八年级下册数学正方形的教案
正方形的性质及判定-人教版八年级数学下册教案
正方形的性质及判定-人教版八年级数学下册教案
一、教学目标
1.了解正方形的定义及性质;
2.判定一个四边形是否为正方形;
3.运用正方形的性质解决实际问题。
二、教学重难点
1.判断四边形是否为正方形的方法;
2.运用正方形的性质解决实际问题。
三、教学内容及步骤
(一)导入(5分钟)
1.通过观察物体,引出正方形的含义;
2.介绍本节课的学习目标。
(二)正片(30分钟)
1. 正方形的定义
1.学生回顾并回答正方形的定义;
2.老师引导学生深入理解正方形的定义,并与长方形、菱形等进行比较。
2. 正方形的性质
1.学生回顾并回答正方形的性质;
2.老师引导学生深入理解正方形的性质,包括等边、等角、对角线互相垂直、对角线相等等。
3. 判定正方形的方法
1.老师通过例题引导学生掌握判定正方形的方法;
2.学生进行练习,巩固判定正方形的方法。
4. 运用正方形的性质解决实际问题
1.通过例题引导学生运用正方形的性质解决实际问题;
2.学生进行练习,巩固运用正方形的性质解决实际问题。
(三)小结(5分钟)
1.回顾本节课所学内容;
2.强调正方形的定义及性质在实际生活中的应用。
(四)作业布置(5分钟)
1.完成课堂练习;
2.完成课后作业。
四、教学反思
本节课通过例题引导学生掌握了正方形的定义及性质,并且通过练习巩固了判定正方形的方法和运用正方形的性质解决实际问题的能力。
同时,课堂中老师与学生的互动也让学生参与性更强,思维更加开放。
2024八年级数学下册第22章四边形22.6正方形2正方形的判定教案(新版)冀教版
在教学过程中,要注意引导学生通过观察、思考、讨论,发现正方形的性质和判定方法,培养学生独立思考和合作交流的能力。同时,结合生活实际,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
4. 练习软件:利用练习软件,设计具有针对性的练习题,让学生在练习中巩固所学知识,及时反馈学习情况,提高学生的学习效果。
5. 板书设计:精心设计板书,将正方形的性质和判定方法以简洁、直观的方式呈现给学生,帮助学生理解和记忆。
五、教学过程设计
1. 导入新课(5分钟)
目标: 引起学生对正方形的兴趣,激发其探索欲望。
视频简介:本视频通过生动的动画和实例,深入浅出地讲解了正方形的性质和判定方法,以及正方形在几何学中的特殊地位。适合作为课后自主学习材料,帮助学生巩固正方形的相关知识。
2. 拓展要求:
鼓励学生利用课后时间进行自主学习和拓展,教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
要求学生阅读《正方形的历史与应用》文章,并撰写一篇读后感,分享自己对正方形历史和应用的理解和体会。
八、课后拓展
1. 拓展内容:
阅读材料:《数学探究》杂志中关于正方形的历史和发展文章,了解正方形在数学发展中的重要性。
文章标题:《正方形的历史与应用》
文章摘要:本文介绍了正方形在古代数学家们心中的地位,以及正方形在现代数学中的应用。通过阅读,学生可以了解正方形的丰富历史背景和在现实生活中的广泛应用。
视频资源:网络公开课《正方形的奇妙世界》,时长约45分钟。
八年级数学下册《正方形的性质及判定》教案、教学设计
2.注重启发式教学:针对正方形性质和判定的学习,教师应采用问ห้องสมุดไป่ตู้驱动、实例分析等方法,引导学生主动思考、探索,提高学生的逻辑思维能力和解决问题的能力。
3.小组合作,共同解决以下问题:
a.证明正方形的对角线互相垂直平分。
b.证明正方形的四条边都相等。
c.探讨正方形的内角和与外角和的关系。
4.完成以下拓展练习:
a.画出一个正方形,并标出其周长和面积。
b.画出一个正方形,并将其分割成四个大小相等的小正方形。
c.画出一个正方形,并找出其内切圆和外接圆,计算它们的半径。
五、作业布置
为了巩固本节课所学知识,提高学生的应用能力,特布置以下作业:
1.请同学们完成课本第35页的练习题,包括以下内容:
a.判断下列四边形是否为正方形,并说明理由。
b.计算给定正方形的周长和面积。
c.探索正方形与矩形、菱形之间的联系与区别。
2.结合生活实际,找一找身边的正方形物体,并描述它们的特点。例如,正方形瓷砖、桌面、窗户等。
3.教师引导学生观察正方形的特点,如四条边相等、四个角相等等,为新课的学习做好铺垫。
(二)讲授新知
1.教师引导学生探究正方形的性质,通过观察、猜想、验证等方法,发现正方形的性质,如四条边相等、四个角相等、对角线互相垂直平分等。
2.教师结合实例,讲解正方形性质的应用,如计算正方形的周长、面积等。
3.教师讲授正方形的判定方法,如邻边相等、对角线互相垂直平分、四条边都相等等,并通过实例进行解释和说明。
(三)学生小组讨论
正方形的判定-华东师大版八年级数学下册教案
正方形的判定-华东师大版八年级数学下册教案一、教学目标:1.理解正方形的定义;2.掌握判定一个图形是否为正方形的方法;3.进一步推理、解决实际问题。
二、教学重点:1.正方形的定义及性质;2.此外,正方形的三个在视觉上相等的角度是90°。
三、教学难点:判定正方形的方法。
四、教学方法:教师讲授、示范演练、小组讨论、课堂练习、实例演示。
五、教学过程:导入教师用展示板先展示正方形的图片,让学生对正方形有一个初步的印象,进而让学生讨论正方形的性质以及定义。
学习1.正方形的定义教师向学生讲解正方形的定义,如下:正方形是一种四边相等,四角都是直角的特殊的矩形。
这里要将特殊的矩形和矩形的定义区分开,并且要指出特殊在哪里。
要反复强调正方形四边相等、四角都是直角是正方形的最基本特征。
2.判定正方形(1)方法一:根据定义判定方法:判断几何图形是否是矩形,同时判断矩形的四条边是否相等。
如果是矩形并且四条边相等,则这个几何图形就是正方形。
否则,就不是正方形。
(2)方法二:根据性质判定方法:几何图形内部的任意一条对角线,若能把几何图形分成两个面积相等的直角三角形,则这个几何图形就是正方形。
总结教师总结本课所学的内容,即正方形的定义和判定方法,并让学生再次练习。
再次讨论针对一些学生出现的问题,老师在学生完成整个练习后,再次进行讨论和解答。
作业教师布置相关练习,并要求学生明天上课前完成。
六、教学内容适用情况:本次课程适用于中学生,国内各地均适用。
《认识正方形》教案优秀15篇
《认识正方形》教案优秀15篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、规章制度、员工手册、创业计划、企划方案、心得体会、法律文书、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as summary reports, speeches, rules and regulations, employee manuals, entrepreneurial plans, planning plans, insights, legal documents, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!《认识正方形》教案优秀15篇作为一名专为他人授业解惑的人·民教师,就有可能用到教案,借助教案可以有效提升自己的教学能力。
初中数学《正方形》教案设计
