的性质,包括等边、等角、对角线互相垂直、对角线相等等。

3. 判定正方形的方法
1.老师通过例题引导学生掌握判定正方形的方法;
2.学生进行练习,巩固判定正方形的方法。

4. 运用正方形的性质解决实际问题
1.通过例题引导学生运用正方形的性质解决实际问题;
2.学生进行练习,巩固运用正方形的性质解决实际问题。

(三)小结(5分钟)
1.回顾本节课所学内容;
2.强调正方形的定义及性质在实际生活中的应用。

(四)作业布置(5分钟)
1.完成课堂练习;
2.完成课后作业。

四、教学反思
本节课通过例题引导学生掌握了正方形的定义及性质,并且通过练习巩固了判定正方形的方法和运用正方形的性质解决实际问题的能力。

同时,课堂中老师与学生的互动也让学生参与性更强,思维更加开放。

八年级数学下册教学课件《正方形的性质》

八年级数学下册教学课件《正方形的性质》
情境导入
仔细观察下列实际生活中的图片,你会发现这些都 是正方形的形象.
正方形是我们熟悉的图形,你还能列举出正方形在 生活中应用的其他例子吗?
情境导入
结合已有经验,类比菱形与矩形,正方形的概念是怎 样的呢?
正方形可以定义为有一组邻边相等并且有一个角 是直角的平行四边形.
下面我们一起来探讨一下正方形的性质吧!
解:有多种方法:只要两条小路 交于正方形对角线的交点且两条 小路互相垂直,则满足条件.
课后作业
5. 如图为某城市部分街道示意图,四边形ABCD为正方
形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,
小敏行走的路线为B A G E,小聪行走的路线为B A
D E F,若小敏行走的路程为3100m,则小聪行走的路程
∴C(b,d)
课后作业
2.(2)如图,四边形ABCD是菱形,C,D两点的
坐标分别是(c,0),(0,d).点A , B的在坐标轴上.求A ,
B两点的坐标.【选自教材P61,习题18.2第12题】
y
(2)∵四边形ABCD是菱形,
D
∴AO=CO,BO=DO.
A
O
Cx
Hale Waihona Puke ∵C(c,0),∴A(-c,0)
B
∵D(0,d),∴B(0,-d)
由勾股定理得BC= EC2 EB2 900 100 20 2 (m).
在Rt△ABC中,∠B=90°,AB=BC= 20 2 m,
A
D
由勾股定理得AC= AB2 BC 2 800 800 40(m).
2
S正方形ABCD BC 2 20 2 800
E
∴这块场地的面积为800m2,对角线长40m.

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

人教版八年级数学下册第十八章《正方形》优课件(共17张PPT)

(1) AB=AD;
A
(2) AC=BD;
(3) ∠BAD=90;
(4) AC⊥BD。
B
D O
C
判断对错
1. 四边相等的四边形是正方形 2.四角相等的四边形是正方形 3.四条边相等且有一个角是直角的四边 形是正方形 4.对角线互相垂直平分且相等的四边形 是正方形 5.对角线垂直的平行四边形是正方形
判断对错
6.对角线互相垂直且相等的四边形是正 方形。 7.对角线互相垂直的矩形是正方形。 8.对角线相等的菱形是正方形。
活动
1.从长方形木板中怎样截出最大的正方形木板?
2.怎样使菱形的衣帽架变成正方形的衣帽架?
3.昨天,我去超市买了一条方巾,现在想请同学们帮助检验 一下方巾是否是正方形的。
1.已知:正例方形题AB解CD中析,点E、F、G 、H
正方形
菱形
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
每一条对角线平分一组对角
对称性---- 是轴对称图形.
D O
C
根据图形所具有的性质,在下表相应的空格中打 ”√”
对边平行且相 等
四边都相等
四个角都是直 角
对角线互相平 分
对角线互相垂 直
对角线相等
平行四边 形


矩形

√ √

菱形
√ √
√ √
正方形
√ √ √ √ √ √
你觉得什么样的四 边形是正方形呢?
分别是AB 、BC 、CD 、DA的中点,试判断四
边形EFGH是正方形吗?为什么?

