(完整版)正弦定理练习题

合集下载

正弦定理试题及答案

正弦定理试题及答案

正弦定理练习题一 一、选择题1.一个三角形的内角分别为45°与30°,如果45°角所对的边长是4,则30°角所对的边长为( )A.26B.36C.22D.32 2.已知△ABC 中,a =1,b =3,∠A =30°,则∠B =( ) A.3π B. 32π C. 3π或32π D. 65π或6π3.已知△ABC 的三个内角之比为A :B :C =3:2:1,那么对应的三边之比a :b :c 等于( ) A.3:2:1 B. 3:2:1 C. 3:2:1 D.2:3:二、填空题4.在△ABC 中,若b =1,c =3,∠C =32π,则a = 5.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 所对的边,若∠A =105°,∠B =45°,b =22,则c = . 三、解答题6.在△ABC 中,已知A =45°,B =30°,c =10,求b .正弦定理练习题二一、选择题1.在△ABC 中,下列关系中一定成立的是( )A.a>b sin AB.a=b sin AC.a<b sin AD.a ≥b sin A 2.在△ABC 中,已知(b+c ):(c+a ):(a+b )=4:5:6,则sin A ;sin B ;sin C 等于( ) A.6:5:4 B.7:5:3 C.3:5:7 D.4:5:6 3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A.75° B.60° C.45° D.30° 4.不解三角形,下列判断中不正确的是 ( )A.a =7,b =14,A =30°,有两解B.a =30,b =25,A =150°,有一解C.a =6,b =9,A =45°,无解D.b =9,c =10,B =60°,有两解 5.△ABC 中,a =2,b =2,B=6π,则A 等于( ) A. 3π B. 4π C. 4π或43π D. 3π或32π6·在ΔABC 中,a =15,b =10,A =60°,则cos B =( ) A.-322 B. 322 C.- 36 D. 367.在△ABC 中,a =10,B =60°,C =45°,则c 等于 ( )A.10+3B.10(3-1)C.10(3+1)D.1038.已知△ABC 中,a=x ,b =2,∠B =45°,若三角形有两解,则x 的取值范围是( ) A.x >2 B.x <2 C.2<x <22 D.2<x <23 二、填空题9.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c = .10.在△ABC 中,A =60°,C =45°,b =2.则此三角形的最小边长为 . 11.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =25b ,A =2B ,则cos B = . 12.在△ABC 中,已知tan B =3,cos C =31,AC =36,求△ABC 的面积 .三、解答题13.在△ABC 中,已知a =3,b =2,B =45°,求A 、C 及边c .14.在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,若a =2,C =4 ,cos 2B =552, 求△ABC 的面积.15.已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为a 、b 的对角,试判断△ABC 的形状.16.在△ABC 中,∠A 、∠B 、∠C 所对应的边为a 、b 、c .且b=a cos C ,且△ABC 的最大边长为12,最小角的正弦值为31.(1)判断三角形的形状;(2)求△ABC 的面积.正弦定理练习题一 答案 一、选择题1.一个三角形的内角分别为45°与30°,如果45°角所对的边长是4,则30°角所对的边长为( )A.26B.36C.22D.32 [答案]C [解析]设所求边长为x,由正弦定理得,︒30sin x =︒45sin 4,∴x =22,故选C. 2.已知△ABC 中,a =1,b =3,∠A =30°,则∠B =( ) A.3π B. 32π C. 3π或32π D. 65π或6π[答案] C [解析] 由A a sin =B b sin ,得sin B =a A b sin ,∴sin B =130sin ·3︒ =23 ,∴B =3π或32π.3.已知△ABC 的三个内角之比为A :B :C =3:2:1,那么对应的三边之比a :b :c 等于( ) A.3:2:1 B. 3:2:1 C. 3:2:1 D.2:3:1[答案] D ∴A =90°,B =60°,C =30°∴a :b :c =sin A :sin B :sin C =1:23 :21=2:3:1. 二、填空题4.在△ABC 中,若b =1,c =3,∠C =32π,则a = [答案]1由正弦定理,得32sin3π=B sin 1,∴sin B =21.∵∠C 为钝角∴∠B 必为锐角,∴∠B =6π,∴∠A =6π,∴a=b =1. 5.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 所对的边,若∠A =105°,∠B =45°,b =22,则c = .[答案 2[解析]由已知,得∠C =180°-105°-45°=30°,∵B b sin =Ccsin ∴c =B C b sin sin =︒︒45sin 30sin 22=222122⨯=2.三、解答题6.在△ABC 中,已知A =45°,B =30°,c =10,求b . [解析] ∵A+B+C =180°,∴C =105°. ∵B b sin =C c sin ,∴b =C B c sin sin =︒︒105sin 30sin 10, 又∵sin105°=sin(60°+45°)=23×22+21×22=426+,∴b=5(26-).正弦定理练习题二 答案一、选择题1.在△ABC 中,下列关系中一定成立的是( )A.a>b sin AB.a=b sin AC.a<b sin AD.a ≥b sin A [答案] D[解析] 由正弦定理,得A a sin =B b sin ,∴a =B A b sin sin ,在△ABC 中,0<sin B ≤1,故Bsin 1≥1,∴a ≥b sin A .2.在△ABC 中,已知(b+c ):(c+a ):(a+b )=4:5:6,则sin A ;sin B ;sin C 等于( ) A.6:5:4 B.7:5:3 C.3:5:7 D.4:5:6 [答案] B [解析] 设b+c =4x ,c+a =5x ,a+b =6x (x >0), 从而解出a =27x ,b =25x ,c =23x . ∴a :b :c =7:5:3.∴sin A :sin B :sin C =7:5:3.3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A.75° B.60° C.45° D.30° [答案] B [解析] 由题意,得21×4×3sin C =33,∴sin C =23,又0°<C <90°,∴C =60°.4.