初中数学《正方形》教案设计一、教学目的1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.二、重点、难点1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?四、课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.五、例习题分析例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵ 四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO ≌△BCO≌△CDO≌△DAO.例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵ 四边形ABCD是正方形,∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又DG⊥AE,∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.∴ ∠EAO=∠FDO.∴ △AEO ≌△DFO.∴ OE=OF.例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.证明:∵ PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.∵ PQ∥NM,∴ 四边形PQMN是矩形.∵ 四边形ABCD是正方形∴ ∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).∴ ∠1+∠2=90°.又∠3+∠2=90°,∴ ∠1=∠3.∴ △ABM≌△DAN.∴ AM=DN.同理 AN=DP.∴ AM+AN=DN+DP即 MN=PN.∴ 四边形PQMN是正方形(有一组邻边相等的矩形是正方形).六、随堂练习1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;()⑤四个角相等的四边形是正方形.()1.已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.求证:∠AFE=∠AEF.4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD的度数.七、课后练习1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC 于E,DF⊥AC于F.求证:四边形CFDE是正方形.3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.。
人教版八年级数学下册18.2.3正方形的性质及判定教案
最后,今天的总结回顾环节,同学们能够较好地概括出正方形的性质和判定方法,说明他们对本节课的知识点有了较好的掌握。但在提问环节,我发现有些同学对自己的疑问表达得不够清晰,可能是他们对自己的问题认识不够准确。在以后的教学中,我会更加关注学生的疑问,引导他们准确地表达自己的问题,并给予耐心解答。
3.重点难点解析:在讲授过程中,我会特别强调正方形的性质和判定方法这两个重点。对于难点部分,如对角线垂直平分性质和判定方法的应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正方形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量正方形的对角线,验证其互相垂直平分的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级数学下册18.2.3正方形的性质及判定教案
一、教学内容
人教版八年级数学下册18.2.3正方形的性质及判定:
1.正方形的定义及性质:准确理解正方形的定义,掌握正方形的四条边相等、四个角都是直角、对角线互相垂直平分等性质。
华师大版数学八年级下册《正方形的判定》教学设计
华师大版数学八年级下册《正方形的判定》教学设计一. 教材分析华师大版数学八年级下册《正方形的判定》是学生在掌握了矩形、菱形的基础上,进一步学习正方形的相关性质和判定方法。
本节课的内容包括正方形的定义、性质以及判定方法,旨在帮助学生理解和掌握正方形的特征,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在八年级上学期已经学习了矩形和菱形的性质,对平行四边形的性质有一定的了解。
但正方形与矩形和菱形既有联系又有区别,需要学生进一步探究。
此外,学生对实际生活中的正方形实例可能有一定的认识,但缺乏系统的理论知识和判定方法。
三. 教学目标1.理解正方形的定义和性质;2.学会正方形的判定方法;3.培养学生的空间想象能力和逻辑思维能力;4.能够运用正方形的性质和判定方法解决实际问题。
四. 教学重难点1.正方形的性质和判定方法的掌握;2.正方形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生探究正方形的性质和判定方法;2.利用多媒体展示正方形的实例,增强学生的空间想象能力;3.通过小组合作交流,培养学生解决问题的能力;4.运用练习法,巩固所学知识。
六. 教学准备1.多媒体教学设备;2.正方形的图片和实例;3.练习题和学习资料。
七. 教学过程1.导入(5分钟)教师通过展示正方形的实例,如魔方、方巾等,引导学生观察正方形的特点,引发学生对正方形的好奇心。
同时提出问题:“你们认为正方形有哪些特殊的性质?”让学生思考并回答。
2.呈现(10分钟)教师通过多媒体展示正方形的定义和性质,如四条边相等、四个角都是直角等。
同时,引导学生发现正方形与矩形、菱形的联系和区别。
3.操练(10分钟)教师提出正方形的判定方法,如对角线相等且互相平分的四边形是正方形。
然后给出一些实例,让学生判断哪些是正方形。
学生分组讨论,每组选出一个代表进行回答。
4.巩固(10分钟)教师给出一些练习题,让学生运用正方形的性质和判定方法进行解答。
八年级数学正方形的判定教案
八年级数学正方形的判定教案介绍这份教案旨在帮助八年级学生学会判定一个图形是否为正方形。
教案将介绍正方形的定义和特征,并通过示例和练题来帮助学生加深理解。
研究目标1. 了解正方形的定义和特征;2. 能够正确判定一个图形是否为正方形;3. 运用所学知识解决相关问题。
教学步骤步骤一:定义和特征- 通过讲解清楚正方形的定义:四条边相等且四个角都是直角;- 展示正方形的特征:对角线相等,对边平行。
步骤二:示例分析- 给出多个图形,包括正方形和其他类型的四边形;- 以小组形式让学生讨论并判定这些图形是否为正方形;- 引导学生观察图形的边长和角度特征,找到正方形的特点。
步骤三:练题- 分发练题给学生,让他们独立完成;- 练题应包含多种情况,如给出边长或角度判断是否为正方形,以及给出一个图形判断是否为正方形;- 鼓励学生在解答问题时使用定义和特征。
步骤四:讲解和巩固- 让学生将练题上的答案互相讲解,并给出解题思路;- 强调正方形的特征,帮助学生理解如何正确判定一个图形是否为正方形;- 给出一些额外的练题,让学生进一步巩固所学知识。
步骤五:总结和评价- 与学生一起总结正方形的定义和特征;- 随堂评价学生是否能正确判定图形是否为正方形;- 鼓励学生在实际生活中观察和应用正方形的知识。
扩展活动- 给学生提供一些拓展问题,如正方形的面积和周长计算;- 鼓励学生在实际环境中找寻正方形的例子,并描述其特点。
参考资料暂无以上是八年级数学正方形的判定教案,请参考实际教学情况进行适当调整和改进。
22.6正方形-冀教版八年级数学下册教案
22.6 正方形-冀教版八年级数学下册教案一、教学目标知识目标1.掌握正方形的定义。
2.掌握正方形的性质。
3.学习正方形的相关公式。
能力目标1.能够根据正方形的性质,解决与之相关的数学问题。
情感目标1.热爱数学,踏实认真学习正方形的相关知识。
二、教学重点和难点教学重点1.正方形的定义。
2.正方形的性质。
教学难点1.正方形的性质。
三、教学内容与教学步骤第一步:导入新课通过提问,带领学生回忆正方形的定义,激发学生学习的兴趣。
第二步:正方形的定义向学生介绍正方形的定义:四边相等、四个内角均为直角的四边形就叫做正方形。
第三步:正方形的性质向学生介绍正方形的性质:1.对角线相等:正方形的两条对角线相等。
2.对角线互相垂直:正方形的两条对角线互相垂直。
3.内角度数:正方形的每个内角等于90度。
第四步:相关公式学习正方形的相关公式:1.正方形的周长公式:P = 4a,其中a为正方形的边长。
2.正方形的面积公式:A = a²,其中a为正方形的边长。
第五步:案例分析通过实际的案例,让学生进一步理解和掌握正方形的性质和相关公式。
第六步:课堂小结回顾本课所学的内容,巩固正方形的定义和性质,加深对相关公式的理解和掌握。
四、课后作业1.总结本课所学的正方形相关知识,形成笔记。
2.课后完成相关练习题。
五、教学反思本课采用了提问导入、讲解理论、案例分析等多种教学方法,让学生在课堂上加深了对正方形性质的理解和掌握。
但是在案例分析环节,学生的理解能力还有待加强,需要在今后的教学中加强口头解释,提高学生的理解能力。
同时,在课后作业中,需要适当加大练习题的难度,帮助学生巩固所学知识。
八年级数学下册 正方形(第2课时)教案 新人教版
