厦门大学第十二届(2015)景润杯数学竞赛试卷答案(理工类)评分标准
2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷参考答案.doc
2015 年福建省高中数学比赛暨 2015 年全国高中数学联赛(福建省赛区)初赛试卷参照答案(考试时间: 2015 年 5 月 24 日上午 9: 00-11:30,满分 160 分)一、填空题(共 10 小题,每题 6 分,满分 60 分。
请直接将答案写在题中的横线上)1.设会合 Ax 4 ,,从会合 A 中随机抽取一个元素 x2x,记x ,则随机x Zx3变量 的数学希望 E。
【答案】 5【解答】 A 4, 3, 2, 1,0,1,2 ,随机变量的取值为 0,1,4,9,16。
易得,的概率散布列为14916P1 2 2 1 177 777∴ E11242911615 。
7 7 7 7 72.已知 f ( x) x g (x) ,此中 g( x) 是定义在 R 上,最小正周期为 2 的函数。
若 f ( x) 在区间 2,4 上的最大值为 1,则 f ( x) 在区间 10 ,12 上的最大值为。
【答案】 9【解答】 依题意,有 f (x 2) ( x 2) g(x 2) x g ( x) 2f ( x) 2 。
∵f ( x) 在区间 2 ,4 上的最大值为 1,∴ f ( x) 在区间 4 ,6 上的最大值为 3,在区间 6 ,8 上的最大值为 5,在区间 8 ,10 上的最大值为 7,在区间 10,12 上的最大值为 9。
3. F 1 、 F 2 为椭圆 C :x 2y 2 1( a b 0 )的左、右焦点,若椭圆 C 上存在一点 P ,使a 2b 2得 PF 1 PF 2 ,则椭圆离心率 e 的取值范围为。
【答案】2 ,2 1【解答】 设 A 为椭圆 C 的上极点,依题意有F 1 AF 2 90 。
F 2 AO 45 , c1 。
c2a 2c 2 , c 21 , 2∴2e 1。
ba224.已知实数 x , y , z 知足 x 22 y 2 3z 2 24 ,则 x 2y 3z 的最小值为。
2015年福建省高考数学试卷(理科)答案与解析
2015年福建省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)2015年普通高等学校招生全国统一考试(福建卷)数学(理工类)1.(5分)(2015•福建)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B 等于()A.{﹣1} B.{1} C.{1,﹣1} D.ϕ考点:虚数单位i及其性质;交集及其运算.专题:集合;数系的扩充和复数.分析:利用虚数单位i的运算性质化简A,然后利用交集运算得答案.解答:解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.点评:本题考查了交集及其运算,考查了虚数单位i的运算性质,是基础题.2.(5分)(2015•福建)下列函数为奇函数的是()A.y=B.y=|sinx| C.y=cosx D.y=e x﹣e﹣x考点:函数奇偶性的判断;余弦函数的奇偶性.专题:函数的性质及应用.分析:根据函数奇偶性的定义进行判断即可.解答:解:A.函数的定义域为[0,+∞),定义域关于原点不对称,故A为非奇非偶函数.B.f(﹣x)=|sin(﹣x)|=|sinx|=f(x),则f(x)为偶函数.C.y=cosx为偶函数.D.f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则f(x)为奇函数,故选:D点评:本题主要考查函数奇偶性的判断,根据函数奇偶性定义是解决本题的关键.3.(5分)(2015•福建)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11 B.9C.5D.3考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定P在双曲线的左支上,由双曲线的定义可得结论.解答:解:由题意,双曲线E:=1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴由双曲线的定义可得|PF2|﹣|PF1|=6,∴|PF2|=9.故选:B.点评:本题考查双曲线的标准方程,考查双曲线的定义,属于基础题.4.(5分)(2015•福建)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9支出y(万元)6.2 7.5 8.0 8.5 9.8根据上表可得回归直线方程,其中,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元考点:线性回归方程.专题:概率与统计.分析:由题意可得和,可得回归方程,把x=15代入方程求得y值即可.解答:解:由题意可得=(8.2+8.6+10.0+11.3+11.9)=10,=(6.2+7.5+8.0+8.5+9.8)=8,代入回归方程可得=8﹣0.76×10=0.4,∴回归方程为=0.76x+0.4,把x=15代入方程可得y=0.76×15+0.4=11.8,故选:B.点评:本题考查线性回归方程,涉及平均值的计算,属基础题.5.(5分)(2015•福建)若变量x,y满足约束条件则z=2x﹣y的最小值等于()A.B.﹣2 C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1)﹣=.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.(5分)(2015•福建)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.2B.1C.0D.﹣1考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件i>5,退出循环,输出S的值为0.解答:解:模拟执行程序框图,可得i=1,S=0S=cos,i=2不满足条件i>5,S=cos+cosπ,i=3不满足条件i>5,S=cos+cosπ+cos,i=4不满足条件i>5,S=cos+cosπ+cos+cos2π,i=5不满足条件i>5,S=cos+cosπ+cos+cos2π+cos=0﹣1+0+1+0=0,i=6满足条件i>5,退出循环,输出S的值为0,故选:C.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,S的值是解题的关键,属于基础题.7.(5分)(2015•福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:利用直线与平面平行与垂直关系,判断两个命题的充要条件关系即可.解答:解:l,m是两条不同的直线,m垂直于平面α,则“l⊥m”可能“l∥α”也可能l⊂α,反之,“l∥α”一定有“l⊥m”,所以l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的必要而不充分条件.故选:B.点评:本题考查空间直线与平面垂直与平行关系的应用,充要条件的判断,基本知识的考查.8.(5分)(2015•福建)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6B.7C.8D.9考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.解答:解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故选:D.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.9.