不解三角形,下列判断中不正确的是 ( )A.a =7,b =14,A =30°,有两解B.a =30,b =25,A =150°,有一解C.a =6,b =9,A =45°,无解D.b =9,c =10,B =60°,有两解[答案] A [解析] 对于A ,由于a=b sin A ,故应有一解;对于B ,a>b ,A =150°,故应有一解;对于C,a<b sin A ,故无解;对于D ,c sin B<b<c ,故有两解.5.△ABC 中,a =2,b =2,B=6π,则A 等于( ) A. 3π B. 4π C. 4π或43π D. 3π或32π[解析] ∵A a sin =B b sin ,∴sin A =22,∴A =4π或A =43π,又∵a >b ,∴A >B ,∴A =4π或43π,∴选C.6·在ΔABC 中,a =15,b =10,A =60°,则cos B =( ) A.-322 B. 322 C.- 36 D. 36 [答案] D [解析] 由正弦定理,得︒60sin 15=B sin 10∴sin B =1560sin 10︒=152310⨯=33. ∵a>b,A =60°,∴B 为锐角.∴cos B =B sin -12 =2331)(-=36.7.在△ABC 中,a =10,B =60°,C =45°,则c 等于 ( )A.10+3B.10(3-1)C.10(3+1)D.103[答案] B [解析] 由已知得A =75°,sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=426+, c=A C a sin sin =︒︒⨯75sin 45sin 10=10(3-1) 8.已知△ABC 中,a=x ,b =2,∠B =45°,若三角形有两解,则x 的取值范围是( ) A.x >2 B.x <2 C.2<x <22 D.2<x <23 [答案] C 二、填空题9.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c = .[答案]2[解析由正弦定理得sin B =a b ·sin A =31-×23=21, 又∵b =1<a =3,∴B<A =3π,而0<B <π,∴B =6π,C =2π, 由勾股定理得c =22b a +=31+=2.10.在△ABC 中,A =60°,C =45°,b =2.则此三角形的最小边长为 . [解析] ∵A =60°,C =45°,∴B =75°, ∴最小边为c ,由正弦定理,得B b sin =Ccsin , ∴︒75sin 2=︒45sin c ],又∵sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30=22×23+22×21=426+,∴c =︒︒⨯75sin 45sin 2=426222+⨯=23-2. 11.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =25b ,A =2B ,则cos B = . [解析]由正弦定理,得b a =B A sin sin , ∴a =25b 可转化为B A sin sin =25.又∵A =2B ,∴B B s i n s i n 2=25,∴cos B =45. 12.在△ABC 中,已知tan B =3,cos C =31,AC =36,求△ABC 的面积 .[答案]62+83[解析]设在△ABC 中AB 、BC 、CA 的边长分别为c 、a 、b . 由tan B =3,得B =60°,∴sin B =23,cos B =21.又cos C =31,∴sin C =C 2cos 1-=222.由正弦定理,得c =BC b sin sin =2332263⨯=8.又∵sin A =sin(B+C )=sin B cos C +cos B sin C =63+32,∴S △ABC =21bc sin A =21×36×8×(63+32)=62+83.三、解答题13.在△ABC 中,已知a =3,b =2,B =45°,求A 、C 及边c .[解析]由正弦定理得,sin A =b B a sin =245sin 3︒⨯=2223⨯=23,∵a >b ,∴A >B=45∴A 为锐角或钝角(或a sin B <b <a ),∴A =60°或A =120°当A =60°时,C =180°-45°-60°=75°, sin75°=sin(45°+30°)=22×23+22×21=426+,c=B C b sin sin =︒︒45sin 75sin 2=224262 +⨯=226+, 当A =120°时,C =180°-45°-120°=15°, sin15°=sin(45°-30°)= 426-,c =B C b sin sin =︒︒45sin 15sin 2=224262 -⨯ =226-∴A =60°,C =75°,c =226+,或A =120°,C =15°,c =226-.14.在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,若a =2,C =4π,cos 2B =552, 求△ABC 的面积. [解析]由题意知cos2B =552,则cos B =2cos 22B-1=53,∴B 为锐角,∴sin B =54,sin A =sin(π-B-C )=sin(53π-B )= 1027由正弦定理,得c =A C a sin sin =1027222 ⨯=710.∴S △ABC =21ac sin B =21×2×710×54=78.15.已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为a 、b 的对角,试判断△ABC 的形状.[解析]设方程的两根为x 1、x 2,由韦达定理得x 1+x 2=b cos A ,x 1x 2=a cos B ,由题意得b cos A =a cos B , 由正弦定理得2R sin B cos A =2R sin A cos B , sin A cos B -cos A sin B =0. 即sin (A-B )=0.在△ABC 中,∵A 、B 为其内角,∴0<A <π,0<B <π,-π<A-B <π.∴A-B =0,即A=B .∴△ABC 为等腰三角形.16.在△ABC 中,∠A 、∠B 、∠C 所对应的边为a 、b 、c .且b=a cos C ,且△ABC 的最大边长为12,最小角的正弦值为31.(1)判断三角形的形状;(2)求△ABC 的面积.[解析](1)因为b=a cos C ,所以由正弦定理得: sin B =sin A cos C ,从而sin(A+C )=sin A cos C ,所以sin A cos C +cos A sin C =sin A cos C[;所以cos A sin C =0.由于sin C ≠0.所以cos A =0 所以∠A =3π,所以△ABC 为直角三角形. (2)∵斜边a =12.不妨设∠C 最小,则C c sin =12,且sin C =31,∴c =4,从而b =22c a -=82,∴S △ABC=21bc =162.。