正方形(第2课时)教学目标知识与技能:了解正方形的有关概念,理解并掌握正方形的性质、判定方法.过程与方法:经历探索正方形有关性质、判定条件的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法.情感态度与价值观:培养合情推理能力和探究习惯,体会平面几何的内在价值.重难点、关键重点:探索正方形的性质与判定.难点:掌握正方形的性质、判定的应用方法.关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容.教学准备教师准备:投影仪,制作投影片,补充本节课内容,矩形纸片,活动的菱形框架.学生准备:复习平行四边形、矩形、菱形性质、判定,预习本节课内容.学法解析1.认知起点:已积累了几何中平行四边形、矩形、菱形等知识,•在取得一定的经验的基础上,认知正方形.2.知识线索:3.学习方式:采用自导自主学习的方法解决重点,突破难点.教学过程一、合作探究,导入新课【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?•四个角呢? 2.正方形是矩形吗?是菱形吗?为什么?3.正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.•正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按课本P110图19.2~14左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的特殊矩形是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊矩形是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质,它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.二、实践应用,探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,•且分别与OA、OB相交于M、N.求证:(1)BM=CN,(2)BM⊥CN.思路点拨:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在△BOM与△CON 是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5+∠CMG=90°,•就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问题.证:(1)•∵四边形ABCD是正方形,∴∠COB=∠BOM=90°,OC=OB,∵MN∥AB,∴∠1=∠2,∠ABO=∠3,又∵∠1=•∠ABO=45°,∴∠2=∠3,∴OM=ON,∴△CON≌△BOM,∴BM=CN.(2)由(1)知△BOM•≌△CON,∴∠4=∠5,∵∠4+∠BMO=90°,∴∠5+∠BMC=90°,∴∠CGM=90°,∴BM⊥CN.演练题2:已知:如图,正方形ABCD中,点E在AD边上,且AE=AD,F为AB的中点,求证:△CEF是直角三角形.思路点拨:本题要证∠EFC=90°,从已知条件分析可以得到只要利用勾股逆定理,就可以解决问题.这里应用到正方形性质.【活动方略】教师活动:用投影仪显示演练题2,•组织学生应用正方形和勾股逆定理分析解析.并请同学上讲台分析思路,板演.学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题.证明:设AB=4a,在正方形ABCD中,DC=BC=4a,AF=FB=2a,AE=a,DE=3a.∵∠B=∠A=∠D=90°,由勾股定理得:EF2+CF2=(AE2+AF2)+(CB2+BF2)=(a2+4a2)+(16a2+4a2)=25a2,CE2=CD2+DE2=(4a)2+(3a)2=25a2,∴EF2+CF2=CE2.由勾股定理的逆定理可知△CEF是直角三角形.【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力.三、继续探究,学习新知【问题牵引】教师提问:怎样判定一个四边形是正方形呢?把你所想的判定方法写出来,并和同学们进行交流、证明.学生活动:分四人小组进行合作讨论,归纳总结出判定正方形的方法如下:判定方法:1.是矩形,并且有一组邻边相等.2.是菱形,并且有一个角是直角.【投影显示】例4 •求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.思路点拨:这是一道文字题,首先应该根据题意画出几何图形,然后依据图形写出已知求证,最后证明,本题可利用正方形性质:对角线互相垂直平分且相等,证出问题.【活动方略】教师活动:操作投影仪,画出图形,讲请怎样写出已知、求证.已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.【评析】这里教师可以让学生上台书写已知、求证.然后再纠正写法上的不足.学生活动:分析文字题后,举手上讲台“板演”.上述证明思路:因为四边形ABCD是正方形,所以AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO、△BCO、△CDO、•△DAO都是等腰直角三角形.且△ABO≌△BCO≌△CDO≌△DAO.四、随堂练习,巩固深化1.课本P112 练习1,2,3.2.【探研时空】如图,把边长为2cm的正方形剪成四个全等的直角三角形.请拼成尽可能多的四边形.要求:每次拼四边形全部用上这四个直角三角形,但这些三角形互不重叠且不留空隙.思路点拨:思路1:特殊四边形,包括(1)菱形,除正方形之外只有一个,其边长为,对角线为2和4.图形略.(2)矩形,除正方形之外只有一个,其长为4,•宽为1.图形略.(3)梯形,两个,一个是上底为1,下底为3,高为2的等腰梯形;•另一个是上底为2,下底为6,高为1的等腰梯形,图形略.(4)一般的平行四边形,共4个,其一,两组对边分别为2和,高为2和;其二,两组对边分别为1和2,高为4•和;其三,两组对边分别为2和2,高为2和;其四,两组对边分别为4和,高为1和,•图形略.思路2:一般凸四边形共两个,一个的四条边长分别为、2、2;•另一个的四条边长分别为1、3、、,图形略.【评析】这是一道江苏省徐州市2001年中考题,是很好的分类讨论题.五、课堂总结,发展潜能【问题提出】正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论、交流,并用列表和框图表示出来.1.课本P112 习题19.2 8,13,15,17 2.选用课时作业优化设计七、课后反思。
人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案
人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案一. 教材分析《正方形的性质》是人教版数学八年级下册第18章的一部分,主要让学生掌握正方形的性质,并能够运用这些性质解决实际问题。
本节课的内容包括正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,以及正方形的判定方法。
这些内容是学生进一步学习矩形、菱形和正六边形等图形的基础。
二. 学情分析学生在八年级上学期已经学习了矩形的性质,对图形的性质有一定的了解。
但正方形作为一个特殊的矩形,其性质更为特殊,需要学生进一步理解和掌握。
在导入部分,可以利用学生已知的矩形性质,引导学生发现正方形的特殊性质。
三. 教学目标1.了解正方形的性质,能够运用正方形的性质解决实际问题。
2.培养学生的观察能力、推理能力和解决问题的能力。
3.激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.正方形的性质的理解和运用。
2.正方形性质的证明和推导。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生发现正方形的性质;通过合作学习,让学生共同探讨和解决问题;通过引导发现,让学生自主探究正方形的性质。
六. 教学准备1.正方形和矩形的模型或图片。
2.直尺、量角器等测量工具。
3.教学PPT或黑板。