(5分)(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21考点:平面向量数量积的运算.专题:平面向量及应用.分析:建系,由向量式的几何意义易得P的坐标,可化=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得.解答:解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.点评:本题考查平面向量数量积的运算,涉及基本不等式求最值,属中档题.10.(5分)(2015•福建)若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.考点:函数的单调性与导数的关系.专题:创新题型;导数的概念及应用.分析:根据导数的概念得出>k>1,用x=代入可判断出f()>,即可判断答案.解答:解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.点评:本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题.二、填空题:本大题共5小题,每小题4分,共20分.11.(4分)(2015•福建)(x+2)5的展开式中,x2的系数等于80.(用数字作答)考点:二项式定理.专题:计算题;二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的x2项的系数.解答:解:(x+2)5的展开式的通项公式为T r+1=•x5﹣r•2r,令5﹣r=2,求得r=3,可得展开式中x2项的系数为=80,故答案为:80.点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.12.(4分)(2015•福建)若锐角△ABC的面积为,且AB=5,AC=8,则BC等于7.考点:余弦定理的应用.专题:计算题;解三角形.分析:利用三角形的面积公式求出A,再利用余弦定理求出BC.解答:解:因为锐角△ABC的面积为,且AB=5,AC=8,所以,所以sinA=,所以A=60°,所以cosA=,所以BC==7.故答案为:7.点评:本题考查三角形的面积公式,考查余弦定理的运用,比较基础.13.(4分)(2015•福建)如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.考点:定积分的简单应用;几何概型.专题:导数的综合应用;概率与统计.分析:分别求出矩形和阴影部分的面积,利用几何概型公式,解答.解答:解:由已知,矩形的面积为4×(2﹣1)=4,阴影部分的面积为=(4x﹣)|=,由几何概型公式可得此点取自阴影部分的概率等于;故答案为:.点评:本题考查了定积分求曲边梯形的面积以及几何概型的运用;关键是求出阴影部分的面积,利用几何概型公式解答.14.(4分)(2015•福建)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,2].考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+log a x≥4,即log a x≥1,故有log a2≥1,由此求得a的范围.解答:解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+log a x≥4,∴log a x≥1,∴log a2≥1,∴1<a≤2,故答案为:(1,2].点评:本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于基础题.15.(4分)(2015•福建)一个二元码是由0和1组成的数字串,其中x k(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.考点:通讯安全中的基本问题.专题:创新题型;新定义.分析:根据二元码x1x2…x7的码元满足的方程组,及“⊕”的运算规则,将k的值从1至7逐个验证即可.解答:解:依题意,二元码在通信过程中仅在第k位发生码元错误后变成了1101101,①若k=1,则x1=0,x2=1,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=1,故k≠1;②若k=2,则x1=1,x2=0,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠2;③若k=3,则x1=1,x2=1,x3=1,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠3;④若k=4,则x1=1,x2=1,x3=0,x4=0,x5=1,x6=0,x7=1,从而由校验方程组,得x1⊕x3⊕x5⊕x7=1,故k≠4;⑤若k=5,则x1=1,x2=1,x3=0,x4=1,x5=0,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,故k=5符合题意;⑥若k=6,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=1,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠6;⑦若k=6,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=0,x7=0,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠7;综上,k等于5.故答案为:5.点评:本题属新定义题,关键是弄懂新定义的含义或规则,事实上,本题中的运算符号“⊕”可看作是两个数差的绝对值运算,知道了这一点,验证就不是难事了.三、解答题16.(13分)(2015•福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式.专题:概率与统计.分析:(1)根据概率的公式即可求当天小王的该银行卡被锁定的概率;(2)随机变量X的取值为:1,2,3,别求出对应的概率,即可求出分布列和期望.解答:解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=.(2)有可能的取值是1,2,3又则P(X=1=,P(X=2==,P(X=3==,所以X的分布列为:X 1 2 3PEX=1×+2×+3×=.点评:本小题主要考查古典概型、相互独立事件的概率、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查必然与或然思想.17.(13分)(2015•福建)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定.专题:空间位置关系与距离.分析:解法一:(1)取AE的中点H,连接HG,HD,通过证明四边形HGFD是平行四边形来证明GF∥DH,由线面平行的判定定理可得;(2)以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,可得平面BEC和平面AEF的法向量,由向量夹角的余弦值可得.解法二:(1)如图,取AB中点M,连接MG,MF,通过证明平面GMF∥平面ADE 来证明GF∥平面ADE;(2)同解法一.解答:解法一:(1)如图,取AE的中点H,连接HG,HD,∵G是BE的中点,∴GH∥AB,且GH=AB,又∵F是CD中点,四边形ABCD是矩形,∴DF∥AB,且DF=AB,即GH∥DF,且GH=DF,∴四边形HGFD是平行四边形,∴GF∥DH,又∵DH⊂平面ADE,GF⊄平面ADE,∴GF∥平面ADE.