八年级数学正方形的判定教案

八年级数学正方形的判定教案

八年级数学正方形的判定教案介绍这份教案旨在帮助八年级学生学会判定一个图形是否为正方形。

教案将介绍正方形的定义和特征,并通过示例和练题来帮助学生加深理解。

研究目标1. 了解正方形的定义和特征;2. 能够正确判定一个图形是否为正方形;3. 运用所学知识解决相关问题。

教学步骤步骤一:定义和特征- 通过讲解清楚正方形的定义:四条边相等且四个角都是直角;- 展示正方形的特征:对角线相等,对边平行。

步骤二:示例分析- 给出多个图形,包括正方形和其他类型的四边形;- 以小组形式让学生讨论并判定这些图形是否为正方形;- 引导学生观察图形的边长和角度特征,找到正方形的特点。

步骤三:练题- 分发练题给学生,让他们独立完成;- 练题应包含多种情况,如给出边长或角度判断是否为正方形,以及给出一个图形判断是否为正方形;- 鼓励学生在解答问题时使用定义和特征。

步骤四:讲解和巩固- 让学生将练题上的答案互相讲解,并给出解题思路;- 强调正方形的特征,帮助学生理解如何正确判定一个图形是否为正方形;- 给出一些额外的练题,让学生进一步巩固所学知识。

步骤五:总结和评价- 与学生一起总结正方形的定义和特征;- 随堂评价学生是否能正确判定图形是否为正方形;- 鼓励学生在实际生活中观察和应用正方形的知识。

扩展活动- 给学生提供一些拓展问题,如正方形的面积和周长计算;- 鼓励学生在实际环境中找寻正方形的例子,并描述其特点。

参考资料暂无以上是八年级数学正方形的判定教案,请参考实际教学情况进行适当调整和改进。

人教版八年级数学下册18.2.3正方形的判定优秀教学案例

人教版八年级数学下册18.2.3正方形的判定优秀教学案例
同时,我还会引导学生关注数学在生活中的应用,让学生认识到数学对于社会的重要性。通过这一系列的教学活动,我相信学生能够培养出对数学的热爱,提高他们的情感态度与价值观。总之,本节课的教学目标旨在全面提高学生的知识与技能、过程与方法、情感态度与价值观,使他们成为具有全面素质的数学人才。
三、教学策略
(一)情景创设
2.能够运用正方形的性质和判定方法解决实际问题,提高学生的数学应用能力。
3.学会用图形软件绘制ຫໍສະໝຸດ 方形,培养学生的信息技术素养。在教学过程中,我将以生活情境为导入,引导学生观察和分析正方形的特殊性质。通过对比矩形、菱形等其他四边形,让学生直观地感受正方形的独特性。在讲解过程中,我将用多媒体课件动态演示正方形的性质,帮助学生加深理解。同时,我还会设计丰富的课堂练习,让学生在实践中运用所学知识,巩固正方形的判定方法。
1.利用生活情境导入,激发学生兴趣。
2.设计有趣的数学问题,引发学生思考。
3.利用多媒体课件辅助教学,提高学生的直观感知能力。
在教学过程中,我将以生活情境为导入,如红领巾、骰子等,引导学生发现正方形的特殊性质。通过这些熟悉的事物,激发学生的兴趣,使他们愿意主动参与到课堂学习中。在讲解过程中,我将设计有趣的数学问题,如正方形与其他四边形的对比,引发学生思考,提高他们的逻辑思维能力。
此外,我还将教授学生如何运用图形软件绘制正方形,提高他们的信息技术素养。通过这一系列的教学活动,我相信学生能够充分理解正方形的定义、性质和判定方法,提高他们的数学素养。
(二)过程与方法
1.培养学生的观察能力,提高他们从生活中发现数学问题的能力。
2.培养学生的逻辑思维能力,提高他们分析问题和解决问题的能力。
3.培养学生的合作意识,提高他们的团队协作能力。

