与角平分线有关的基本模型ppt课件
合集下载
角平分线的性质教学课件
三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。
角的平分线课件(共16张PPT)
6.3.2.2 角的平分线
思考 如何能得到角平分线呢? 量角器度量、折叠.
在一张半透明的纸上通过折纸作角的平分线.
6.3.2.2 角的平分线
例1 把一个周角 7 等分,每一份是多少度的角 (精确到分)?
解:360°÷7 = 51° + 3°÷7 = 51° + 180'÷7 ≈ 51°26'.
精确到分,要先取到 小数点后 1 位,然后 再四舍五入.
6.3.2.2 角的平分线
2.如图,O 是直线AB 上一点,OC 是∠AOB 的平分线,若∠COD = 31°28',求∠AOD 的度数.
解:∵OC 是∠AOB 的平分线,∠AOB是平角. C
∴∠AOC = ∠AOB = × 180°=90°.
∴∠AOD = 12∠AOB - ∠COD.
D
=90°- 31°28' =89°60' - 31°28'
2
1
O
A
6.3.2.2 角的平分线
新知学习
思考
如图,如果∠1 =∠2,那么射线 OB 把∠AOC分成两个相等的角.你可
以写出∠AOC 和∠1 、∠2的关系式吗?
C B
∠AOC = 2∠1 = 2∠2, ∠1 = ∠2 = 1 ∠AOC
2
2
1
O
A
6.3.2.2 角的平分线
一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线, 叫作这个角的平分线.
注意:度、分、秒是60进制的,要把剩余的度数化成分.
6.3.2.2 角的平分线
随堂练习
1.如图,把一个蛋糕等分成8份,每份中的角是多少度?如果 要使每份中的角是15°,这个蛋糕应等分成多少份?
角平分线的性质ppt课件
这个角的平分线上吗?A l1 M
P
l2
O
NB
如果将∠AOB沿直线OP对折.你发现∠AOP与∠BOP重合
吗?由此你能得到什么结论?
归纳:角平分线的性质2
角的内部到角的两边的距离相等的点在角的平分线上.
几何语言:
B
M
∵ PM⊥AB, PN⊥AC且PM=PN
∴AP是∠ BAC的平分线
P
特别强调
A
NC
(1)应用判定应具备的条件 (2)性质的作用
等,你能确定中转站的位置吗?
任 务 一 探究角的轴对称性
在卡纸上把∠ AOB沿经过点O的某条直线对折,使角的两 边OA与OB重合,然后把纸展开后铺平,记折痕为OC 你发现 ∠ AOB是轴对称图形吗?如果是,它的对称轴是哪条直线?
A
O·
C
B
〖结论〗角是轴对称图形, 角的平分线所在的直线 是它 的对称轴。
①点P在∠BAC的内部 ②PM⊥AB PN⊥AC ③ PM=PN
判断点是否在角平分线上
测试二
如图,P是∠AOB 内部的一点,PE⊥OA,PF⊥OB,垂足分别
为点 E,F,且PE =PF . Q是OP 上的任意一点,QM⊥OA,
ቤተ መጻሕፍቲ ባይዱ
QN⊥OB,垂足分别为点 M 和N . QM与QN相等吗?为什么? A
M
∠AMP= ∠ANP
∠1= ∠2
AP=AP ∴ △ AMP ≌ △ANP(AAS) ∴PM=PN
归纳:角平分线的性质1
角的平分线上的点到这个角的两边的距离相等.
B
几何语言:
∵AD是∠ BAC的平分线,
M
1
2
P
D
PM⊥AB, PN⊥AC(已知)
P
l2
O
NB
如果将∠AOB沿直线OP对折.你发现∠AOP与∠BOP重合
吗?由此你能得到什么结论?
归纳:角平分线的性质2
角的内部到角的两边的距离相等的点在角的平分线上.
几何语言:
B
M
∵ PM⊥AB, PN⊥AC且PM=PN
∴AP是∠ BAC的平分线
P
特别强调
A
NC
(1)应用判定应具备的条件 (2)性质的作用
等,你能确定中转站的位置吗?