七. 教学过程1.导入(5分钟)利用学生已知的矩形性质,提出问题:“矩形的四个角都是直角,那么正方形的四个角是什么角?”让学生回答,并引导学生发现正方形的特殊性质。
2.呈现(10分钟)展示正方形和矩形的模型或图片,让学生观察并比较它们的性质。
引导学生发现正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。
3.操练(15分钟)让学生分组合作,利用直尺、量角器等测量工具,测量和记录正方形和矩形的边长、角度和对角线的长度。
通过实际操作,让学生加深对正方形性质的理解。
4.巩固(10分钟)给出一些实际问题,让学生运用正方形的性质解决。
人教版八年级数学下册18.2.3正方形的判定优秀教学案例
三、教学策略
(一)情景创设
2.能够运用正方形的性质和判定方法解决实际问题,提高学生的数学应用能力。
3.学会用图形软件绘制ຫໍສະໝຸດ 方形,培养学生的信息技术素养。在教学过程中,我将以生活情境为导入,引导学生观察和分析正方形的特殊性质。通过对比矩形、菱形等其他四边形,让学生直观地感受正方形的独特性。在讲解过程中,我将用多媒体课件动态演示正方形的性质,帮助学生加深理解。同时,我还会设计丰富的课堂练习,让学生在实践中运用所学知识,巩固正方形的判定方法。
1.利用生活情境导入,激发学生兴趣。
2.设计有趣的数学问题,引发学生思考。
3.利用多媒体课件辅助教学,提高学生的直观感知能力。
在教学过程中,我将以生活情境为导入,如红领巾、骰子等,引导学生发现正方形的特殊性质。通过这些熟悉的事物,激发学生的兴趣,使他们愿意主动参与到课堂学习中。在讲解过程中,我将设计有趣的数学问题,如正方形与其他四边形的对比,引发学生思考,提高他们的逻辑思维能力。
此外,我还将教授学生如何运用图形软件绘制正方形,提高他们的信息技术素养。通过这一系列的教学活动,我相信学生能够充分理解正方形的定义、性质和判定方法,提高他们的数学素养。
(二)过程与方法
1.培养学生的观察能力,提高他们从生活中发现数学问题的能力。
2.培养学生的逻辑思维能力,提高他们分析问题和解决问题的能力。
3.培养学生的合作意识,提高他们的团队协作能力。
正方形的判定-华东师大版八年级数学下册教案
正方形的判定-华东师大版八年级数学下册教案教学目标1.能够正确辨别和判定一个图形是否为正方形。
2.能够应用正方形的性质解决简单问题。
3.能够灵活运用平移、旋转和对称的概念处理正方形问题。
4.培养学生的观察能力、逻辑思维和几何想象能力。
教学重点学生能够正确辨别和判定一个图形是否为正方形,能够灵活运用正方形的性质解决简单问题。
教学难点学生能够灵活运用平移、旋转、对称的概念处理正方形问题。
教学过程1.观察视频:播放数学形象视频,让学生自主观察,了解正方形的性质和特点。
2.讲解正方形的定义和判定方法:通过具体的例子,让学生了解正方形的定义和判定方法,强调正方形的四条边相等,两个相邻角相等且为直角,对角线相等且互相平分。
3.练习判定正方形:在黑板上画出几个图形,并要求学生判定哪些是正方形,哪些不是正方形,并让学生自己给出判定的理由。
4.分组讨论:将学生分为小组,让他们自己设计几个简单的题目,让其他小组来判定,同时要求判定理由必须合理。
5.练习运用正方形的性质:讲解正方形的性质后,通过简单的例子来解决问题,让学生理解和掌握正方形的性质的应用。
6.做一些简单的题目:根据教材的要求选择一些简单的习题,让学生巩固和应用所学知识。
7.运用平移、旋转和对称的概念:讲解平移、旋转和对称的概念后,通过几个简单的例子来让学生加深对这些概念的理解,并且灵活运用这些概念来解决正方形问题。
教学方法1.观察视频法;2.讲解与演示相结合法;3.小组讨论法;4.动手操作法。
教学评估1.学生对正方形的认知程度,包括正方形的定义和判定方法;2.学生对正方形的性质的掌握程度,能否灵活应用正方形的性质解决简单问题;3.课上小组讨论的结果,判定正方形的理由是否合理;4.课堂练习的效果,是否能够做出简单的正方形习题。
总结本课程主要讲解了正方形的定义和判定方法、正方形的性质及应用、平移、旋转和对称的概念在正方形中的应用。
通过观察视频、小组讨论、课堂练习等多种教学手段,让学生逐步掌握正方形的相关知识,并通过练习和应用来加深对正方形相关知识的理解和掌握。
《正方形》教案-2021-2022学年人教版八年级数学下册
《正方形》教案内容解析《正方形》是八年级下册第十八章最后一节的内容, 主要是进一步认识正方形,掌握正方形的性质和判定方法.《义务教育数学课程标准(2011年版)》对本节要求是:理解正方形的概念,以及它和平行四边形、矩形、菱形之间的联系,探索并证明正方形的性质定理以及它的判定定理,体会平面几何的内在价值.本节课之前,学生已经掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,对特殊平行四边形的研究具备了一定的方法,在此基础上学习本节课的内容,再一次体验到了数学研究和发现的过程,既是前面所学知识的延续,又是对平行四边形、矩形、菱形进行综合的不可缺少的重要环节.本节课从学生已有的认知结构出发,通过动手操作采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念,通过观察、分析、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过拔高题对定义、性质理解、巩固加以升华,培养和发展学生的合情推理能力和探究习惯,提高学生的分析归纳总结能力和知识体系整合能力,渗透“转化、类比”等数学思想方法.知识关联教学设计一、学习目标1、了解正方形的概念,理解、掌握并运用正方形的性质及判定方法.2、经历实践、观察、归纳、运用等探究活动,进一步认识正方形是完美四边形,理解正方形与平行四边形、矩形、菱形的联系和区别.3、通过对正方形图形完美性的探究,培养品格的完美性,发展合情推理意识,提高学生的分析归纳总结能力和知识体系整合能力.二、重难点重点:正方形的概念和性质.难点:理解正方形与平行四边形、矩形、菱形之间的内在联系.三、学习过程(一)引课观察:利用课件展示生活中有关正方形的图片,魔方,正方形的桌面、开关盒、钟表、包装盒等,并提问:同学们,你们发现了什么?(这些物品的表面都是正方形,利用正方形可以制作许多漂亮的图案.) 学生充分欣赏、观察这组图片,真切地感受现实生活中存在的一种图形--正方形,让学生深刻体会到数学源于生活的真谛,揭示这节课的课题.这节课我们一起来研究正方形.(二)新知活动一:(正方形的概念)1、利用多媒体课件展示一室内装饰图案,里面有平行四边形,菱形,矩形、正方形.提问:前面我们学习了平行四边形、菱形、矩形,那么正方形与平行四A C B D边形、菱形、矩形之间有什么关系?引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的.并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具动手操作演示以上两种变化,从而得出结论.(1)想一想:矩形、菱形与平行四边形之间的边与角有什么关系?(学生思考回答后课件展示图形的变化过程,使学生在图形的动画变化过程中了解由边、角的变化可使图形发生变化)(2)量一量:正方形与菱形、正方形与矩形及平行四边形之间的边、角又有什么关系?(3)说一说:正方形的概念.(4)议一议:正方形与平行四边形、菱形、矩形之间有什么关系?(学生合作交流,讨论探究正方形与平行四边形、菱形、矩形的边、角变化关系,然后课件展示图形的变化过程,使学生在图形的动画变化过程中再一次了解由边、角的变化可使图形发生变化)2、请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形.由课件演示,再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形.活动二:(正方形的性质和判定的探究)1、比一比:看谁填得又快又好:平行四边形、矩形、菱形的性质.平行四边形矩形菱形正方形性质边角对角线列,教师检查,表扬填得好的同学),你知道正方形的性质吗?(学生讨论完成第四列)提问:你是怎样确定正方形的对称轴的?2、讲一讲:你是怎样得出正方形的性质的.全体学生参与到教学中来,回顾了所学知识,同时开启学生联想的大门:正方形既是特殊的平行四边形,又是特殊的菱形和矩形,那么它就同时具有平行四边形、菱形和矩形的性质.