八年级数学《正方形判定》课件

八年级数学《正方形判定》课件

2、已知:点E、F、G、H分别是正方形ABCD四条边上的 点,并且E、F、G、H分别是AB、BC、CD、AD的中点, 求证:四边形EFGH是正方形.
A
H
D
E
G
B
C
F
全课小结
1.正方形的判定方法. 2.了解矩形、菱形、正方形之间的联系与区别。 3.本节课的收获与疑惑.
老师给学生一个任务:从一张彩纸中剪 出一个正方形.小明剪完后,这样检验它:他 比较了边的长度,发现4条边是相等的,小明 就判定他完成了这个任务.这种检验可信吗?
小兵用另一种方法检验:他量的不是边, 而是对角线,发现对角线是相等的,小兵就认 为他正确地剪出了正方形.这种检验对吗?
小英剪完后,比较了由对角线相互分成的4 条线段,发现它们是相等的.按照小英的意见, 这说明剪出的四边形是正方形.你的意见怎样?
你认为应该如何检验,才能又快又准确呢?
作业 必做题:课本第102页习题19.2第13题.
19.2.3正方形的判定
问题思考
宁宁在商场看中了一块正方形纱巾, 但不知是否真的是正方形,只见销售员阿 姨拉起纱巾的一组对角,只见一组对角能 完全重合,看宁宁还在犹豫,又拉起纱巾 的另一组对角,只见另一组对角也能完全 重合.认为是正方形,把纱巾给宁宁.你认 为宁宁手上的纱巾一定是正方形吗?
尝试探究
C
F E
A
D
B
2.必做题:课本第102页习题19.2第7题.
(1)“ (2)“ (3)“ (4)“
的四边形是正方形”; 的平行四边形是正方形” 的矩形是正方形”; 的菱形是正方形。”
操作一:
用一张16K的白纸剪出一个菱形. 请你作出解释.
开动脑筋:你能用类似的方法能剪出一个正方形吗? 思考:当菱形满足什么条件时,菱形成为正方形? 从中你能得到判定正方形的一种方法吗?

八年级下册数学—正方形的性质和判定

八年级下册数学—正方形的性质和判定

八年级数学—正方形的性质和应用正方形的性质:正方形同时具备平行四边形,矩形,菱形的所有性质。

①正方形四个角都是直角②四条边都相等③对角线互相垂直平分④每一条对角线平分一组对角⑤正方形是轴对称图形,有四条对称轴。

正方形的判定:同时满足菱形和矩形的判定即可。

常用判定有:①先证菱形后证一个角是直角②先证矩形后证一组邻边相等基础篇:例一、已知四边形ABCD是平行四边形,再从①AB=BC②∠ABC=90°③AC=BD④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,下列选法错误的是()A、①②B、②③C、①③D、②④例二、如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形。

(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形。

例三、如图,在正方形ABCD中,点P,Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,分别交AC、BC于E、G,AP,EQ的延长线相交于R。

(1)求证:DP=CG;(2)判断△PQR的形状,并说明理由例四、如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE。

(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?提高篇:例五、如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F。