任 务 一 探究角的轴对称性
在卡纸上把∠ AOB沿经过点O的某条直线对折,使角的两 边OA与OB重合,然后把纸展开后铺平,记折痕为OC 你发现 ∠ AOB是轴对称图形吗?如果是,它的对称轴是哪条直线?
A
O·
C
B
〖结论〗角是轴对称图形, 角的平分线所在的直线 是它 的对称轴。
①点P在∠BAC的内部 ②PM⊥AB PN⊥AC ③ PM=PN
判断点是否在角平分线上
测试二
如图,P是∠AOB 内部的一点,PE⊥OA,PF⊥OB,垂足分别
为点 E,F,且PE =PF . Q是OP 上的任意一点,QM⊥OA,
ቤተ መጻሕፍቲ ባይዱ
QN⊥OB,垂足分别为点 M 和N . QM与QN相等吗?为什么? A
M
∠AMP= ∠ANP
∠1= ∠2
AP=AP ∴ △ AMP ≌ △ANP(AAS) ∴PM=PN
归纳:角平分线的性质1
角的平分线上的点到这个角的两边的距离相等.
B
几何语言:
∵AD是∠ BAC的平分线,
M
1
2
P
D
PM⊥AB, PN⊥AC(已知)
角平分线的性质 课件
角的平分线与等边三角形的关系
角的平分线与等边三角形的联系
在等边三角形中,角的平分线也是中垂线,因此,角的 平分线与等边三角形也有密切的联系。
角的平分线与等边三角形的应用
利用这一性质,可以解决一些几何问题,如证明等边三 角形、求角度等。
THANKS
谢谢
角平分线的表示方法
在几何图形中,通常用虚线表示角平 分线,并在角平分线上标注相应的字 母。
例如,若角平分线为AD,则可以表示 为AD平分∠BAC。
角平分线的性质定理
角平分线上的点到该角的两边的距离相等。 这一性质是角平分线的基本性质,也是证明其他角平分线性质的基础。
02
CHAPTER
角平分线的性质
04
CHAPTER
角平分线的作法
通过角的顶点作角的平分线
总结词
角的顶点是角的两条边的交汇点,通过角的顶点作角的平分线的方法是常用的方法之一 。
详细描述
首先,确定角的顶点,然后使用直尺或圆规等工具,从角的顶点出发,作一条与角的一 边平行的线段,线段的长度可以根据需要自行确定。接着,将线段的中点与角的另一边
角的平分线与平行线相交形成的交点,到角的两边的距离 相等。
利用这一性质,可以解决一些几何问题,如求距离、证明 角相等等。
角的平分线与等腰三角形的关系
角的平分线与等腰三角形 的联系
角的平分线是等腰三角形底边上的中垂线, 因此,角的平分线与等腰三角形有密切的联 系。
角的平分线与等腰三角形 的应用
利用这一性质,可以解决一些几何问题,如 证明等腰三角形、求角度等。
角平分线上的点到这个角的两边的距 离相等。
利用角平分线定理,可以证明线段的 比例关系。
证明三角形全等
2023年中考数学二轮复习专题课件——角平分线四大模型
1)在CA的延长线上截 取AE=AB,连接DE △EAD≌△BAD(SAS) ∴∠AED=∠ABD,DB=DE ∵AB=BC,∠ABC=90°
∴∠C=45°
∠AED=∠ABD=90°
∴∠EDC=45°
BD=DE=EC=AB+AC
例10 (1)已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是 ∠BAC的外角平分线,交CB边的延长线于点D.求证:BD=AB+AC; (2)对于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的 延长线于点D,如图2,请你写出线段AC、AB、BD之间的数量关系并加以证明.
AD=CD=ED DCE≌△DCF ∠ECA=∠DCF=40°
例8 如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证: BC=AC+CD.
在BC上截取BF=BA 则△ABD≌△DBF ∠CDF=∠CFD=72° CD=CF BC=BF+FC=AB+CD=AC+CD
例9 如图,在四边形ABCD中,BC>BA,AD=DC, (1)若BD⊥CD,∠C=60°,BC=10,求AD的长; (2)若BD平分∠ABC,求证:∠A+∠C=180°.