然后学生类比归纳出正方形的性质,体现了"把所学知识建构在已学知识的基础上"的新课程理念,培养学生主动探索的习惯和创新意识.3、想一想:如何判定正方形?比如:平行四边形有一个角是直角且邻边相等时变成了正方形,矩形的邻边相等时是正方形.你还有哪些方法?你能否利用对角线的变化来判断一个四边形是正方形呢?(教师在学生分组讨论、质疑后,再借助课件动态展示学生讨论的结果,包括对角线变化判定一个四边形为正方形的方法.)设计意图:利用边、角、对角线的变化,判断图形之间的变化,培养学生类比归纳的能力,学生在合作探讨中,培养学生的团结协作、共同探索的习惯,同时训练了学生的发现、归纳、总结的能力.师生共同归纳:(1)正方形的性质:正方形的四个角都是直角;四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;有4条对称轴.(2)正方形的判定方法:一组邻边相等,且一个角是直角的平行四边形是正方形;一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形;对角线垂直平分且相等的四边形是正方形…….活动三:(具体应用,形成技能)例5求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.分析:此题是文字证明题,必须写出已知、求证部分,可以利用三角形全等的方法;还可以利用正方形的两条对角线是它的对称轴证明;画正方形沿对角线剪开证明.已知:如图,在正方形ABCD 中,两条对角线AC 、BD 相交于点O.求证:△AOB 、△BOC 、△COD 、△DOA 是全等的等腰直角三角形.证明:∵四边形ABCD 是正方形,∴AC=BD,AC ⊥BD,AO=BO=CO=DO.∴△AOB 、△BOC 、△COD 、△DOA 是等腰直角三角形,并且△AOB ≌△BOC ≌△COD ≌△DOA.由学生们分组相互探讨,共同研究然后由小组派代表阐述证明过程,引导学生用多种方法加以证明,最后教师板书,在板书的过程中,请其他小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写.从而培养他们语言表达能力,让学生的个性得到充分的展示.(三)练习★1. 在正方形ABCD 中,(1)一条对角线把它分成 个全等三角形,这些三角形是 三角形;(2)两条对角线把它分成 个全等的 三角形;(3)一条对角线与正方形的边所成的角等于 度.★★ 2.如图,正方形ABCD 的面积为64,则对角线AC=_________.★★3.判断:(1)对角线相等的菱形是正方形 ( )(2)对角线互相垂直的矩形是正方形 ( )(3)对角线互相垂直且相等的四边形是正方形 ( )(4)四条边都相等的四边形是正方形 ( )(5)四个角都相等的四边形是正方形 ( )(6)四边相等,有一个角是直角的四边形是正方形( )★★★4. 如图,边长是1的正方形ABCD 绕点A 顺时针旋转30°得到正方形 AB ′C ′D ′,求图中阴影部分的面积。
人教八年级下册数学-正方形的判定教案与教学反思
第2课时正方形的判定1.掌握正方形的判定条件;(重点)2.能熟练运用正方形的性质和判定进行有关的证明和计算.(难点)一、情境导入老师给学生一个任务:从一张彩色纸中剪出一个正方形.小明剪完后,这样检验它:比较了边的长度,发现4条边是相等的,小明就判定他完成了这个任务.这种检验可信吗?小兵用另一种方法检验:量对角线,发现对角线是相等的,小兵就认为他正确地剪出了正方形.这种检验对吗?小英剪完后,比较了由对角线相互分成的4条线段,发现它们是相等的.按照小英的意见,这说明剪出的四边形是正方形.你的意见怎样?你认为应该如何检验,才能又快又准确呢?二、合作探究探究点一:正方形的判定【类型一】利用“一组邻边相等的矩形是正方形”证明四边形是正方形如图,在Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.解析:要证四边形CEDF是正方形,则要先证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC =90°.又∵∠ACB=90°,∴四边形CEDF是矩形.∵DE=DF,∴矩形CEDF是正方形.方法总结:要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.【类型二】利用“有一个角是直角的菱形是正方形”证明四边形是正方形如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试判断四边形BECF是什么四边形?并说明理由;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC.又∵CF=AE,∴可证BE=EC=BF=FC.根据“四边相等的四边形是菱形”,∴四边形BF是菱形;(2)菱形对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形.根据“直角三角形中两个角锐角互余”得∠A=45°.解:(1)四边形BECF是菱形.理由如下:∵EF垂直平分BC,∴BF=FC,BE =EC,∴∠3=∠1.∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE.∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形;(2)当∠A=45°时,菱形BECF是正方形.证明如下:∵∠A=45°,AB=90°,∴∠3=45°,∴∠EBF=2∠3=90°,∴菱形BECF是正方形.方法总结:正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用判定定理1或判定定理2进行判定.探究点二:正方形的判定的应用【类型一】正方形的性质和判定的综合应用错误!未找到引用源。
八年级数学下册《正方形的判定》优秀教学案例
(一)知识与技能
1. 理解正方形的定义,掌握正方形的性质,如四条边相等、四个角相等且为直角等。
2. 学会使用不同的判定方法来判断一个四边形是否为正方形,包括邻边相等且垂直、对角线互相垂直平分、一组邻边相等且一个角为直角的矩形等。
3. 能够运用正方形的性质和判定方法解决实际问题,如计算正方形的面积、周长、对角线长等。
2. 问题探究:给出一些具有挑战性的问题,如“如何证明正方形的对角线相等?”“正方形中,对角线与边长有什么关系?”等,让学生在小组内进行探究。
3. 小组竞赛:设置一些关于正方形的知识竞赛,激发学生的学习积极性,增强课堂氛围。
(四)总结归纳
在总结归纳环节,我将带领学生完成以下任务:
1. 让学生回顾本节课所学的正方形性质、判定方法以及解决实际问题的方法。
4. 注重过程与方法的培养
在教学过程中,本案例关注学生空间想象能力、逻辑思维能力的培养,引导学生通过观察、思考、实践等环节,掌握正方形的性质和判定方法。同时,设计丰富的练习题,让学生在解决问题中巩固所学知识,提高解题能力。
5. 情感态度与价值观的融入
生活中的重要性,增强他们为社会作贡献的意识。此外,通过反思与评价环节,引导学生正确认识自我,培养他们积极向上的心态,为今后的学习打下坚实基础。
4. 设计丰富的练习题,引导学生运用所学知识解决问题,巩固所学知识,提高解题能力。
(三)情感态度与价值观
在教学过程中,关注学生的情感态度与价值观的培养:
1. 培养学生热爱数学,积极探究问题的学习态度,增强学生对数学学科的兴趣。
2. 培养学生的自信心,让他们在解决问题中体验到成功的喜悦,激发他们继续学习的动力。
3. 培养学生的审美观念,使他们认识到正方形在生活中的广泛应用,感受到数学的美。
八年级数学下册《正方形的判定》教案、教学设计
3.实践应用题:
-观察生活中有哪些物体或图形是正方形,选择两个进行描述,并说明它们体现了正方形的哪些性质。
-结合实际情境,设计一个包含正方形的几何图形,并给出至少两个问题,要求包含正方形的性质和判定方法。
4.思考总结题:
2.基本性质教学:
-利用动态几何软件或实物模型,直观展示正方形的性质,如四边相等、四个角都是直角等,帮助学生形象地理解。
-设计探究活动,让学生在小组内讨论正方形的性质,并尝试用自己的语言总结出来,增强学生的主体参与感。
3.判定方法教学:
-对于判定方法的教学,采用逐步引导的方式,从已知的矩形和菱形的判定方法出发,引导学生发现正方形的特殊之处。
3.教师将根据作业完成情况,了解学生的学习进度和掌握程度,为下一节课的教学做好充分准备。