(1)求证:△ADE≌△BCE;(2)求∠AFB的度数。

变式练习1:如图,在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED 。

(1)求证:△BEC ≌△DEC(2)延长BE 交AD 于F ,当∠BED=120°时,求∠EFD 的度数。

例六、如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE=EF=FA 。

八年级数学下册《正方形的判定》教案、教学设计

八年级数学下册《正方形的判定》教案、教学设计
-运用正方形的性质和判定方法,解决以下实际问题:一个正方形地板的边长为2m,求其对角线的长度。
3.实践应用题:
-观察生活中有哪些物体或图形是正方形,选择两个进行描述,并说明它们体现了正方形的哪些性质。
-结合实际情境,设计一个包含正方形的几何图形,并给出至少两个问题,要求包含正方形的性质和判定方法。
4.思考总结题:
2.基本性质教学:
-利用动态几何软件或实物模型,直观展示正方形的性质,如四边相等、四个角都是直角等,帮助学生形象地理解。
-设计探究活动,让学生在小组内讨论正方形的性质,并尝试用自己的语言总结出来,增强学生的主体参与感。
3.判定方法教学:
-对于判定方法的教学,采用逐步引导的方式,从已知的矩形和菱形的判定方法出发,引导学生发现正方形的特殊之处。
3.教师将根据作业完成情况,了解学生的学习进度和掌握程度,为下一节课的教学做好充分准备。
期望通过本次作业的布置,学生能够更好地巩固正方形的性质与判定知识,提高解决问题的能力,并为后续课程的学习奠定基础。
-总结正方形的性质和判定方法,用自己的话术进行表述,并举例说明。
-思考正方形与Байду номын сангаас他特殊四边形(如矩形、菱形)之间的关系,撰写一篇不少于200字的小短文。
作业要求:
1.学生需独立完成作业,注重解题过程的书写和表述,保持卷面整洁。
2.家长需关注学生的学习情况,协助学生按时完成作业,并给予适当的指导和鼓励。
-在应用题中,加入实际情境,如房屋设计、园林规划等,让学生体会数学知识在实际生活中的应用,增强学习的实用性。
5.情感态度培养:
-在教学过程中,注重学生情感态度的培养,鼓励学生面对困难时保持积极乐观的心态,勇于挑战自我。

人教版八年级数学下册18.2.3《正方形的性质与判定》教案

人教版八年级数学下册18.2.3《正方形的性质与判定》教案
-正方形面积和周长的计算:熟练运用正方形边长计算其面积和周长,并能应用于解决实际问题。
-正方形在实际问题中的应用:能够将正方形的性质和计算方法应用于解决生活中的几何问题。
举例解释:
-正方形性质的理解:通过实际操作教具或软件模拟,让学生直观感受正方形的四边相等和四角为直角的特点。
-判定方法的应用:通过举例,如给出四边形边长或对角线长度,指导学生判断是否为正方形。
4.正方形的面积和周长计算;
5.正方形在实际问题中的应用。
二、核心素养目标
1.培养学生运用几何图形特征解决问题的能力,增强空间观念;
2.提高学生逻辑推理和证明能力,通过性质和判定方法的学习,深化对图形性质的理解;
3.培养学生运用数学语言表达几何图形特征,提升应用于解决实际问题的能力,增强数学应用意识;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正方形的基本概念、性质与判定方法,以及它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对正方形性质与判定的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
另外,我也在思考如何让教学更生动有趣。正方形的性质与判定虽然重要,但如果只是纯粹讲解,可能会让学生感到枯燥。我考虑在接下来的课程中,引入一些与正方形相关的趣味题目或者游戏,激发学生的学习兴趣。
举例解释:
-性质的理解与证明:通过小组讨论和教师引导,让学生理解正方形对角线性质背后的几何原理,并学会使用菱形和矩形的性质进行证明。
-判定方法的灵活应用:提供多种类型的题目,训练学生识别不同情况下的正方形,如隐藏边长或对角线等问题。

八年级数学教案《正方形》【优秀4篇】

八年级数学教案《正方形》【优秀4篇】

八年级数学教案《正方形》【优秀4篇】八年级数学教案《正方形》篇一课题:4.6 正方形(一)教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”教学重点:正方形的定义。

教学难点:正方形与矩形、菱形间的关系。

教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法。

为了活跃学生的思维,可以得出下列问题让学生思考:(1)对角线相等的菱形是正方形吗?为什么?(2)对角线互相垂直的矩形是正方形吗?为什么?(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?(4)能说“四条边都相等的四边形是正方形”吗?为什么?(5)说“四个角相等的四边形是正方形”,对吗?教学过程:让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片。

问:所得的图形是矩形吗?它与一般的矩形有什么不同?所得的图形是菱形吗?它与一般的菱形有什么不同?所得的图形在小学里学习时称它为什么图形?它有什么特点?由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