1)延长AD交BC于点F 则△ADB≌△FDB ∠2=∠DFB=∠1+∠C
2)∠ABD=∠FBD=28° ∠DFB=∠62=90°-28°=62° ∵DE∥BC ∴∠ADE=∠DFC=180°-∠DFB=118°
例12 如图,在梯形ABCD中,AD∥BC,AE平分∠BAD,BE平分∠ABC,且AE、 BE交CD于点E.试说明AD=AB﹣BC的理由.
取BF的中点E,连接AE,AD 则AE为RT△ABF斜边上的中点 则AE=BE,△AEB为等腰三角形 A、B、C、D四点共圆
角平分线课件PPT
生活中有趣角平分线现象
建筑设计中的应用
在建筑设计中,角平分线常被用来确保建筑物的对称性和平衡感。例如,古希腊的帕特 农神庙就运用了角平分线的原理来设计其立面和柱子。
自然界的角平分线
在自然界中,角平分线的现象也很常见。例如,当阳光照射在树叶上时,树叶的脉络就 会呈现出角平分线的形状,这是因为树叶在生长过程中会自然地沿着角平分线的方向扩
例题2
已知在△ABC中,∠C=90° ,AD是∠BAC的平分线, DE⊥AB于E,F在AC上, BD=DF。求证:CF=EB 。
解析
过点D作DM⊥AC于M。 根据角平分线的性质,可 得DE=DM。在Rt△FCD 和Rt△EBD中,DF=BD, DE=DM。 ∴Rt△FCD≌Rt△EBD(HL )。∴CF=EB。
的两边分别与OA、OB相交于点C、D。求证: PC=PD。
输入 标题
解析
根据角平分线的性质和直角三角形的性质,可以证明 △OPC和△OPD全等,从而得出PC=PD。具体证明过 程略。
例题1
例题2
根据角平分线的性质和勾股定理,可以求出点D到AB 的距离。具体求解过程略。
解析
在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若 BC=32,且BD:CD=9:7,求点D到AB的距离。
04
角平分线在几何变换中应用
旋转对称性质及应用
旋转对称性质
角平分线将一个角分为两个相等的小角,且两个小角关于角平分线对称。当图形 绕角平分线旋转一定角度时,两个小角能够重合,具有旋转对称性。
应用
利用旋转对称性质,可以解决与角平分线相关的角度计算、线段长度等问题。例 如,通过旋转对称性质可以证明两个三角形全等或相似。
建筑设计中角平分线应用
人教八上数学第十二章全等三角形——三角形全等与角平分线全等模型课件
角平分线的性质
1 2
O
结论
△OPA≌△OPB
AAS
M A
3P 4
BN
OA=OB
∠3=∠4
三角形的角平分线向两边作垂线 A
如图,在△ABC中, ∠C=90°,AD平分∠CAB,
E
BC=6cm,BD=4cm,那么点D到直线AB的距离
为多少? 解:过点D作DE垂直AB于点E ∵ ∠C=90°
C
D
B
∴ AC⊥CD
OQ=PQ
∴∠MPN=∠OMP+∠OPM③
∠OQM= ∠PQM’
把①、②代入③得:
MQ=QM’
∠MPN=∠OPM+∠OPM’
∴△OQM ≌△PQM`(SAS)
=∠MPM’
∴∠O= ∠OPM’ ①
在△MPN与△MPM’中:
且OM=PM’
O
M’
Q
M
P
N
PN=PM’ ∠MPN =∠MPM’ MP为公共边 ∴△MPN≌△MPM’ (SAS ∴MN=MM’=2MQ
M F
B
D
C
三角形的角平分线与内心
如图,BM、CN是△ABC的两条角平分线, 相交于点P。 求证:P点在∠BAC的平分线上。
分析:由角平分线的判定可知,要证明P点在
∠的证 ∵B距BA明分垂M离C:别足是的相过垂分∠平等点A直别B分P于为。C作的线点A从PB角DD上、已、、平,B知EP分C、E只、可线、FC需。知PAF证,:明P点∴又∴PPP点在PD点D到=B在⊥MPA∠AF上BBBA、、,CPA的所FC⊥平以两A分PC边线点上
求证:AE⊥CE。
证明:延长AE交CD于F点。 ∵AB//CD ∴∠BAE=∠DFE,
角平分线的判定定理ppt课件
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
4、如图,已知△ABC的外角∠CBD和∠BCE的
平分线相交于点F,
求证:点F在∠DAE的平分线上.