解三角函数:正弦定理习题及详细答案

解三角函数:正弦定理习题及详细答案

1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对.以上答案都不对解析:选C.sin B c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12, 于是C =30°⇒A =30°⇒a =c = 2. 3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________. 解析:在△ABC 中,若tan A =13,C =150°, ∴则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC D,求证:BD DC =AB AC. 证明:如图所示,设∠ADB =θ,则∠ADC =π-θ. 在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BDAB =sin A2sin θ;① 在△ACD 中,CD sin A 2=ACsin (π-θ),解三角函数:正弦定理=22,∵a >b ,∴B =45°45°. . 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A 为锐角,sin A =110,BC =1,的平分线,交对边BC 于∴CDAC =sinA2 sin θ.②由①②得BDAB=CDAC,∴BDDC=ABAC. 一、选择题1.在△ABC中,a=5,b=3,C=120°,则sin A∶sin B的值是() A.53 B.35C.37 D.5B=ab=53. 2.在△ABC中,若sin Aa=cos Cc,则C的值为() A.30°B.45°C.60°D.90°解析:选B.∵sin Aa=cos Cc,∴sin Acos C=ac,又由正弦定理ac=sin Asin C. ∴cos C=sin C,即C=45°,故选B. 3.15,b=10,A =60°,则cos B=() A.-223 B.223C.-63D.63解析:选D.由正弦定理得15sin 60°=10sin B,∴sin B=10·10·sin 60°sin 60°15=10×3215=33. ∵a>b,A 7解析:选A.根据根据正弦定理正弦定理得sin A sin (2010年高考湖北卷)在△ABC中,a==60°,∴B为锐角.∴cos B=1-sin2B=1-(33)2=63. 4.在△ABC中,a=b sin A,则△ABC一定是() A.锐角三角形.锐角三角形 B.直角三角形C.钝角三角形.钝角三角形 D.等腰三角形解析:选B.由题意有a sin A =b =bsin 3,a =3,b =1,则c =( ) A .1 B .2 C.3-1 D.3 解析:选 B..两解.两解 B .一解.一解 C .无解.无解 D .无穷多解.无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________. 解析:AB =sin C sin A BC =2BC=2 5. 答案:25 8.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得: a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶3 在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 解析:由正弦定理,有3sin 2π3=1sin B , B ,则sin B =1,即角B 为直角,故△ABC是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°150°. . 由a >b ,得A >B ,∴B =30°30°. . 故C =90°,由,由勾股定理勾股定理得c =2. 6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A9.(2010年高考北京卷)=6,=. =a2R∶b2R∶c2R=×4A=bsin B,得=a sin Bb=×322=534>=532,所以cos(π-cos(π-cos(π2-cos(π2-a·a2Rcos(π2-cos(π2-2.=π15=根据正弦定理正弦定理asin =b·b2R,。

(完整word版)正弦定理练习含答案

(完整word版)正弦定理练习含答案

课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π.5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0,得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC 中,已知sin A =sin B +sin Ccos B +cos C,判断△ABC 的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.∴cos A=0,∴∠A=π2,∴△ABC为直角三角形.。

正弦定理练习题(含答案)资料

正弦定理练习题(含答案)资料

正弦定理练习题(含答案)正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32 B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =c sin C , 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A=35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。

正弦定理练习题(最新整理)

正弦定理练习题(最新整理)

正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .262362.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4 D.2363233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135° C .45° D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1 B. C .2 D.12146.在△ABC 中,若=,则△ABC 是( )cos A cos B b aA .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B. C.或 D.或323432334328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等于( )26A. B .2 C. D.6329.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π310.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.43311.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则=________,c =33a +b +c sin A +sin B +sin C ________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则=________.a -2b +c sin A -2sin B +sin C15.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.213316.在△ABC 中,b =4,C =30°,c =2,则此三角形有________组解.317.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .26236解析:选A.应用正弦定理得:=,求得b ==.a sin A b sin B a sin B sin A62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 B .4 C .4 D.236323解析:选C.A =45°,由正弦定理得b ==4.a sin B sin A63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135° C .45° D .以上答案都不对解析:选C.由正弦定理=得:sin B ==,又∵a >b ,∴B <60°,∴B =45°.a sin A b sin B b sin A a 224.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1 B. C .2 D.1214解析:选A.C =180°-105°-45°=30°,由=得c ==1.b sin B c sin C 2×sin 30°sin45°6.在△ABC 中,若=,则△ABC 是( )cos A cos B b a A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵=,∴=,b a sin B sin A cos A cos B sin B sin Asin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =.π27.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B.3234C.或 D.或3233432解析:选D.=,求出sin C =,∵AB >AC ,AB sin C AC sin B 32∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =AB ·AC sin A 可求面积.128.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等于( )26A. B .26C. D.32解析:选D.由正弦定理得=,6sin120°2sin C ∴sin C =.12又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c =.29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π3解析:由正弦定理得:=,a sin A c sin C 所以sin A ==.a ·sin C c 12又∵a <c ,∴A <C =,∴A =.π3π6答案:π610.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.433解析:由正弦定理得=a sin A b sin B ⇒sin B ===.b sin A a 4×1243332答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由=得,a ==4,a sin A b sin B 12×sin30°sin120°3∴a +c =8.3答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则=________,c =33a +b +c sin A +sin B +sin C ________.解析:由正弦定理得===12,又S △ABC =bc sin A ,∴a +b +c sin A +sin B +sin C a sin A 63sin60°1212×12×sin60°×c =18,3∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则=________.a -2b +c sin A -2sin B +sin C解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R ===2,a sin A 1sin30°又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴==2R =2.a -2b +c sin A -2sin B +sin C 2R sin A -2sin B +sin C sin A -2sin B +sin C答案:215.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.2133解析:依题意,sin C =,S △ABC =ab sin C =4,223123解得b =2.3答案:2316.在△ABC 中,b =4,C =30°,c =2,则此三角形有________组解.3解析:∵b sin C =4×=2且c =2,3123∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×=20,12∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A ==10(km).20sin30°sin45°2即货轮到达C 点时,与灯塔A 的距离是10 km.218.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin B sin 3C 2C 214C =cos 2,求A 、B 及b 、c .A 2解:由sin cos =,得sin C =,C 2C 21412又C ∈(0,π),所以C =或C =.π65π6由sin B sin C =cos 2,得A 2sin B sin C =[1-cos(B +C )],12即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =,B =C =(舍去),π65π6A =π-(B +C )=.2π3由正弦定理==,得a sin A b sin B c sin C b =c =a =2×=2.sin B sin A 31232故A =,B =,b =c =2.2π3π619.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =,sin B =.(1)求A +B 的值;(2)若a -b =-1,求a ,b ,c 的值.3510102解:(1)∵A 、B 为锐角,sin B =,1010∴cos B ==.1-sin 2B 31010又cos 2A =1-2sin 2A =,∴sin A =,cos A =,3555255∴cos(A +B )=cos A cos B -sin A sin B=×-×=.2553101055101022又0<A +B <π,∴A +B =.π4(2)由(1)知,C =,∴sin C =.3π422由正弦定理:==得a sin A b sin B c sin C a =b =c ,即a =b ,c =b .510225∵a -b =-1,∴b -b =-1,∴b =1.222∴a =,c =.2520.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33解:由S =ab sin C 得,15=×60×sin C ,123123∴sin C =,∴∠C =30°或150°.12又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =60,=,∴b =2.3a sin A b sin B15当∠C =150°时,∠B =150°(舍去).。