(一)新课由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质。

请同学们推断出正方形具有哪些性质?性质1、(1)正方形的四个角都是直角。

(2)正方形的四条边相等。

性质2、(1)正方形的两条对角线相等。

(2)正方形的两条对角线互相垂直平分。

(3)正方形的每条对角线平分一组对角。

例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

已知:四边形ABCD是正方形,对角线AC、BD相交于点O。

求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形。

证明:△四边形ABCD是正方形,△AC=BD,AC△BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十大正规网贷平台排名
[单选]不符合甲状腺危象的诊断标准的是()A.心率160次/分B.体温37.5℃C.恶心呕吐D.皮肤潮红、多汗E.失水、休克 [单选,A2型题,A1/A2型题]《景岳全书·传忠录》中被视为“诊治之要领,临证之首务”的是()A.望诊B.闻诊C.问诊D.切诊E.以上均不是 [多选]行肌电图检查的肌肉要求()A.检查前未行病理等有创检查B.肌肉萎缩越明显越好C.通常使用单极针电极D.通常使用同心圆针电极E.肌肉局部有感染暂不行此项检查 [单选]“邪气淫泆”中“淫泆”的正确解释是()。A.浸淫扩散B.满溢C.充满D.流淫E.淫溢 [多选]下列哪项属于皮肤病的原发性损害症状()A.风团B.溃疡C.皲裂D.脓疱E.丘疹 [单选]以下不易发生妊娠剧吐的因素是()A.家庭经济条件较好B.葡萄胎C.多胎妊娠D.情绪不稳定E.精神紧张 [单选]在下列害虫中,属于完全变态的是()。A、黄刺蛾B、蚜虫C、蚧D、蝗虫 [问答题,简答题]何谓易燃货物? [问答题,简答题]广告策划的基本原则? [单选,A1型题]羊乳喂养下列哪项是正确的()A.羊乳中蛋白质含量较牛乳少B.羊乳中脂肪多且肪脂球大C.羊乳中叶酸和维生素B含量较牛乳少D.羊乳中矿物质含量比牛奶少E.每100ml羊乳的热卡比牛奶略少 [单选,A1型题]关于乌药的归经说法正确的是()A.肺、肝、脾、肾经B.肺、胃、脾、膀胱经C.肺、脾、肾、膀胱经D.肝、胃、肾、膀胱经E.肝、肾、胃、小肠经 [单选]A企业购建一条新的生产线,该生产线预计可以使用5年,估计每年年末的现金净流量为25万元。假设年利率为12%,则该生产线未来现金净流量的现值为()万元。[已知(P/F,12%,5)=0.5674,(P/A,12%,5)=3.6048]A.14.19B.90.12C.92D.100 [单选]涡轮喷气式或涡轮螺旋桨式发动机的最的限制因素是().A.限制压缩机速度B.限制排气温度C.限制扭矩 [单选]膳食纤维的作用不包括()A.促进肠蠕动B.有利肠道益生菌生长C.增加粪量D.有利于钙吸收E.治疗便秘 [单选]新中国民主政治建设中最根本的政治制度是()。A.人民代表大会制度B.共产党领导的多党合作和政治协商制度C.民族区域自治制度 [单选]发热,咳嗽,胸闷,心烦,口渴,肌肤外发红疹,舌赤,苔薄黄,脉数,其病变阶段是:().A.气分B.卫分C.气营D.营分 [单选]16、17号车钩弹性支承装置每组有()支承弹簧。A、3个B、2个C、1个D、4个 [单选,A2型题,A1/A2型题]我国法定职业性肿瘤中不包括()A.联苯胺所致膀胱癌B.苯所致白血病C.煤焦油所致皮肤癌D.氯甲醚所致肺癌E.氯乙烯所致肝血管肉瘤 [填空题]电力机车蓄电池用于控制电路的供电以及()打风用电等。 [单选]下列选项中哪项不是小肠运动的基本形式?()A、钟摆运动B、集团蠕动C、蠕动和逆蠕动D、分节运动 [单选]一般认为,早期显像是指显像剂引入体内后几小时以内的显像()A.1小时B.2小时C.4小时D.6小时E.8小时 [单选]男性,28岁。患急性粒细胞白血病接受化学治疗,中性粒细胞0.4×10/L。近1周来高热,咳嗽脓痰,右肺闻及较多湿啰音。X线胸片见右中肺野大片密影,隐约见密度减低区域。推测肺部感染最可能的病原体是()A.肺炎Байду номын сангаас球菌B.流感嗜血杆菌C.莫拉卡他菌D.铜绿假单胞菌E.溶血性链球 [单选]要建立一支高效率的销售队伍,关键在于()A、选择有能力的优秀的销售代表;B、有个好销售经理;C、有套好的销售计划;D、有个好的营销方案。 [问答题,简答题]中国视图与日本视图有什么区别 [单选]将l5.4500修约,修约间隔为0.1,保留一位小数为()。A.15.4B.15.5C.15.3D.15.5 [单选,A2型题,A1/A2型题]《灵枢·天年》篇认为人生十岁,五脏始定,血气已通,其气在下,故()A.好趋B.好步C.好转D.好走E.好坐 [单选]不属于两栖纲无尾目蛙科的动物是()。A.黑魔蛙B.大树蛙C.金线蛙D.中国林蛙 [单选]讲解“圆的面积和周长”时,运用“化圆为方”“化曲为直”的思路,这属于数学思想中的()。A.可逆思想B.类比思想C.数形结合思想D.极限思想 [单选]以下有关变更控制方面的描述,不正确的是()。A.任何变更都要得到三方(建设单位、监理单位和承建单位)的书面确认,严禁擅自变更B.承建单位或建设单位是变更的申请者,监理方不能提出变更申请C.承建单位提出变更申请,一般应首先递交监理初审,同意后再与业主协商确定变更 [单选]超声心动图检查以下哪项可确诊感染性心内膜炎()A.二尖瓣瓣叶有增生粘连B.左房、左室扩大C.瓣膜上可探测到赘生物D.二尖瓣有反流E.主动脉根部扩张 [单选,A2型题,A1/A2型题]关于溶血性贫血患者的血象,下列说法错误的是()。A.嗜多色性红细胞增多B.网织红细胞减少C.血涂片中可见幼红细胞D.出现点彩红细胞E.成熟红细胞中出现Howell-Jolly小体 [填空题]37°探头探测钢轨轨底中心的横向裂纹,是根据超声波的()原理来发现的。 [单选]黑色素瘤是()A.一种良性肿瘤B.最多见的良性肿瘤之一C.一个高度恶性肿瘤D.一种最多见的眼睑病变之一E.以上均不是 [多选]各类用电人员上岗工作要求()。A.安全教育培训B.自学临时用电标准掌握基本操作方法C.有实际现场经验未经培训D.掌握安全用电基本知识和所用设备性能E.安全技术交底 [单选,A2型题,A1/A2型题]季节性变应性鼻炎常见的变应原是()。A.螨B.真菌C.风媒花粉D.羽毛E.细菌感染 [单选]高血压病患者,伴劳力型心绞痛,选择的最佳降压药物是().A.利尿剂B.β受体阻滞剂C.ACEID.ai受体阻滞剂E.钙拮抗剂 [单选,A1型题]下列有关偏倚分类,正确的是()A.分为选择偏倚、失访偏倚、信息偏倚和混杂偏倚四类B.分为失访偏倚、回忆偏倚和调查偏倚三种C.分为选择偏倚、信息偏倚和混杂偏倚三种D.分为Berkson偏倚,Neyman偏倚,检出征候偏倚和时间偏倚四种E.以上均正确 [单选,A2型题,A1/A2型题]鼻中隔脓肿最常见的病因是()。A.鼻前庭疖B.鼻旁窦炎C.流感D.猩红热E.鼻中隔血肿继发感染 [单选]球后溃疡多发生于()A.十二指肠乳头近端B.十二指肠球部后壁C.十二指肠乳头远端D.十二指肠水平部E.十二指肠升部 [单选]以下各项中可能成为行政主体的是()。A.国家权力机关B.人民检察院C.国家行政机关D.治安联防组织
相关文档
最新文档