G
P
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
课内拓展延伸
如图,△ABC中,点O是∠BAC与∠ABC的平分线的 交点,过O作与BC平行的直线分别交AB、AC于D、E.已 知△ABC的周长为15,BC的长为6,求△ADE的周长.
A
D OE
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
的判定 到角的两边的距离相等的点
的平分线上。
在角
D
已知:如图,PD^OA ,PE^OB,
垂足分别是 D、E,PD=PE,
O
求证:点P在 AOB的角平分线上。
证明: 作射线OP
∵ PD^OA PE^OB
E
\ PD P OE 9O 0
在 Rt△PDO 和Rt△PEO 中,
OP = OP (公共边)
B
(1). ∵DC⊥AC ,DE⊥AB ,DC=DE ∴_∠__1_=_∠__2___
(_到__一__个__角__的__两__边__的__距__离__相__等__的__点__,__在__这__个__角__平__分__线__上__。)
角平分线的性质1PPT演示课件
方法二
利用角平分线性质和相似三角形,通过比例关系求解三角形 面积。
实例分析:利用角平分线求三角形面积
实例一
实例三
已知三角形ABC中,角A的平分线AD 交BC于点D,且BD=3,CD=2,求三 角形ABC的面积。
已知三角形ABC中,角C的平分线CF 交AB于点F,且AF=5,BF=4,求三 角形ABC的面积。
PART 03
角平分线与三角形面积关 系
REPORTING
WENKU DESIGN
三角形面积计算公式回顾
三角形面积公式
S = 1/2 * b * h,其中b为底边长度, h为高。
三角形面积公式推导
通过相似三角形和比例关系推导得出 。
利用角平分线求三角形面积方法介绍
方法一
利用角平分线定理,将三角形面积转化为两个小三角形面积 之和。
几何作图
利用角平分线的性质,可以进行几何作图,如作角的平分 线、作线段的垂直平分线等。
三角形中的角平分线
在三角形中,角平分线有特殊的性质,如三角形的三条角 平分线交于一点(内心),且这个点到三角形三边的距离 相等。
物理和工程应用
角平分线的性质在物理和工程领域也有应用,如在建筑设 计、机械设计和光学设计等领域中,可以利用角平分线的 性质进行精确的计算和设计。
角平分线与三角形外角关系探讨
三角形外角性质
三角形的一个外角等于与它不相邻的两个内角的和。
角平分线与三角形外角关系
角平分线将相邻的一个外角和一个内角平分为两个相等的小角。
角平分线与三角形外角的综合应用
利用角平分线的性质以及三角形内外角的关系,可以解决一些与角度、距离和面积相关的 问题。例如,通过作角平分线来构造等腰三角形或等边三角形,进而求解一些几何问题。
利用角平分线性质和相似三角形,通过比例关系求解三角形 面积。
实例分析:利用角平分线求三角形面积
实例一
实例三
已知三角形ABC中,角A的平分线AD 交BC于点D,且BD=3,CD=2,求三 角形ABC的面积。
已知三角形ABC中,角C的平分线CF 交AB于点F,且AF=5,BF=4,求三 角形ABC的面积。
PART 03
角平分线与三角形面积关 系
REPORTING
WENKU DESIGN
三角形面积计算公式回顾
三角形面积公式
S = 1/2 * b * h,其中b为底边长度, h为高。
三角形面积公式推导
通过相似三角形和比例关系推导得出 。
利用角平分线求三角形面积方法介绍
方法一
利用角平分线定理,将三角形面积转化为两个小三角形面积 之和。
几何作图
利用角平分线的性质,可以进行几何作图,如作角的平分 线、作线段的垂直平分线等。
三角形中的角平分线
在三角形中,角平分线有特殊的性质,如三角形的三条角 平分线交于一点(内心),且这个点到三角形三边的距离 相等。
物理和工程应用