(完整版)正弦练习题

(完整版)正弦练习题

正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. 6B. 2C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sinB ∶sinC 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5D .不确定 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.2 6解析:选A.应用正弦定理得:asin A=bsin B,求得b=a sin Bsin A= 6.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( )A.4 2 B.4 3 C.4 6 D.32 3解析:选C.A=45°,由正弦定理得b=a sin Bsin A=4 6.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对解析:选 C.由正弦定理asin A=bsin B得:sin B=b sin Aa=22,又∵a>b,∴B<60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于( ) A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.不确定解析:选A.由正弦定理知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=( )A.1 B.12C.2 D.14解析:选 A.C=180°-105°-45°=30°,由bsin B=csin C得c=2×sin 30°sin45°=1.6.在△ABC中,若cos Acos B=ba,则△ABC是( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B 即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.AB sin C=AC sin B,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°. 再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3D. 2 解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A=c sin C,所以sin A=a·sin Cc=12.又∵a<c,∴A<C=π3,∴A=π6.答案:π610.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.解析:由正弦定理得asin A=bsin B⇒sin B=b sin Aa=4×12433=32.答案:3 211.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由asin A=bsin B得,a=12×sin30°sin120°=43,∴a+c=8 3.答案:8 312.在△ABC中,a=2b cos C,则△ABC的形状为________.解析:由正弦定理,得a=2R·sin A,b=2R·sin B,代入式子a=2b cos C,得2R sin A=2·2R·sin B·cos C,所以sin A=2sin B·cos C,即sin B·cos C+cos B·sin C=2sin B·cos C,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csin A+sin B+sin C=________,c=________.解析:由正弦定理得a+b+csin A+sin B+sin C=asin A=63sin60°=12,又S△ABC=12bc sin A,∴12×12×sin60°×c=183,∴c=6.答案:12 614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asin A=1sin30°=2,又∵a=2R sin A,b=2R sin B,c=2R sin C,∴a-2b+csin A-2sin B+sin C=2R sin A-2sin B+sin Csin A-2sin B+sin C=2R=2.答案:215.在△ABC中,已知a=32,cos C=13,S△ABC=43,则b=________.解析:依题意,sin C=223,S△ABC=12ab sin C=43,解得b=2 3.答案:2 316.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.解析:∵b sin C=43×12=23且c=2,∴c<b sin C,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin∠ABCsin A=20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得 sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得cos B cos C+sin B sin C=1,即cos(B-C)=1,所以B=C=π6,B=C=5π6(舍去),A=π-(B+C)=2π3.由正弦定理asin A=bsin B=csin C,得b=c=a sin Bsin A=23×1232=2.故A=2π3,B=π6,b=c=2.19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.解:(1)∵A、B为锐角,sin B=10 10,∴cos B=1-sin2B=310 10.又cos 2A=1-2sin2A=35,∴sin A=55,cos A=255,∴cos(A+B)=cos A cos B-sin A sin B=255×31010-55×1010=22.又0<A+B<π,∴A+B=π4.(2)由(1)知,C=3π4,∴sin C=22.由正弦定理:asin A=bsin B=csin C得5a=10b=2c,即a=2b,c=5b.∵a-b=2-1,∴2b-b=2-1,∴b=1.∴a=2,c= 5.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.解:由S=12ab sin C得,153=12×603×sin C,∴sin C=12,∴∠C=30°或150°.又sin B=sin C,故∠B=∠C.当∠C=30°时,∠B=30°,∠A=120°.又∵ab=603,asin A=bsin B,∴b=215.当∠C=150°时,∠B=150°(舍去).故边b的长为215.。

(word完整版)正弦定理练习题(含答案),推荐文档

(word完整版)正弦定理练习题(含答案),推荐文档

正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =c sin C , 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183, ∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3. 答案:2 3 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。

正弦定理训练测试题(含答案)

正弦定理训练测试题(含答案)