期望通过本次作业的布置,学生能够更好地巩固正方形的性质与判定知识,提高解决问题的能力,并为后续课程的学习奠定基础。
-总结正方形的性质和判定方法,用自己的话术进行表述,并举例说明。
-思考正方形与Байду номын сангаас他特殊四边形(如矩形、菱形)之间的关系,撰写一篇不少于200字的小短文。
作业要求:
1.学生需独立完成作业,注重解题过程的书写和表述,保持卷面整洁。
2.家长需关注学生的学习情况,协助学生按时完成作业,并给予适当的指导和鼓励。
-在应用题中,加入实际情境,如房屋设计、园林规划等,让学生体会数学知识在实际生活中的应用,增强学习的实用性。
5.情感态度培养:
-在教学过程中,注重学生情感态度的培养,鼓励学生面对困难时保持积极乐观的心态,勇于挑战自我。
八年级数学教案《正方形》【优秀4篇】
八年级数学教案《正方形》【优秀4篇】八年级数学教案《正方形》篇一课题:4.6 正方形(一)教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”教学重点:正方形的定义。
教学难点:正方形与矩形、菱形间的关系。
教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法。
为了活跃学生的思维,可以得出下列问题让学生思考:(1)对角线相等的菱形是正方形吗?为什么?(2)对角线互相垂直的矩形是正方形吗?为什么?(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?(4)能说“四条边都相等的四边形是正方形”吗?为什么?(5)说“四个角相等的四边形是正方形”,对吗?教学过程:让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片。
问:所得的图形是矩形吗?它与一般的矩形有什么不同?所得的图形是菱形吗?它与一般的菱形有什么不同?所得的图形在小学里学习时称它为什么图形?它有什么特点?由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
(一)新课由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质。
请同学们推断出正方形具有哪些性质?性质1、(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
性质2、(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
已知:四边形ABCD是正方形,对角线AC、BD相交于点O。
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形。
证明:△四边形ABCD是正方形,△AC=BD,AC△BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)。
人教版八下数学18.2.3正方形 课时1 正方形的性质教案+学案
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质教案【教学目标】知识与技能目标1.理解并运用正方形的定义计算和证明;2.理解并运用正方形的性质进行计算和证明;3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.过程与方法目标经历正方形的定义及其性质的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.情感、态度与价值观目标让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【教学重点】正方形性质定理的运用.【教学难点】正方形与平行四边形、矩形、菱形的区别与联系.【教学准备】教师准备:教学中出示的教学插图、问题和例题.学生准备:复习平行四边形、矩形、菱形的定义、性质和判定.【教学过程设计】一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究知识点一:正方形的性质【类型一】特殊平行四边形的性质的综合例1菱形,矩形,正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D 不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题例2如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EF A=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE=2x.∴2x=1-x,解得x=2-1,即BE的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】利用正方形的性质解决角的计算或证明问题例3 在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数.解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用【类型一】 利用正方形的性质解决线段的倍、分、和、差关系例4 如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ;(2)OF =12CE . 解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE .证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE .方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题例5 如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt △AED 和Rt △AFB 中,⎩⎨⎧AD =AB ,AE =AF ,∴Rt △AED ≌Rt △AFB (HL),∴S △AED =S△AFB.∵S四边形ABCD=24cm2,∴S正方形AFCE=24cm2,∴AE=EC=26cm.根据勾股定理得AC=(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、教学小结师生共同归纳小结.1.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:2.分小组进行讨论,整理所学的性质:正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(3)菱形有哪些性质?(4)正方形有哪些性质?图形对边对角对角线对称性平行四边形平行、相等相等互相平分不是轴对称图形矩形平行、相等四个角都是直角互相平分且相等轴对称图形,有两条对称轴菱形平行、四条边都相等相等互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边四个角都是直互相垂直、平分且相轴对称图形,有四条对称都相等角等,每条对角线平分一轴组对角四、学习检测1.下列命题是真命题的是( )A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD 的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.3.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证AE=CF.(2)若∠ABE=55°,求∠EGC的大小.【解析】本题考查了等腰直角三角形、正方形的性质,“三角形的一个外角等于与它不相邻的两个内角之和”,全等三角形的性质与判定,解题的关键是证明△ABE≌△CBF.(1)用SAS证明△ABE≌△CBF.(2)∠EGC=∠EBG+∠BEF,而∠EBG=90°-∠ABE,△BEF是等腰直角三角形,从而可求∠EGC的度数.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,从而可知∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.