(2)如图,在平面BEG内,过点B作BQ∥CE,∵BE⊥EC,∴BQ⊥BE,又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)∵AB⊥平面BEC,∴为平面BEC的法向量,设=(x,y,z)为平面AEF的法向量.又=(2,0,﹣2),=(2,2,﹣1)由垂直关系可得,取z=2可得.∴cos<,>==∴平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)如图,取AB中点M,连接MG,MF,又G是BE的中点,可知GM∥AE,且GM=AE又AE⊂平面ADE,GM⊄平面ADE,∴GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点可得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,∴MF∥平面ADE.又∵GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF∴平面GMF∥平面ADE,∵GF⊂平面GMF,∴GF∥平面ADE(2)同解法一.点评:本题考查空间线面位置关系,考查空间想象能力、推理论证能力、运算求解能力,建系求二面角是解决问题的关键,属难题.18.(13分)(2015•福建)已知椭圆E:+=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.直线与圆锥曲线的综合问题.考点:专圆锥曲线中的最值与范围问题.题:分析:解法一:(1)由已知得,解得即可得出椭圆E的方程.(2)设点A(x1,y1),B(x2,y2),AB中点为H(x0,y0).直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,利用根与系数的关系中点坐标公式可得:y0=.|GH|2=.=,作差|GH|2﹣即可判断出.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,计算=即可得出∠AGB,进而判断出位置关系.解答:解法一:(1)由已知得,解得,∴椭圆E的方程为.(2)设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,∴y0=.G,∴|GH|2==+=++.===,故|GH|2﹣=+=﹣+=>0.∴,故G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1y1),B(x2,y2),则=,=.由,化为(m 2+2)y 2﹣2my ﹣3=0,∴y 1+y 2=,y 1y 2=,从而==+y 1y 2=+=﹣+=>0.∴>0,又,不共线,∴∠AGB 为锐角. 故点G在以AB 为直径的圆外.点评: 本小题主要考查椭圆、圆、直线与椭圆的位置关系、点与圆的位置关系、向量数量积运算性质等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于难题. 19.(13分)(2015•福建)已知函数f (x )的图象是由函数g (x )=cosx 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x=m )在[0,2π)内有两个不同的解α,β (i )求实数m 的取值范围; (ii )证明:cos (α﹣β)=﹣1.考点: 三角函数中的恒等变换应用;函数y=Asin (ωx+φ)的图象变换. 专题: 创新题型;函数的性质及应用;三角函数的图像与性质. 分析:(1)由函数y=Asin (ωx+φ)的图象变换规律可得:f (x )=2sinx ,从而可求对称轴方程. (2)(i )由三角函数中的恒等变换应用化简解析式可得f (x )+g (x )=sin (x+j )(其中sinj=,cosj=),从而可求||<1,即可得解.(ii)由题意可得sin(α+j)=,sin(β+j)=.当1<m<时,可求α﹣β=π﹣2(β+j),当﹣<m<1时,可求α﹣β=3π﹣2(b+j),由cos(α﹣β)=2sin2(β+j)﹣1,从而得证.解答:解:(1)将g(x)=cosx的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y=2cosx的图象,再将y=2cosx的图象向右平移个单位长度后得到y=2cos(x ﹣)的图象,故f(x)=2sinx,从而函数f(x)=2sinx图象的对称轴方程为x=k(k∈Z).(2)(i)f(x)+g(x)=2sinx+cosx=()=sin(x+j)(其中sinj=,cosj=)依题意,sin(x+j)=在区间[0,2π)内有两个不同的解α,β,当且仅当||<1,故m的取值范围是(﹣,).(ii)因为α,β是方程sin(x+j)=m在区间[0,2π)内有两个不同的解,所以sin(α+j)=,sin(β+j)=.当1<m<时,α+β=2(﹣j),即α﹣β=π﹣2(β+j);当﹣<m<1时,α+β=2(﹣j),即α﹣β=3π﹣2(β+j);所以cos(α﹣β)=﹣cos2(β+j)=2sin2(β+j)﹣1=2()2﹣1=.点评:本小题主要考查三角函数的图象与性质、三角恒等变换等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、分类与整体思想、化归与转化思想、数形结合思想.20.(7分)(2015•福建)已知函数f(x)=ln(1+x),g(x)=kx,(k∈R)(1)证明:当x>0时,f(x)<x;(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g(x);(3)确定k的所以可能取值,使得存在t>0,对任意的x∈(0,t),恒有|f(x)﹣g(x)|<x2.考点:导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用;不等式的解法及应用.分析:(1)令F(x)=f(x)﹣x=ln(1+x)﹣x,x>0,求导得到F′(x)<0,说明F(x)在(0,+∞)上单调递减,则x>0时,f(x)<x;(2)令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),可得k≤0时,G′(x)>0,说明G(x)在(0,+∞)上单调递增,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g(x);当0<k<1时,由G′(x)=0,求得.取,对任意x∈(0,x0),恒有G′(x)>0,G(x)在上单调递增,G(x)>G(0)=0,即f(x)>g(x);(3)分k>1、k<1和k=1把不等式|f(x)﹣g(x)|<x2的左边去绝对值,当k>1时,利用导数求得|f(x)﹣g(x)|>x2,满足题意的t不存在.当k<1时,由(2)知存在x0>0,使得对任意的任意x∈(0,x0),f(x)>g(x).令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),求导数分析满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f(x)=x﹣ln(1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有x>0,H′(x)<0,H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,说明当x>0时,恒有|f(x)﹣g(x)|<x2,此时,任意实数t满足题意.