正弦定理一、单选题(共15题;共30分)1.(2020高一下·大庆期末)已知的三个内角的对边分别为,且满足,则等于()A. B. C. D.2.(2020高一下·六安期末)设的内角所对的边分别为,若,则的形状为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为()A. B. π C. 2π D. 4π4.在中,角A,B,C所对的边分别为a,b,c,已知,,为使此三角形有两个,则a满足的条件是()A. B. C. D.5.(2020高一下·抚顺期末)在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,b=2 ,C=30°,则B等于()A. 30°B. 60°C. 30°或60°D. 60°或120°6.(2020高一下·南昌期末)在中,,,,则()A. B. C. D.7.(2020高一下·牡丹江期末)已知的内角的对边分别为,若,则等于()A. B. C. D.8.(2020高一下·哈尔滨期末)在中,,那么()A. B. C. 或 D.9.(2020高一下·台州期末)在中,角A,B,C所对的边分别为a,b,c,若,,,则()A. B. C. 2 D.10.(2020高一下·金华月考)在△ABC中,角A,B,C所对的边分别是a,b,c,若,则b=()A. B. C. D.11.(2020·南昌模拟)已知中角所对的边分别为,若,则角A等于( )A. B. C. D.12.(2020·漯河模拟)设锐角的三内角A,B,C所对边的边长分别为a,b,c,且,,则a的取值范围为( )A. B. C. D.13.(2020高一下·太原期中)在锐角三角形中,已知,则的范围是( )A. B. C. D.14.(2020高一下·怀仁期中)在△ABC中,,则三角形解的情况是()A. 一解B. 两解C. 一解或两解D. 无解15.(2020高一下·沈阳期中)的内角的对边分别为,且, ,,则角C=( )A. B. C. 或 D. 或二、填空题(共4题;共5分)16.(2020高二下·嘉兴期末)已知中,,是的中点,且,则________.17.(2020高一下·哈尔滨期末)已知中,,则角A等于________.18.(2020高一下·温州期末)在中,,,点M在上,且,则________,________.19.(2020高一下·六安期末)在中,角所对的边分别是,若,则角C的大小为________.三、解答题(共5题;共35分)20.(2020高一下·深圳月考)在中,已知,,,求的值.21.(2019高三上·杭州期中)在中,a,b,c分别为角A,B,C所对边的长,且.(Ⅰ)求角B的值;(Ⅱ)若,求的面积.22.(2019高二上·榆林月考)在中,,,分别是角,,的对边,且,,.求:(1)的值.(2)的面积.23.(2019·贵州模拟)在中,内角的对边分别为,已知.(1)求;(2)已知,的面积为,求的周长.24.(2018·天津)在中,内角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和的值.答案解析部分一、单选题1.【答案】D【解析】【解答】由题,根据正弦定理可得,所以,因为在中, ,所以,因为,所以,故答案为:D【分析】利用正弦定理化边为角可得,则,进而求解.2.【答案】B【解析】【解答】∵,由正弦定理得:,∵,∴,,故三角形为直角三角形,故答案为:B.【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得的值进而求得A,判断出三角形的形状.3.【答案】B【解析】【解答】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故答案为:B.【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.4.【答案】C【解析】【解答】为使此三角形有两个,即bsinA<a<b,∴2 × <a<2 ,解得:3<a<2 ,故答案为:C.【分析】为使此三角形有两个,只需满足bsinA<a<b,即可求a范围.5.【答案】D【解析】【解答】由c=2,b=2 ,C=30°,由正弦定理可得:,,由大边对大角可得:,解得60°或120°.故答案为:D.【分析】由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.6.【答案】C【解析】【解答】∵,,,∴由正弦定理,可得,∵,B为锐角,∴.故答案为:C【分析】由已知利用正弦定理可得,结合,可得B为锐角,可求.7.【答案】D【解析】【解答】因为,故.故答案为:D.【分析】利用正弦定理可求的值.8.【答案】D【解析】【解答】由正弦定理得,因为,∴,所以,从而.故答案为:D.【分析】由正弦定理求C,然后再得A角.9.【答案】B【解析】【解答】根据正弦定理可得,即,解得,故答案为:B.【分析】直接利用正弦定理,结合题中所给的条件即可得结果.10.【答案】D【解析】【解答】解:在中,角A,B,C所对的边分别是a,b,c.若,,,利用正弦定理:,整理得:.故答案为:D.【分析】直接利用正弦定理的应用和三角函数值的应用求出结果.11.【答案】B【解析】【解答】由及正弦定理可得,又,所以,解得或(舍),又,所以.故答案为:B【分析】由正弦定理可得,结合解方程组即可得到答案.12.【答案】A【解析】【解答】且为锐角三角形,,,又,,,,,由正弦定理得:,.故答案为:A.【分析】根据锐角三角形的特点和可确定的取值范围,进而求得的取值范围;利用正弦定理可得到,进而求得结果.13.【答案】C【解析】【解答】,又,,锐角三角形,∴,故,故.故答案为:C.【分析】根据正弦定理得到,计算,得到答案.14.【答案】D【解析】【解答】过点A作AD⊥BD.点D在∠B的一条边上,∵h=csinB=6 3 3=b=AC,因此此三角形无解.故答案为:D.【分析】由csinB>b,即可得出解的情况.15.【答案】B【解析】【解答】由正弦定理,,所以,又,则,所以,故答案为:B。