解:(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°,∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠EBG+∠BEG=80°.[归纳总结]证明线段相等,通常转化成证明这两条线段所在的三角形全等得到对应线段相等.本题要充分利用正方形的性质“四条边相等;四个内角都等于90°;对角线互相垂直平分且相等,每一条对角线平分一组对角;正方形既是轴对称图形,又是中心对称图形等”,并根据题意选取合适的性质加以运用.等腰直角三角形的两锐角相等,为45°,底边上的高、中线、顶角的平分线重合.三角形全等的判定方法:SAS,ASA,AAS,SSS,HL(只适用于直角三角形),根据图中的条件选取合适的方法证明三角形全等是关键.【板书设计】18.2 特殊的平行四边形 18.2.3 正方形课时1 正方形的性质1.正方形的定义和性质四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用3.学习检测【教学反思】在本节数学课的教学中,通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质学案【学习目标】1.理解正方形的概念;2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;3.会应用正方形的性质解决相关证明及计算问题.【学习重点】探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.【学习难点】会应用正方形的性质解决相关证明及计算问题.【自主学习】一、知识回顾1.你还记得长方形有哪些性质吗?2.菱形的性质又有哪些?二、新知探究知识点1:正方形的性质想一想 1.矩形怎样变化后就成了正方形呢?你有什么发现?邻边_____2.菱形怎样变化后就成了正方形呢?你有什么发现?一个角是_____要点归纳:正方形定义:有一组邻边_____并且有一个角是_____的__________叫正方形.想一想正方形是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.那你能说出正方形的性质吗?1.正方形的四个角都是_________,四条边_________.2.正方形的对角线________且互相______________.证一证已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.证明:∵四边形ABCD是正方形.∴∠A=____°, AB_____AC.又∵正方形是平行四边形.∴正方形是______,亦是______.∴∠A___∠B___∠C___∠D =____°,AB___BC___CD___AD.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.证明:∵正方形ABCD是矩形,∴AO___BO___CO___DO.∵正方形ABCD是菱形.∴AC___BD.想一想请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:平行四边形、矩形、菱形、正方形之间关系:正方形的性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分. 【典例探究】例1如图,在正方形ABCD中,ΔBEC是等边三角形.求证:∠EAD=∠EDA=15°.DAB CE变式题 1 四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.变式题2 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.(1)求证:△APB≌△DPC;(2)求证:∠BAP=2∠PAC.例3 如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E,PF⊥DC于F.试说明:AP=EF.方法总结:在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.【跟踪练习】1.正方形具有而矩形不一定具有的性质是( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等2.正方形具有而菱形不一定具有的性质()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.三、知识梳理内容正方形的性质定义:有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.性质:1.四个角都是直角2.四条边都相等3.对角线相等且互相垂直平分四、学习过程中我产生的疑惑【学习检测】1.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°B(解析:因为CE⊥MN,所以∠MCE+∠NMC=90°.所以∠NMC=90°-∠MCE=55°.由题意得AD∥BC,所以∠ANM=∠NMC=55°.故选B.)3.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm24. 在正方形ABC中,∠ADB=________,∠DAC=_________, ∠BOC=__________.5. 在正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠EBC的度数是___________.6.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E=度.22.5(解析:由正方形的性质得∠ACB=45°,又CE=AC,所以∠E=∠EAC,因为∠E+∠EAC=45°,所以∠E=∠EAC=22.5°.)第4题图第5题图7.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.8. 如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.解:OE=OF.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∴∠AOB=∠BOC=90°.又∵∠OCF=∠OBE,∴△OCF≌△OBE,∴OE=OF.9. 如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.10.如左下图,正方形ABCD中,M是BC上任意一点,E在BC的延长线上,MN⊥AM,MN交∠DCE的平分线于N,试猜想AM与MN有怎样的数量关系,并说明理由.【解析】猜想AM=MN,要证AM=MN,如右上图,只需构造并证明△APM≌△MCN即可.解:AM=MN.理由如下:在AB上取一点P,使BP=BM,连接PM,如右上图.∵AB=BC,BP=BM,∴AP=MC,∠BPM=45°,∴∠APM=135°.∵CN平分∠DCE,∴∠MCN=∠APM=135°.∵MN⊥AM,∴∠AMB+∠CMN=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMN.∴△APM≌△MCN.∴AM=MN.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学正方形教案
教学目标(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算、推理、论证。
(二)能力目标:
1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法。
(三)情感目标:
1、让学生树立科学、严谨、理论联系实际的良好学风;
2、培养学生互相帮助、团结协作、相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
重点难点正方形的定义及正方形与平行四边形、矩形、菱形的联系.正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
教学准备教师准备多媒体
学生准备三角板、直尺等
教学过程设计
一、课堂引入
做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.