解答:(1)证明:令F(x)=f(x)﹣x=ln(1+x)﹣x,x>0,则有F′(x)=﹣1=﹣,∵x>0,∴F′(x)<0,∴F(x)在(0,+∞)上单调递减,∴F(x)<F(0)=0,∴x>0时,f(x)<x;(2)证明:令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),则有G′(x)=﹣k=,当k≤0时,G′(x)>0,∴G(x)在(0,+∞)上单调递增,∴G(x)>g(0)=0,故对任意正实数x0均满足题意.当0<k<1时,令G′(x)=0,得.取,对任意x∈(0,x0),恒有G′(x)>0,∴G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x).综上,当k<1时,总存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x);(3)解:当k>1时,由(1)知,对于任意x∈(0,+∞),g(x)>x>f(x),故g (x)>f(x),|f(x)﹣g(x)|=g(x)﹣f(x)=kx﹣ln(1+x),令M(x)=kx﹣ln(1+x)﹣x2,x∈(0,+∞),则有,故当时,M′(x)>0,M(x)在[0,)上单调递增,故M(x)>M(0)=0,即|f(x)﹣g(x)|>x2,∴满足题意的t不存在.当k<1时,由(2)知存在x0>0,使得对任意的任意x∈(0,x0),f(x)>g(x).此时|f(x)﹣g(x)|=f(x)﹣g(x)=ln(1+x)﹣kx,令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),则有,故当时,N′(x)>0,M(x)在[0,)上单调递增,故N(x)>N(0)=0,即f(x)﹣g(x)>x2,记x0与中较小的为x1,则当x∈(0,x1)时,恒有|f(x)﹣g(x)|>x2,故满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f(x)=x﹣ln (1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有,当x>0,H′(x)<0,∴H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,故当x>0时,恒有|f(x)﹣g(x)|<x2,此时,任意实数t满足题意.综上,k=1.点评:本小题主要考查导数及其应用等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想、数形结合思想,是压轴题.四、选修4-2:矩阵与变换21.(7分)(2015•福建)已知矩阵A=,B=(1)求A的逆矩阵A﹣1;(2)求矩阵C,使得AC=B.考点:逆变换与逆矩阵.专题:选作题;矩阵和变换.分析:(1)求出矩阵的行列式,即可求A的逆矩阵A﹣1;(2)由AC=B得(A﹣1A)C=A﹣1B,即可求矩阵C,使得AC=B.解答:解:(1)因为|A|=2×3﹣1×4=2,所以;(2)由AC=B得(A﹣1A)C=A﹣1B,故.点评:本小题主要考查矩阵、逆矩阵等基础知识,考查运算求解能力,考查化归与转化思想.五、选修4-4:坐标系与参数方程22.(7分)(2015•福建)在平面直角坐标系xoy中,圆C的参数方程为(t 为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以轴非负半轴为极轴)中,直线l的方程为ρsin(θ﹣)=m,(m∈R)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.考点:圆的参数方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可.(2)直接利用点到直线的距离个数求解即可.解答:解:(1)消去参数t,得到圆的普通方程为(x﹣1)2+(y+2)2=9,由ρsin(θ﹣)=m,得ρsinθ﹣ρcosθ﹣m=0,所以直线l的直角坐标方程为:x﹣y﹣m=0.(2)依题意,圆心C到直线l的距离等于2,即,解得m=﹣3±2.点评:本小题主要考查极坐标与直角坐标的互化、圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想.六、选修4-5:不等式选讲23.(7分)(2015•福建)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值为.考点:一般形式的柯西不等式.专题:函数的性质及应用;不等式的解法及应用.分析:(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.解答:解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.点评:本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.。
2015年普通高等学校招生全国统一考试数学理试题(福建卷,含解析)
2015年普通高等学校招生全国统一考试(福建卷)数学理第I卷(选择题共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}234,,,A i i i i=(i是虚数单位),{}1,1B=-,则A BI等于 ( ) A.{}1- B.{}1 C.{}1,1- D.φ【答案】C【解析】试题分析:由已知得{},1,,1A i i=--,故A B=I{}1,1-,故选C.考点:1、复数的概念;2、集合的运算.2.下列函数为奇函数的是( )A.y x= B.siny x= C.cosy x= D.x xy e e-=-【答案】D考点:函数的奇偶性.3.若双曲线22:1916x yE-=的左、右焦点分别为12,F F,点P在双曲线E上,且13PF=,则2PF等于()A.11 B.9 C.5 D.3【答案】B【解析】试题分析:由双曲线定义得1226PF PF a-==,即236PF-=,解得29PF=,故选B.考点:双曲线的标准方程和定义.更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元) 8.28.610.011.311.9支出y (万元)6.27.58.08.59.8根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )]A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B考点:线性回归方程.5.若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩则2z x y =- 的最小值等于 ( )A .52-B .2-C .32- D .2 【答案】A 【解析】试题分析:画出可行域,如图所示,目标函数变形为2y x z =-,当z 最小时,直线2y x z =-的纵截距最大,故将直线2y x =经过可行域,尽可能向上移到过点1(1,)2B -时,z 取到最小值,最小值为152(1)22z =⨯--=-,故选A . 考点:线性规划.更多优质资料请关注公众号:诗酒叙华年6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .2B .1C .0D .1- 【答案】C 【解析】试题分析:程序在执行过程中,S i 的值依次为:0,1S i ==;0,2S i ==;1,3S i =-=;1,4S i =-=;0,5S i ==;0,6S i ==,程序结束,输出0S =,故选C .考点:程序框图.7.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B考点:空间直线和平面、直线和直线的位置关系.8.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )更多优质资料请关注公众号:诗酒叙华年A .6 B.7 C .8 D .9 【答案】D 【解析】试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D . 