正弦定理练习题及答案解析

正弦定理练习题及答案解析

正弦定理练习题及答案解析Updated by Jack on December 25,2020 at 10:00 am1.在△ABC 中,A =60°,a =43,b =42,则( )A .B =45°或135° B .B =135°C .B =45°D .以上答案都不对解析:选 B =22,∵a >b ,∴B =45°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理6sin 120°=2sin C sin C =12,于是C =30°A =30°a =c = 2.3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________.解析:在△ABC 中,若tan A =13,C =150°,∴A 为锐角,sin A =110,BC =1, 则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC 的平分线,交对边BC 于D ,求证:BD DC =AB AC .证明:如图所示,设∠ADB =θ,则∠ADC =π-θ.在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BD AB =sin A 2sin θ;①在△ACD 中,CD sin A 2=AC sinπ-θ, ∴CD AC =sin A 2sin θ.②由①②得BD AB =CD AC ,∴BD DC =AB AC .一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( )解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos C c ,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =a c ,又由正弦定理a c =sin A sin C .∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223C .-63解析:选D.由正弦定理得15sin 60°=10sin B , ∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角.∴cos B =1-sin 2B =1-332=63.4.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B.由题意有a sin A =b =b sin B ,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c =( )A .1B .2 -1解析:选B.由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°.故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( )A .两解B .一解C .无解D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin C sin A BC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________.解析:A =180°-30°-120°=30°,由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3.答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin 2π3=1sin B , ∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1.答案:1三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a .解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c 2R =a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin B b =5×322=534>1.所以A不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状. 解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b 2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. 法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B ,∴A =B .(A +B =π不合题意舍去)故△ABC 为等腰三角形.。

正弦定理训练测试题(含答案)

正弦定理训练测试题(含答案)

正弦定理训练测试题(含答案)正弦定理⼀、单选题(共15题;共30分)1.(2020⾼⼀下·⼤庆期末)已知的三个内⾓的对边分别为,且满⾜,则等于()A. B. C. D.2.(2020⾼⼀下·六安期末)设的内⾓所对的边分别为,若,则的形状为()A. 锐⾓三⾓形B. 直⾓三⾓形C. 钝⾓三⾓形D. 等腰三⾓形3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆⾯积为()A. B. π C. 2π D. 4π4.在中,⾓A,B,C所对的边分别为a,b,c,已知,,为使此三⾓形有两个,则a满⾜的条件是()A. B. C. D.5.(2020⾼⼀下·抚顺期末)在△ABC中,⾓A,B,C的对边分别为a,b,c,若c=2,b=2 ,C=30°,则B等于()A. 30°B. 60°C. 30°或60°D. 60°或120°6.(2020⾼⼀下·南昌期末)在中,,,,则()A. B. C. D.7.(2020⾼⼀下·牡丹江期末)已知的内⾓的对边分别为,若,则等于()A. B. C. D.8.(2020⾼⼀下·哈尔滨期末)在中,,那么()A. B. C. 或 D.9.(2020⾼⼀下·台州期末)在中,⾓A,B,C所对的边分别为a,b,c,若,,,则()A. B. C. 2 D.10.(2020⾼⼀下·⾦华⽉考)在△ABC中,⾓A,B,C所对的边分别是a,b,c,若,则b=()A. B. C. D.11.(2020·南昌模拟)已知中⾓所对的边分别为,若,则⾓A等于( )A. B. C. D.12.(2020·漯河模拟)设锐⾓的三内⾓A,B,C所对边的边长分别为a,b,c,且,,则a的取值范围为( )A. B. C. D.13.(2020⾼⼀下·太原期中)在锐⾓三⾓形中,已知,则的范围是( )A. B. C. D.14.(2020⾼⼀下·怀仁期中)在△ABC中,,则三⾓形解的情况是()A. ⼀解B. 两解C. ⼀解或两解D. ⽆解15.(2020⾼⼀下·沈阳期中)的内⾓的对边分别为,且, ,,则⾓C=( )A. B. C. 或 D. 或⼆、填空题(共4题;共5分)16.(2020⾼⼆下·嘉兴期末)已知中,,是的中点,且,则________.17.(2020⾼⼀下·哈尔滨期末)已知中,,则⾓A等于________.18.(2020⾼⼀下·温州期末)在中,,,点M在上,且,则________,________.19.(2020⾼⼀下·六安期末)在中,⾓所对的边分别是,若,则⾓C的⼤⼩为________.三、解答题(共5题;共35分)20.(2020⾼⼀下·深圳⽉考)在中,已知,,,求的值.21.(2019⾼三上·杭州期中)在中,a,b,c分别为⾓A,B,C所对边的长,且.(Ⅰ)求⾓B的值;(Ⅱ)若,求的⾯积.22.(2019⾼⼆上·榆林⽉考)在中,,,分别是⾓,,的对边,且,,.求:(1)的值.(2)的⾯积.23.(2019·贵州模拟)在中,内⾓的对边分别为,已知.(1)求;(2)已知,的⾯积为,求的周长.24.(2018·天津)在中,内⾓A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求⾓B的⼤⼩;(Ⅱ)设a=2,c=3,求b和的值.答案解析部分⼀、单选题1.【答案】D【解析】【解答】由题,根据正弦定理可得,所以,因为在中, ,所以,因为,所以,故答案为:D【分析】利⽤正弦定理化边为⾓可得,则,进⽽求解.2.【答案】B【解析】【解答】∵,由正弦定理得:,∵,∴,,故三⾓形为直⾓三⾓形,故答案为:B.【分析】根据正弦定理把已知等式中的边转化为⾓的正弦,利⽤两⾓和公式化简求得的值进⽽求得A,判断出三⾓形的形状.3.【答案】B【解析】【解答】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.故答案为:B.【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.4.【答案】C【解析】【解答】为使此三⾓形有两个,即bsinA<a<b,∴2 × <a<2 ,解得:3<a<2 ,故答案为:C.【分析】为使此三⾓形有两个,只需满⾜bsinA<a<b,即可求a范围.5.【答案】D【解析】【解答】由c=2,b=2 ,C=30°,由正弦定理可得:,,由⼤边对⼤⾓可得:,解得60°或120°.故答案为:D.【分析】由正弦定理可解得,利⽤⼤边对⼤⾓可得范围,从⽽解得A的值.6.【答案】C【解析】【解答】∵,,,∴由正弦定理,可得,∵,B为锐⾓,∴.故答案为:C【分析】由已知利⽤正弦定理可得,结合,可得B为锐⾓,可求.7.【答案】D【解析】【解答】因为,故.故答案为:D.【分析】利⽤正弦定理可求的值.8.【答案】D【解析】【解答】由正弦定理得,因为,∴,所以,从⽽.故答案为:D.【分析】由正弦定理求C,然后再得A⾓.9.【答案】B【解析】【解答】根据正弦定理可得,即,解得,故答案为:B.【分析】直接利⽤正弦定理,结合题中所给的条件即可得结果.10.【答案】D【解析】【解答】解:在中,⾓A,B,C所对的边分别是a,b,c.若,,,利⽤正弦定理:,整理得:.故答案为:D.【分析】直接利⽤正弦定理的应⽤和三⾓函数值的应⽤求出结果.11.【答案】B【解析】【解答】由及正弦定理可得,⼜,所以,解得或(舍),⼜,所以.故答案为:B【分析】由正弦定理可得,结合解⽅程组即可得到答案.12.【答案】A【解析】【解答】且为锐⾓三⾓形,,,⼜,,,,,由正弦定理得:,.故答案为:A.【分析】根据锐⾓三⾓形的特点和可确定的取值范围,进⽽求得的取值范围;利⽤正弦定理可得到,进⽽求得结果.13.【答案】C【解析】【解答】,⼜,,锐⾓三⾓形,∴,故,故.故答案为:C.【分析】根据正弦定理得到,计算,得到答案.14.【答案】D【解析】【解答】过点A作AD⊥BD.点D在∠B的⼀条边上,∵h=csinB=6 3 3=b=AC,因此此三⾓形⽆解.故答案为:D.【分析】由csinB>b,即可得出解的情况.15.【答案】B【解析】【解答】由正弦定理,,所以,⼜,则,所以,故答案为:B。