(二)探索新知
问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等
......并且有一个角是直角
.......的平行四边形
.....叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)
(2)有一个角是直角的平行四边形(矩形)
2.【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
(教师个性化设计)
所以,正方形具有矩形的性质,同时又具有菱形的性质.
三、例题分析
例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点
O(如图).
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角
三角形.
证明:∵四边形ABCD是正方形,
∴ AC=BD,AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且△ABO ≌△BCO≌△CDO≌△DAO.
例2 (补充)已知:如图,正方形ABCD中,对角线的
交点为O,E是OB上的一点,DG⊥AE于G,DG交OA
于F.
求证:OE=OF.
分析:要证明OE=OF,只需证明△AEO≌△DFO,
由于正方形的对角线垂直平分且相等,可以得到∠AOE=
∠DOF=90°,AO=DO,再由同角或等角的余角相等可以
得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵四边形ABCD是正方形,
∴∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又DG⊥AE,∴∠EAO+∠AEO=∠EDG+∠AEO=90°.
∴∠EAO=∠FDO.
∴△AEO ≌△DFO.
∴OE=OF.
例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P
点.
求证:四边形PQMN 是正方形.
分析:由已知可以证出四边形PQMN 是矩形,再证△ABM ≌△DAN ,证出AM=DN ,
用同样的方法证AN=DP .即可证出MN=NP .从而得出结论.
证明:略
四、课堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
4.已知:如图,四边形ABCD 为正方形,E 、F 分别
为CD 、CB 延长线上的点,且DE =BF .
求证:∠AFE =∠AEF .
4.如图,E 为正方形ABCD 内一点,且△EBC 是等边三角形,
求∠EAD 与∠ECD 的度数.
五、归纳小结(学生总结,老师点评)
(一)这节课你有什么收获?学到了什么?有什么疑问提
出来?
学生总结,教师补充,使学生感觉到自己对正方形的了
解有进了一层,从而达到自己心中的完美。
本节课要掌握:
1.正方形定义
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
2.正方形性质
正方形具有矩形的性质,同时又具有菱形的性质. (二)欣赏实际生活中正方形的应用(课件显示)
这个环节是我设计了一些正方形在实际生活中应用的图片,在优美的音
乐中欣赏实际生活中正方形的应用,再一次让学生们感受正方形的美。
六、布置作业
A B
C D E F
1.已知:如图,点E是正方形ABCD的边CD上一点,
点F是CB的延长线上一点,且DE=BF.
求证:EA⊥AF.
2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,
DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正
方形.
3.已知:如图,正方形ABCD中,E为BC上一点,
AF平分∠DAE交CD于F,求证:AE=BE+DF.
(我设计的是教材习题及设计题,通过此作业让同学们既巩固
了有关正方形的知识,又提高了对几何问题的探究能力和兴
趣。
)
教后反思:
本课的教学注意挖掘教材中培养创新意识的素材,利用计算机辅助教学,为学生营造一种创新的学习氛围。
把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性、积极性,体现学生的主体地位。
同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神。
正方形的性质与判定导学案
班级:姓名:
【学习目标】
(1)理解正方形的概念;
(2)了解正方形的判定定理;
(3)能利用正方形解决实际问题。
一、学前准备(不借助课本,独自回答下列问题)
1. 是平行四边形
2.平行四边形的性质有哪些?
(1)
(2)
(3)
(4)
3.平行四边形的判定定理有哪些?
(1)
(2)
(3)
(4)
(5)
4. 矩形。
5.矩形的性质有哪些?
(1)
(2)
(3)
(4)
6.矩形的判定有哪些?
(1)
(2)
(3) .
7. 菱形.
8.菱形的性质有哪些?
(1)
(2)
(3)
(4)。
9.菱形的判定定理有哪些?
(1)
(2)
(3)。
10.请罗列出平行四边形,菱形和矩形的联系?(可以用集合表示)
二、自学课本100—101页回答下列问题:
1. 结合课本以及你所学到的知识请给正方形下个定义?
2. 思考:正方形有哪些性质?
3. 思考:正方形有哪些判定定理?
4. 求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形。
已知:
求证:
证明:
5.思考:正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论一下,并列表或用框图表示这些关系。
1. 四条边都相等,且对角线也相等的四边形是()
A.平行四边形
B.矩形
C.菱形
D.正方形
2. 四边形ABCD的对角线AC,BD相交于点O,能判定它是正方形的是()
A.AO=BO=OC=DO
B.AO=CO,BO=DO
C.AO=CO,BO=DO A C⊥BD
D.A C⊥BD,AO=BO=CO=DO。
3. 在正方形ABCD中,已知BD=16,P是AB上的一点,PE⊥AC与点E,PF⊥BD 与点F,则PE+PF=
4.,则这个正方形的面积为。
5. 如图,在矩形ABCD中,∠ABC平分线交对角AC于点M,ME⊥AB,MF⊥BC,垂足分别为E和F,求证:四边形EBFM是正方形。
四、当堂检测。
1.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE 的长。
2.如图,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC, DF⊥AB,试说明四边形BEDF是正方形。
3.如图,EC,FH过正方形ABCD的对角线的交点O,且EG⊥FH. 求证:四边形EFGH是正方形。