角平分线的性质在物理和工程领域也有应用,如在建筑设 计、机械设计和光学设计等领域中,可以利用角平分线的 性质进行精确的计算和设计。
角平分线与三角形外角关系探讨
三角形外角性质
三角形的一个外角等于与它不相邻的两个内角的和。
角平分线与三角形外角关系
角平分线将相邻的一个外角和一个内角平分为两个相等的小角。
角平分线与三角形外角的综合应用
利用角平分线的性质以及三角形内外角的关系,可以解决一些与角度、距离和面积相关的 问题。例如,通过作角平分线来构造等腰三角形或等边三角形,进而求解一些几何问题。
安徽省八年级数学上册第13章模型归类角平分线在三角形内外角中的常见模型pptx课件新版沪科版
A. 35°
B. 45°
C. 55°
D. 65°
1
2
3
4
C
5
6
)
7
6. 【创新题·探究题】[2024·东莞月考]如图,∠ ACD 是
△ ABC 的外角,∠ ABC 的平分线与∠ ACD 的平分线
交于点 A1,∠ A1 BC 的平分线与∠ A1 CD 的平分线交
于点 A2……∠ An-1 BC 的平分线与∠ An-1 CD 的平分
140°=40°,连接AA',再根据三角形的外角性质和折叠的
性质可得∠1+∠2=2∠ BAC ,即可求解.
1
2
3
4
5
6
7
3. 如图,∠ B =36°,∠ E =48°,∠ BAE 的平分线与
∠ BDE 的平分线交于点 F ,则∠ F 的度数为
1
2
3
4
5
6
7
42° .
“一内一外”
4. [2023·襄阳期末]如图, BE 是△ ABC 的内角平分线, CE
是
∠ BOC =90°+ ∠ A
1
2
.
3
4
5
6
7
2. 如图,已知△ ABC ,点 D , F 分别在边 AB , AC 上运
动, E 为平面上的一个动点.当∠ DEF =∠ A 且点 E 恰好
在∠ ABC 与∠ ACB 的平分线的交点处时,若∠1+∠2=
130°,则∠ BEC =
1
122.5°
确的有 ①②③
.(填序号)
1
2
3
4
5
6
三角形的证明专题复习与角平分线有关的常见模型+课件+-2023-2024学年人教版数学八年级下册+
A
B
C
A P
三个角平分线夹角 之间有什么关系?
D
P
E
B
C
D
练习提高
如图,在△ABC 中,AD 是高,AE,BF 是角平分线,它们相交于点 O, ∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.
解:因为∠C AB=50°,∠C =60°, 所以∠ABC=180°-50°-60°=70°. 因为 AD 是高, 所以∠ADC=90°. 所以∠DAC=90°-∠C=30°. 因为 AE,BF 是角平分线, 所以∠C BF =∠ABF =35°,∠E AF =∠E AB=25°. 所以∠DAE =∠DAC -∠E AF =5°, ∠BOA=180°-∠EAB-∠ABF=120°.
A
A
A
B
D E 图1
C
B(D)
E 图2
CD
BE
C
图3
三、与三角形角平分线的夹角相关的模型
1、如图,在△ABC中,∠ABC与∠ ACB的角平分线BP、CP交于点P,
若∠A=60°, ∠P =____?
若∠A=100°,∠P =____?
探索∠A与∠P的关系
A
P
B
C
三、与三角形角平分线的夹角相关的模型
解:能.理由: A
因为∠B+∠C+∠BAC=180°,
所以∠BAC=180°-∠B-∠C.
因为 AE 平分∠BAC,
B
DE
C
所以∠BAE=21∠BAC=21(180°-∠B-∠C)=90°-12(∠B+∠C).
因为 AD⊥BC,
所以∠ADB=90°.
所以∠BAD=90°-∠B.
所以∠DAE=∠BAE-∠BAD=90°-21(∠B+∠C)-(90°-∠B)=
角平分线ppt课件
两边距离相(等√) )
B
D A
C
小结
角平分线上的点到角的两边间隔 相等
到角的两边间隔 相等的点在这个角 的平分线上.