考点:等差中项和等比中项.9.已知1,,AB AC AB AC t t⊥==u u u r u u u r u u u r u u u r,若P 点是ABC ∆ 所在平面内一点,且4AB ACAP AB AC=+u u u r u u u ru u u r u u u r u u u r ,则PB PC ⋅u u u r u u u r 的最大值等于( )A .13B .15C .19D .21 【答案】AxyBCAP考点:1、平面向量数量积;2、基本不等式.10.若定义在R上的函数()f x满足()01f=-,其导函数()f x'满足()1f x k'>>,则下列结论中一定错误的是()A.11fk k⎛⎫<⎪⎝⎭B.111fk k⎛⎫>⎪-⎝⎭C.1111fk k⎛⎫<⎪--⎝⎭D.111kfk k⎛⎫>⎪--⎝⎭【答案】C考点:函数与导数.第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.()52x+的展开式中,2x的系数等于.(用数字作答)【答案】80【解析】更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年试题分析:()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.考点:二项式定理.12.若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________. 【答案】7 【解析】试题分析:由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅=103=,所以3sin A =,(0,)2A π∈,所以3A π=.由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =.考点:1、三角形面积公式;2、余弦定理.13.如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .【答案】512【解析】试题分析:由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.考点:几何概型.14.若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的更多优质资料请关注公众号:诗酒叙华年取值范围是 . 【答案】(1,2]考点:分段函数求值域.15.一个二元码是由0和1组成的数字串()*12n x x x n N ∈L ,其中()1,2,,k x k n =L 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码127x x x L 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕= .现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 【答案】5.考点:推理证明和新定义.三、解答题:本大题共6小题,共80分。
2015高数竞赛解答
2 z 2 z ze2 x , x 2 y 2
2分
2 2 z x x f (e sin y ) e sin y f (e x sin y ) e x sin y , 2 x
f ( x t , y t ) f ( x, y) sin t
f x ( x, y) f y ( x, y)
.
2015 年高等数学竞赛试卷
第 2页
共 4页
二、解答题:11~16 题,共 60 分.
11. 求极限(本题共两小题,每小题 5 分,共 10 分)
(1) lim
2015 年高等数学竞赛试卷
第 1页
共 4页
2015 年高等数学竞赛试卷
考试时间:2015 年 5 月
一、填空题:1~10 题,每题 4 分,共 40 分.
10 1. 求极限 lim x x 0 x
10
.
1 (n 1)d = n2
1 1 d 2. 设 d 0 为常数,求极限 lim 2 2 n n n
解: xn
3分 2分
12. (本题 10 分) 设函数 f ( x) 连续, g ( x) f ( xt )dt ,且 lim
0
x 0
1
f ( x) k ,k 为常数,求(1) g ( x) ; x
(2) lim g ( x) .
x 0
解: (1)令 u xt , t
d/2
.
1 3. 设 f 具有二阶导数, f ( x) x 2 ,则 f ( f ( x)) 256 x 2 2
2015年全国高中数学联赛福建赛区预赛试题及参考标准答案
2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.设集合403x A x x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2x ξ=,则随机变量ξ的数学期望E ξ= 。
2.已知()()f x x g x =+,其中()g x 是定义在R 上,最小正周期为2的函数。
若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。
3.1F 、2F 为椭圆C :22221x y a b+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12PF PF ⊥,则椭圆离心率e 的取值范围为 。
4.已知实数x ,y ,z 满足2222324x y z ++=,则23x y z ++的最小值为 。
5.已知函数2()cos 2xf x x π=,数列{}n a 中,()(1)n a f n f n =++(*n N ∈),则数列{}n a 的前100项之和100S = 。
6.如图,在四面体ABCD 中,2DA DB DC ===,DA DB ⊥,DA DC ⊥,且DA 与平面ABC 所成角的余弦值为63R = 。
7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。
若122z z ==120OZ OZ ⋅=,1231z z z +-=,则3z 的取值范围是 。
8.已知函数()()x x f x e x ae =-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。
9.已知2()2x f x m x nx =⋅++,若{}{}()0(())0x f x x f f x φ===≠,则m n +的取值范围为 。
第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准
F= (b) 0 . 对 F (x) 在[a,b] 上利
a
∫ 用洛尔定理,存在 x0 ∈ (a,b) ,使得 F′(x0 ) = 0 ,即 f (x0 ) =
x0 f (t)dt .
a
---------------- 3 分
3
2021 年 05 月决赛试题
x
∫ 再令 G= (x)
f (x) − f (t)dt ,则 G= (a) a
−
2 x32
= 0 . 由此解得 u
113
在定义域内的唯一驻点 P0 (24 , 22 , 24 ) ,且 u 在该点取得最小值 u(P0 ) = 4 4 2 ,这是
113
函数唯一的极值. 因此 u 的唯一极值点为 (24 , 22 , 24 ) .
【注】 也可用通常的充分性条件(海赛矩阵正定)判断驻点 P0 为极小值点.
1,2, ,s)
.
因为 p(D) = D 2021 ,所以
1
= p( A) p= (QDQT ) Q= p(D)QT Q= D 2021QT B .