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .

完整版)正弦定理与余弦定理练习题

完整版)正弦定理与余弦定理练习题

完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。

解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。

2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。

解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。

3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。

解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。

代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。

由此可知cosB=(2abc)/(4a^2+2ac-b^2)。

代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。

由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。

由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。

(完整版)正弦定理、余弦定理综合训练题含答案

(完整版)正弦定理、余弦定理综合训练题含答案

正弦定理、余弦定理综合训练题1. [2016全国卷I ] △ ABC 的内角A , B , C 的对边分别为 a , b , c.已知a = 5, c = 2, cos A = 2,则 b =() A. .2B. 3 C . 2D . 32 1[解析]D 由余弦定理得5= b 2 + 4-2 X b X 2X 3,解得b = 3或b =- 3(舍去),故选D. n 1B = —, BC 边上的高等于§BC ,贝U sin A =( )D.S 10D ,设BC = 3,则有 AD = BD = 1 , AB = 2,由余弦定理 得AC = \ 5.由正弦定理得 “5= s^A , n sin Asin ’43. [2013新课标全国卷I ]已知锐角厶 A + cos 2A = 0, a = 7, c = 6,贝U b =( A . 101[解析]D 由23cos2A + cos 2A = 0,得25cos2A = 1•因为△ABC 为锐角三角形,所以cos A =. 51 12在A ABC 中,根据余弦定理,得 49 = b 2 + 36- 12b •即卩b 2—厂b5 545 4. ________________ [2016全国卷n ] △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若cos A =5, cos C = ^, a = 1,贝U b= .4 53 12[解析]因为cos A = 5, cos C = 13,且A , C 为三角形的内角,所以sin A = 5, sin C =〔3, sin63 「, a b ~― asin B 21B = si n(A + C)= sin AcosC + cos As in C = 65.又因为 sin A = sin B ,所以 b = sin A =伯. 13—13 = 0,解得 b = 5 或 b =— 5 (舍去).5. [2015 全国卷 I ]已知 a , b , c 分别是△ ABC 内角 A , B , C 的对边,sin 2B = 2sin Asin C. (1)若 a = b ,求 cos B;⑵若B = 90°,且a =〔 2, 求厶ABC 的面积. 解:(1)由题设及正弦定理可得b 2 = 2ac.又a = b ,所以可得b = 2c , a = 2c.2. [2016全国卷川]在厶ABC 中, [解析]D 作AD 丄BC 交BC 于点解得sin A =学=噜ABC 的内角A , B , C 的对边分别为 a , b , c , 23COS 2D . 5⑵由(1)知 b 2= 2ac.因为B = 90°,所以由勾股定理得a 2+ c 2= b 2. 故 a 2 + c 2= 2ac ,得 c = a = 2, 所以△ABC 的面积为1.6. [2015 全国卷n ] △ ABC 中,D 是 BC 上的点,AD 平分/ BAC , BD = 2DC. sin / B (1)求跖/C ; ⑵若/ BAC = 60°,求/ B. 解:(1)由正弦定理得AD _ BD AD _ DC sin ZB sin /BAD’ sin ZC sin /CAD 因为AD 平分Z BAC , BD = 2DC ,所以 sin ZB DC 1 sinZC BD 2⑵因为/C = 180°—/BAC + /B),/BAC = 60°,所以、i'3 1sin ZC = sin( ZBAC +/B)= ? cos/B + in ZB.V 3由(1)知 2sinZB = sin/C ,所以 tanZB = 3,即/B = 30°7. [2014新课标全国卷n ]四边形ABCD 的内角A 与C 互补,AB = 1, BC = 3, CD 2.(1)求 C 和 BD ;⑵求四边形ABCD 的面积.解:(1)由题设及余弦定理得 BD 2= BC 2+ CD 2— 2BC CDcos C =13 — 12cos C ,①BD 2= AB 2+ DA 2— 2AB DAcos A由余弦定理可得 cos B =a 2+ c 2— b2ac1 4.DA ==5 + 4cos C .②1 —由①②得 cos C = 2,故 C = 60°,BD =7.⑵四边形ABCD 的面积1 1S = ?AB DA si n A + ?BC CDsi n C1 1/ 1X 2 + 2 x 3X 2 sin 60°=2 38. [2016 山东卷]△ ABC 中,角 A , B , C 的对边分别是 a , b , c.已知 b = c , a 2= 2b 2(1 — sin A), 贝U A =(nCG'•b = c , a 2 = 2b 2( 1 — sin A),「.2b 2sin A = b 2+ c 2— a 2= 2bccos A = 2b 2cos A ,「.tanA=1,即 A = 4. 9.[2015广东卷]设厶ABC 的内角 A , B , C 的对边分别为 a , b , c.若a = 2, c = 2.3, cos A =于且b<c ,则b =( ) A . 3B . 2 .2C . 2D. 3[解析]C 由余弦定理得 a 2= b 2 + c 2— 2bccos A ,所以22 = b 2+ (2\'勺)2— 2x b x 2屈,即卩 b 2— 6b + 8= 0,解得 b = 2 或 b = 4•因为 b<c,所以 b = 2. 10. [2016上海卷]已知△ ABC 的三边长分别为3, 5, 7,则该三角形的外接圆半径等于32+ 52 — 72 1[解析]利用余弦定理可求得最大边 7所对角的余弦值为2x 3x 5 =—2,所以此角的正弦值为牙•设三角形外接圆的半径为R ,由正弦定理得2R=^|,所以R = 于.22冗 b11. ________________________________________________________ [2016 北京卷]在厶 ABC 中,/ A =〒,a = ■. 3c ,则b = _______________________________ .3 c2 n b b[解析]由余弦定理 a 2= b 2+ c 2— 2bccos A 可得,3c 2= b 2+ c 2— 2bccos 3,整理得 2+ — 2= 0,3 c cnD.?[解析]C解得b= 1或c=—2(舍去).12. [2016浙江卷]在厶ABC 中,内角 A , B , C 所对的边分别为 a , b , c.已知b + c = 2acos B. (1)证明:A = 2B ;2⑵若cos B = 3,求cos C 的值.解:⑴证明:由正弦定理得 sin B + sin C = 2sin Acos B ,故 2s in Acos B = sin B + sin (A + B)= sin B + sin Acos B + cos As in B ,于是 sin B = sin (A — B). 又 A , B € (0, n ),故 O V A — B Vn, 所以 B =n —(A — B)或 B = A — B , 因此A =%(舍去)或A = 2B ,所以A = 2B.=—cos(A + B) = — cos Acos B + sin A sin B =⑵由cos B =cos 2B = 2cos 2B — 1 = — 9,故 cos A =— 9, sin sin cos C。