结语
谢谢大家!
PDOPEO(AAS)
PDPE全 ( 等三角形的对应等边)相
反过来,到一个角的两边间隔 相等的点是否一
定在这个角度平富乡上呢?
已知:P如 D O图 A P, E , OB
点 D, E为垂足。 求证: P在 点 AO的 B平分线上
证 明 PD : OP A E ,O点 BD,E,
A
为垂足
PD P O E R t O
例 1:已知: A如 B的 图 C角 ,平 B分 M C线 ,N 相交P 于点 求证P : 在 点 BA的 C角平分线上
证明P: D A作 B PE , BC P F , AC
垂足分 DE,F 别 , 为
A
BM 是 AB 的 C平分P在 线 B, M 上点
PD P( E角平分线上的点的到两角边距离相等)D
上任意P点 D O, A P,EOB 垂, 足分D别 E, . 为
求证P: D PE
A
D P
1
O
2
E
C B
证明:
OC是AOB的平分线(已知) 1 2(角平分线的定义) PD O, APE O( B 已知) PDOPEO 90(垂直的定义)
在 PD和 O PE中 O
PDO PEO(已证) 1 ( 2 已证) OP OP(公共边)
从上面实验可以角看是出轴,对称图形 ,对称轴是它的线角所平在分的直线。
假如前面活动中的纸片换成木板,钢 板等没法折叠的角,又该怎么办?
用尺规作图的方法作出角 平分线
B
D A
C
小结
角平分线上的点到角的两边间隔 相等
到角的两边间隔 相等的点在这个角 的平分线上.
结语
谢谢大家!
PDOPEO(AAS)
PDPE全 ( 等三角形的对应等边)相
反过来,到一个角的两边间隔 相等的点是否一
定在这个角度平富乡上呢?
已知:P如 D O图 A P, E , OB
点 D, E为垂足。 求证: P在 点 AO的 B平分线上
证 明 PD : OP A E ,O点 BD,E,
A
为垂足
PD P O E R t O
例 1:已知: A如 B的 图 C角 ,平 B分 M C线 ,N 相交P 于点 求证P : 在 点 BA的 C角平分线上
证明P: D A作 B PE , BC P F , AC
垂足分 DE,F 别 , 为
A
BM 是 AB 的 C平分P在 线 B, M 上点
PD P( E角平分线上的点的到两角边距离相等)D
上任意P点 D O, A P,EOB 垂, 足分D别 E, . 为
求证P: D PE
A
D P
1
O
2
E
C B
证明:
OC是AOB的平分线(已知) 1 2(角平分线的定义) PD O, APE O( B 已知) PDOPEO 90(垂直的定义)
在 PD和 O PE中 O
PDO PEO(已证) 1 ( 2 已证) OP OP(公共边)
从上面实验可以角看是出轴,对称图形 ,对称轴是它的线角所平在分的直线。
假如前面活动中的纸片换成木板,钢 板等没法折叠的角,又该怎么办?
用尺规作图的方法作出角 平分线
《角平分线的判定》课件
应用举例
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
人教版数学八年级上册12.3.1 角平分线的性质课件(共22张PPT)
P
E,交 OB 于F;
(2) 分别以 E,F 为圆心,大于 EF 的长为半径
作弧,两弧在∠AOB内部交于点 C;
(3) 作射线 OC. 则射线 OC 与直线MN相交与点P,
点P即为所求.
M
O
E
C
F
B
N
12.3.1 角平分线的性质
二 角平分线的性质
利用尺规我们可以作一个角的平分线,那么角的平分线有什么性质呢?
12.3.1 角平分线的性质
使用定理时这样书写:
∵ OC 平分∠AOB,
PD⊥OA,PE⊥OB,
∴PD = PE.
推理的条件有三个,必须
写全,不能少.