--------------- 3 分
(3) 设另存在 n 阶实对称矩阵 C 使得 C2021=A ,则=B p= ( A) p(C2021) ,所以
1 2
(xn
+
yn
)
,
---------------- 4 分
这只需证明:对任意 n
≥
0
,都有
x+ 2
y
n
≤
An (x, x) n +1
≤
1 2
(xn
+
yn ) ,其中 0
<
x,
2015 年全国初中数学联合竞赛试题参考答案及评分标准
AB AC , EF BC ,则 C B ____________.
【答】 60 .
E
作 EM BC 于点 M , FN BC 于点 N , FP EM 于点 P .
∵ E 、 F 分别为△ ABD 、△ ACD 的外心,∴ M 、 N 分别为 BD 、CD 的中
点.又 EF BC ,∴ PF MN 1 BC 1 EF ,∴ PEF 30 .
6. 设 n 是小于 100 的正整数且使 5n2 3n 5 是 15 的倍数,则符合条件的所有正整数 n 的和是( )
A.285. 【答】D.
B.350.
C.540.
D.635.
∵ 5n2 3n 5 是 15 的倍数,∴ 5 | (5n2 3n 5) ,∴ 5 | 3n ,∴ 5 | n ,设 n 5m ( m 是正整数),
∴符合条件的所有正整数 n 的和是(2+8+14+…+86+92+98)+(4+10+16+…+82+88+94)
=1634. 二、填空题:(本题满分 28 分,每小题 7 分) 1.题目和解答与(A)卷第 1 题相同. 2. 三边长均为整数且周长为 24 的三角形的个数为________. 【答】12.
C E
B
G
∴ GF 11, GE 10 ,∴ EF GE2 GF 2 221 .
4. 已知 O 为坐标原点,位于第一象限的点 A 在反比例函数 y 1 (x 0) 的图象上,位于第二象限的 x
点 B 在反比例函数 y 4 (x 0) 的图象上,且 OA OB ,则 tan ABO 的值为 x
同理可知: C 不小于 9, D 不小于 12, E 不小于 15, F 不小于 18.
因此,第三列所填 6 个数字之和 A + B + C + D + E + F 3 6 9 12 15 18 63.
2015年高考理科数学福建卷(含答案解析)
绝密★启用前 2015年普通高等学校招生全国统一考试(福建卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合234{i,i ,i ,i }A =(i 是虚数单位),{1,1}B =-,则A B I 等于( )A. {1}-B. {1}C. {1,1}-D. ∅ 2. 下列函数为奇函数的是( )A. y =B. |sin |y x =C. cos y x =D. e e x x y -=-3. 若双曲线22:1916x y E -=的左、右焦点分别为1F ,2F ,点P 在双曲线E 上,且1||3PF =,则2||PF 等于( )A. 11B. 9C. 5D. 34. 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到根据上表可得回归本线方程ˆˆybx a =+,其中0.76b =,ˆˆa y bx =-,据此估计,该社区一户年收入为15万元家庭年支出为( )A. 11.4万元B. 11.8万元C. 12.0万元D. 12.2万元5. 若变量x ,y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥则2z x y =-的最小值等于( )A. 52-B. 2-C. 32-D. 26. 阅读如图所示的程序框图,运行相应的程序,则输出的结果为 ( )A. 2B. 1C. 0D. 1-7. 若l ,m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件8. 若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A. 6B. 7C. 8D. 99. 已知AB AC ⊥u u u r u u u r ,1||AB t =u u u r ,||AC t =u u u r ,若P 点是ABC △所在平面内一点,且4||||AB ACAP AB AC =+u u u r u u u ru u u r u u u r u u u r ,则 PB PC u u u r u u u r g 的最大值等于 ( )A. 13B. 15C. 19D. 2110. 若定义在R 上的函数()f x 满足(0)1f =-,其导函数'()f x 满足()1f x k '>>,则下列结论中一定错误的是( )A. 11()f k k<B. 11()1f k k >- C. 11()11f k k <-- D. 1()11k f k k >-- 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11. 5(2)x +的展开式中,2x 的系数等于________.(用数字作答)12. 若锐角ABC △的面积为,且5AB =,8AC =,则BC 等于________.13. 如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数2()f x x =.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.14. 若函数6,2,()3log ,2,a x x f x x x -+⎧=⎨+⎩≤>(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值范围是________.15. 一个二元码是由0和1组成的数字串*12()n x x x n ∈N L ,其中()1,2,,k x k n =L 称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为).已知某种二元码127x x x L 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩ 其中运算⊕定义为:000⊕=,011⊕=,101⊕=,110⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那姓名________________ 准考证号_____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------么利用上述校验方程组可判定k等于________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.17.