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。

正弦定理与余弦定理练习题(5篇模版)

正弦定理与余弦定理练习题(5篇模版)

正弦定理与余弦定理练习题(5篇模版)第一篇:正弦定理与余弦定理练习题正弦定理与余弦定理1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为3.下列判断中正确的是A.△ABC中,a=7,b=14,A=30°,有两解B.△ABC中,a=30,b=25,A=150°,有一解C.△ABC中,a=6,b=9,A=45°,有两解D.△ABC中,b=9,c=10,B=60°,无解4.在△ABC中,若2cosBsinA=sinC,则△ABC一定是()()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形5.在△ABC中,A=120°,AB=5,BC=7,则A.85sinB的值为sinC5335()B.458C.D.()6.△ABC中,若a+b+c=2c(a+b),则∠C的度数是A.60°B.45°或135°C.120°D.30°7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=.8.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为.9.在△ABC中,角A、B、C所对的边分别为a、b、c.若(b-c)cosA=acosC,则cosA10.在△ABC中,已知a=3,b=2,B=45°,求A、C和c.11.在△ABC中,a、b、c分别是角A,B,C的对边,且cosBb=-.cosC2a+c(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.12.在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a+b)sin(A-B)=(a-b)sin(A+B),判断三角形的形状.2213.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC 的面积为S,且2S=(a+b)-c,求tanC的值.14.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.15.在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin(1)求角C的大小;(2)求△ABC的面积.7A+B-cos2C=.22第二篇:正弦定理和余弦定理练习题【正弦定理、余弦定理模拟试题】一.选择题:1.在∆ABC中,a=23,b=22,B=45︒,则A为()A.60︒或120︒B.60︒C.30︒或150︒D.30︒sinAcosB2.在∆AB C中,若=,则∠B=()abB.45︒C.60︒D.90︒A.30︒3.在∆ABC中,a2=b2+c2+bc,则A等于()B.45︒C.120︒D.30︒A.60︒→→→→→→→|AB|=1,|BC|=2,(AB+BC)⋅(AB+BC)=5+23,4.在∆ABC中,则边|AC|等于()A.5B.5-23C.5-23D.5+235.以4、5、6为边长的三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形6.在∆ABC中,bcosA=acosB,则三角形为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形7.在∆ABC中,cosAcosB>sinAsinB,则∆ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形8.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52B.213C.16 D.4二.填空题:9.在∆ABC中,a+b=12,A=60︒,B=45︒,则a=_______,b=________10.在∆ABC中,化简bcosC+ccosB=___________11.在∆ABC中,已知sinA:sinB:sinC=654::,则cosA=___________12.在∆ABC中,A、B均为锐角,且cosA>sinB,则∆ABC是_________三.解答题:13.已知在∆ABC中,∠A=45︒,a=2,c=6,解此三角形。

(完整版)正弦定理、余弦定理超经典练习题

(完整版)正弦定理、余弦定理超经典练习题

正弦定理、余弦定理练习题一、选择题1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A=4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C=cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去).。

相关文档
最新文档