12.3.1 角平分线的性质
一般情况下,我们要证明一个几何命题时,可以按照类似的步骤
进行,即
1. 明确命题中的已知和求证;
2. 根据题意,画出图形,并用符号表示已知和求证;
12.3.1 角平分线的性质
12.3.1 角平分线的性质
学习目标
1. 会用尺规作图:作一个角的平分线. 重点
2. 探索并证明角平分线的性质定理:角平分线上的点到角两边的距离
相等. 难点
3. 会用角平分线的性质解决实际问题. 难点
12.3.1 角平分线的性质
新课引入
思考
如图是一个平分角的仪器,其中 AB = AD,
DE = 2,AB = 4,则 AC 的长是 ( D )
A. 6
B. 5
C. 4
D. 3
分析:过点 D 作 DF⊥AC 于 F,
∵ AD 是△ABC 的角平分线,DE⊥AB.
∴ DF = DE = 2.
1
1
S△ABC 4 2 AC 2 7, 解得 AC=3.
《角平分线》PPT教学课件
知识讲解
如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角
的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就
是角平分线,你能说明它的道理吗?
两个三角形三边对应相等,两个三角形全
A C
等,两全等三角形的对应角相等.所以AE就
是角平分线 想一想:能够运用这种方法作出任意角的 角平分线吗?
B
(1)∵ 如图,AD平分∠BAC(已知)
× ∴ BD = CD ,
A
D C
( 角的平分线上的点到这个角的两边的距离相等)
理由: 没有垂直,不能确定BD,CD是点D到角两边的距离.
知识讲解
★ 练一练
(2)∵ 如图, DC⊥AC,DB⊥AB (已知).
× ∴ BD = CD ,
(角内任意一条线上的点到这个角的两边的距离相等 )
B
A
D
C
理由:无法确定点D在∠BAC的平分线上.
知识讲解
线段的垂直平分线的性质定理有逆定理,角的平分 线的性质定理是否也有逆定理呢?
如果一个点到角两边的距离相等,那么这个点在 角的平分线上.
知识讲解
角平分线性质定理的逆定理 到角的两边的距离相等的点在角的平分线上.
A
D C
P
O
E
B
用途: 证明点在角平分线上,即可以判定角平分线.
知识讲解
典例讲解 例题 如图,△ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB,BC,CA的距离相等.
A N PM
B
C
知识讲解
证明:
A
D
N
P
F M
B
C
E
知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过点 M 作 MN∥BC 交 AC 于点 N,且 MN 平分∠AMC.若 AN=1,则 BC
的长为( B)
A.4
B.6
C.4 3
D.8
7.(2019·安顺节选)如图,在四边形 ABCD 中,AB∥CD,AF 与 DC 的延长线交于点 F,点 E 是 BC 的中点.若 AE 是∠BAF 的平分线,试探 究 AB,AF,CF 之间的等量关系,并证明你的结论.
12.感知:如图 1,AD 平分∠BAC.∠B+∠C=180°,∠B=90°,易 知:DB=DC.
探究:如图 2,AD 平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°, 求证:DB=DC.
解题通法:三角形一内角与另一外角的平分线的夹角等于第三个内 角的一半.
模型3 两外角平分线的夹角 ∠如A之图间,的在关△系AB为C:中∠,OBO=,90C°- O是12∠△AA.BC的外角平分线,则∠O与
解题通法:三角形两外角的平分线的夹角等于90°与第三个内角的 一半的差.
.
模型 4 内角平分线和高线的夹角 如图,在△ABC 中,AD 是 BC 边上的高,AE 是∠BAC 的平分线(AE 可能在 AD 的左侧或右侧),则∠EAD= 12|∠B-∠C| .
别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+
∠ACD=(A ) A.75°
B.80°
C.85°
D.90°
Байду номын сангаас
3.(2018·深圳改编)如图,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC, BE 平分∠ABC,AD,BE 相交于点 F,且 AF=4,EF= 2,则 AE= 10.
与角平分线有关的基本模型
一、三角形中角平分线的夹角问题
模型 1 两内角平分线的夹角
如图,在△ABC 中,∠ABC,∠ACB 的平分线 BE,CF 相交于点 G,
则∠BGC 与∠A 之间的关系为: ∠BGC=90°+12∠A
.
解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一 半的和.
模型 2 一个内角和一个外角平分线的夹角 如图,在△ABC 中,BP 平分∠ABC,CP 平分∠ACB 的外角,BP 与 CP 相交于点 P,则∠P 与∠A 之间的关系为: ∠P=12∠A.