(本小题满分13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE EC⊥,2AB BE EC===,G,F分别是线段BE,DC的中点.(Ⅰ)求证:GF∥平面ADE;(Ⅱ)求平面AEF与平面BEC所成锐二面角的余弦值.18.(本小题满分13分)已知椭圆22221(a0)x yE ba b+=>>:过点,且离心率为e=.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线:1,()l x my m=-∈R交椭圆E于A,B两点,判断点9(,0)4G-与以线段AB为直径的圆的位置关系,并说明理由.19.(本小题满分13分)已知函数()f x的图象是由函数()cosg x x=的图象经如下变换得到:先将()g x图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(Ⅰ)求函数()f x的解析式,并求其图象的对称轴方程;(Ⅱ)已知关于x的方程()()f xg x m+=在[0,2π)内有两个不同的解α,β.(ⅰ)求实数m的取值范围;(ⅱ)证明:22cos)15mαβ-=-(.20.(本小题满分14分)已知函数()ln(1)f x x=+,()g x kx=()k∈R.(Ⅰ)证明:当0x>时,()f x x<;(Ⅱ)证明:当1k<时,存在x>,使得对任意的(0)x x∈,,恒有()()f xg x>;(Ⅲ)确定k的所以可能取值,使得存在0t>,对任意的(0,)x t∈恒有2|()()|f xg x x-<.21. 本题设有(1),(2),(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.(1)(本小题满分7分)选修4—2:矩阵与变换已知矩阵2143⎛⎫= ⎪⎝⎭A,1101⎛⎫= ⎪-⎝⎭B.(Ⅰ)求A的逆矩阵1-A;(Ⅱ)求矩阵C,使得=AC B.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系xOy中,圆C的参数方程为13cos,23sin,x ty t=+⎧⎨=-+⎩(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线lπsin(),()4m mθ-=∈R.(Ⅰ)求圆C的普通方程及直线l的直角坐标方程;(Ⅱ)设圆心C到直线l的距离等于2,求m的值.(3)(本小题满分7分)选修4—5:不等式选讲已知0a>,0b>,0c>,函数()||||f x x a x b c=++-+的最小值为4.(Ⅰ)求a b c++的值;(Ⅱ)求2221149a b c++的最小值.2015年普通高等学校招生全国统一考试(福建卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵234{i }{i ,i ,i ,i ,1,}i,1A ==--,}1{1,B =-, ∴{i }{}{}1i 11111A B =---=-I I ,,,,,.【提示】利用虚数单位i 的运算性质化简A ,然后利用交集运算得答案. 【考点】虚数单位i 及其性质,交集及其运算. 2.【答案】D【解析】A .函数的定义域为[0,)+∞,定义域关于原点不对称,故A 为非奇非偶函数. B .()|()|||()f x sin x sinx f x -=-==,则()f x 为偶函数. C .cos y x =为偶函数.D .()e e (e e ())x x x x f x f x ---=-=--=-,则()f x 为奇函数 【提示】根据函数奇偶性的定义进行判断即可. 【考点】函数奇偶性的判断,余弦函数的奇偶性. 3.【答案】B【解析】由题意,双曲线22:1916x y E -=中3a =∵3a =,∴P 在双曲线的左支上,∴由双曲线的定义可得21|||6|PF PF -=,∴2||9PF =【提示】确定P 在双曲线的左支上,由双曲线的定义可得结论. 【考点】双曲线的简单性质 4.【答案】B 【解析】由题意可得(8.28.610.011.311.9)1501x ++++==,(6.27.58.08.5915.8)8y ++++==,代入回归方程可得80.76100.4a =-⨯=$, ∴回归方程为0.760.4y x =+$, 把15x =代入方程可得0.76150.411.8y =⨯+=【提示】由题意可得x 和y ,可得回归方程,把15x =代入方程求得y 值即可. 【考点】线性回归方程5.【答案】D【解析】由约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩作出可行域如图,由图可知,最优解为A ,联立20220x y x y +=⎧⎨-+=⎩,解得11,2A ⎛⎫- ⎪⎝⎭.∴2z x y =-的最小值为152(1)22⨯--=-.【提示】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案. 【考点】简单线性规划 6.【答案】C【解析】模拟执行程序框图,可得AGB ∠,0S =πcos 2S =,i 2=不满足条件i 5>,πcoscos π2S =+,i 3= 不满足条件i 5>,π3πcos cos πcos 22S =++,i 4=不满足条件i 5>,π3πcos cos πcos cos2π22S =+++,i 5=不满足条件i 5>,π3π5πcoscos πcos cos2πcos 010100222S =++++=-+++=+,i 6= 满足条件i 5>,退出循环,输出S 的值为0【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当i=6时满足条件i>5,退出循环,输出S 的值为0 【考点】循环结构 7.【答案】B【解析】l m ,是两条不同的直线,m 垂直于平面α,则“l m ⊥”可能“l α∥”也可能l α⊂,反之,“l α∥”一定有“l m ⊥”所以l m ,是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的必要而不充分条件.【提示】利用直线与平面平行与垂直关系,判断两个命题的充要条件关系即可. 【考点】必要条件、充分条件与充要条件的判断 8.【答案】D【解析】由题意可得:a b p ab q +==,, ∵00p q >>,, 可得00a b >>,,又2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得224b a ab =-⎧⎨=⎩①或224a b ab =-⎧⎨=⎩②.解①得:41a b =⎧⎨=⎩;解②得:14a b =⎧⎨=⎩.∴5144p a b q =+==⨯=,,则9p q += 【考点】等比数列的性质,等差数列的性质.