图3 如图 3,在△ABC 中,BC>BA,BO 是∠ABC 的平分线.
③采用截长补短法构造全等三角形 如图 3,在△ABC 中,BC>BA,BO 是∠ABC 的平分线.
(截长法)在BC上取线段BE=BA,连接OE, 则△BEO≌△BAO;
( 补 短 法 ) 延 长 BA 至 点 D , 使 BD = BC , 连 接 OD,则△BDO≌△BCO.
模型 2 利用角平分线,作辅助线构造全等三角形 ①过角平分线上的点作角两边的垂线 如图 1,BO 是∠ABC 的平分线,过点 O 作 OE⊥AB 于点 E,OF⊥BC 于点 F,则 OE=OF,△BEO≌△BFO.
图1
②过角平分线上任意一点作角平分线的垂线 如图 2,BO 是∠ABC 的平分线,EF⊥BO,则△BEO≌△BFO. ③采用截长补短法构造全等三角形
11.如图,在△ABC 中,∠ACB=2∠B,∠1=∠2,求证:AB=AC +CD.
证明:延长 AC 至点 E,使 AE=AB,连接 DE. ∵AB=AE,∠1=∠2,AD=AD, ∴△ABD≌△AED(SAS).∴∠B=∠E. ∵∠ACD=∠E+∠CDE,∠ACD=2∠B, ∴∠ACD=2∠E.∴∠E=∠CDE. ∴CD=CE.∴AB=AE=AC+CE=AC+CD.
解题通法:遇到角平分线时,我们通常过角 平分线上的一点向两边作垂线或在角平分线的两 端取相等的线段(截长或补短)构造全等三角形.
8.(2019·陕西)如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交 BC 于点 D,DE⊥AB,垂足为 E.若 DE=1,则 BC 的长为(A )
A.2+ 2 B. 2+ 3 C.2+ 3 D.3
9.(2019·永州)已知∠AOB=60°,OC 是∠AOB 的平分线,点 D 为 OC 上一点,过 D 作直线 DE⊥OA,垂足为 E,且直线 DE 交 OB 于点 F,如图 所示.若 DE=2,则 DF= 4 .
10.(2019·威海改编)如图,在四边形 ABCD 中,AB∥DC,过点 C 作 CE⊥BC,交 AD 于点 E,且 EC 平分∠BED.连接 BE.若 AB=6,则 CD= 3.
4.如图,在△ABC 中,∠A=α,△ABC 的两外角平分线交于点 D1,
∠CBD1 的平分线与∠BCD1 的平分线交于点 D2,∠CBD2 的平分线与 ∠BCD2 的平分线交于点 D3,则∠D3= 157.5°-81α (用含 α 的代数式表示).
二、与角平分线有关的图形和辅助线作法 模型 1 角平分线+平行线→等腰三角形 常见模型有以下四种:
解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可 以得到一个等腰三角形.
5.(2019·陕西)如图,OC 是∠AOB 的平分线,l∥OB.若∠1=52°,则
∠2 的度数为( C) A.52°
B.54°
C.64°
D.69°
6.(2018·淄博)如图,在 Rt△ABC 中,CM 平分∠ACB 交 AB 于点 M,
1.(2019·大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外
角∠ACM 的平分线,BE 与 CE 相交于点 E.若∠A=60°,则∠BEC=( B )
A.15°
B.30°
C.45°
D.60°
2.(2018·黄石)如图,在△ABC 中,AD 是 BC 边上的高,AE,BF 分
解:结论:AB=AF+CF. 证明:延长 AE 交 DF 的延长线于点 G. ∵E 是 BC 的中点,∴CE=BE. ∵AB∥DC,∴∠BAE=∠G. 又∵∠AEB=∠GEC,BE=CE, ∴△AEB≌△GEC(AAS). ∴AB=GC. ∵AE 是∠BAF 的平分线,∴∠BAG=∠FAG. ∵∠BAG=∠G,∴∠FAG=∠G.∴FA=FG. 又∵CG=CF+FG,∴AB=AF+CF.