【提示】由一元二次方程根与系数的关系得到a b p ab q +==,,再由2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a b ,的方程组,求得a b ,后得答案. 9.【答案】A【考点】平面向量数量积的运算【提示】建系,由向量式的几何意义易得P 的坐标,可化1144(1)4PB PC t t t t ⎛⎫⎛⎫=----=+ ⎪ ⎪⎝⎭⎝⎭uu r uu u r g g ,由基本不等式可得.【解析】由题意建立如图所示的坐标系, 可得1(0,0),0(0,)t A B C t ⎛⎫⎪⎝⎭,,,∵4||||AB AC AP AB AC =+uu u r uuu ruu u r uu u r uuu r ,∴(1,4)P ,∴11,4PB t ⎛⎫=-- ⎪⎝⎭uu r ,(1,4)C t P -=-uu ur ,∴114(1)1744t t t PB t PC ⎛⎫⎛⎫---=-+ ⎪ ⎪⎝⎭⎝=⎭-uu r uu u r g ,由基本不等式可得144t t +≥=,∴117417413t t ⎛⎫-+≤-= ⎪⎝⎭当且仅当14t t =即12t =时取等号,∴PB PC uu r uu u rg 的最大值为13,10.【答案】C【解析】解;∵lim()(0)(0)0x f x f f x →-'=-()1f x k '>>, ∴()(0)1f x f k x ->>,即()11f x k x+>>,当11x k =-时,1111111f k k k k ⎛⎫+>⨯= ⎪---⎝⎭,即1111111f k k k ⎛⎫>-= ⎪---⎝⎭ 故1111f k k ⎛⎫> ⎪--⎝⎭,所以1111f k k ⎛⎫< ⎪--⎝⎭,一定出错, 另解:设()()1g x f x kx =-+,0(0)g =,且()()0g x f x k ''=->,()g x 在R 上递增,1k >,对选项一一判断,可得C 错.【提示】根据导数的概念得出()(0)1f x f k x ->>,用11x k =-代入可判断出1111f k k ⎛⎫>⎪--⎝⎭,即可判断答案. 【考点】函数的单调性与导数的关系第Ⅱ卷二、填空题 11.【答案】80【解析】5(2)x +的展开式的通项公式为5152r r r r T C x -+=g g ,令52r -=,求得3r =,可得展开式中2x 项的系数为335280C =g ,【提示】先求出二项式展开式的通项公式,再令x 的幂指数等于2,求得r 的值,即可求得展开式中的2x 项的系数. 【考点】二项式定理 12.【答案】7【解析】因为锐角ABC △的面积为,且5AB =,8AC =,所以158sin 2A ⨯⨯⨯=,所以sin A =所以60A =︒,所以1cosA =, 所以7BC ==【提示】利用三角形的面积公式求出A ,再利用余弦定理求出BC . 【考点】余弦定理的应用 13.【答案】512【解析】由已知,矩形的面积为4(21)4⨯-=,阴影部分的面积为22321115(4)433x dx x x ⎛⎫⎰-=-= ⎪⎝⎭由几何概型公式可得此点取自阴影部分的概率等于512; 【提示】分别求出矩形和阴影部分的面积,利用几何概型公式解答. 【考点】定积分的简单应用,几何概型 14.【答案】(1,2]【解析】由于函数6,2()(01)3log ,2a x c f x a a x x -+≤⎧=>≠⎨+>⎩且的值域是[4,)+∞, 故当2x ≤时,满足()64f x x =-≥当2x >时,由()3log 4a f x x =+≥,∴log 1a x ≥,∴log 21a ≥,∴12a <≤ 综上可得,12a <≤,【提示】当2x ≤时,满足()4f x ≥.当2x >时,由()3log 4a f x x =+≥,即log 1a x ≥,故有log 21a ≥,由此求得a 的范围,综合可得结论. 【考点】对数函数的单调性与特殊点 15.【答案】5【解析】依题意,二元码在通信过程中仅在第k 位发生码元错误后变成了1101101, ①若1k =,则12345670101101x x x x x x x =======,,,,,,, 从而由校验方程组,得45671x x x x ⊕⊕⊕=,故1k ≠;②若2k =,则12345671001101x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故2k ≠;③若3k =,则12345671111101x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故3k ≠;④若4k =,则12345671100101x x x x x x x =======,,,,,,, 从而由校验方程组,得13571x x x x ⊕⊕⊕=,故4k ≠;⑤若5k =,则12345671101001x x x x x x x =======,,,,,,, 从而由校验方程组,得4567236713570,0,0x x x x x x x x x x x x ⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=, 故5k =符合题意;⑥若6k =,则12345671101111x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故6k ≠;⑦若7k =,则123456110110x x x x x x ======,,,,,,70x =, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故7k ≠; 综上,k 等于5【提示】根据二元码127x x x L 的码元满足的方程组,及“⊕”的运算规则, 将k 的值从1至7逐个验证即可. 【考点】通讯安全中的基本问题 三、解答题16.【答案】52【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式. 【提示】(1)根据概率的公式即可求当天小王的该银行卡被锁定的概率;(2)随机变量X 的取值为:1,2,3,分别求出对应的概率,即可求出分布列和期望. 【解析】(1)设“当天小王的该银行卡被锁定”的事件为A ,则5431()=6542P A =⨯⨯.(2)有可能的取值是1,2,3 又则1(1)6P X ==, 511(2)656P X ==⨯=,542(3)653P X ==⨯=1236632EX =⨯+⨯+⨯=17.【答案】(1)见解析(2)23【解析】解法一:(1)如图,取AE 的中点H ,连接HG ,HD , ∵G 是BE 的中点,∴GH AB ∥,且12GH AB =, 又∵F 是CD 中点,四边形ABCD 是矩形, ∴DF AB ∥,且12DF AB =,即GH DF ∥,且GH DF =, ∴四边形HGFD 是平行四边形,∴GF DH ∥,又∵DH ADE ⊂平面,GF ADE ⊄平面,∴GF ADE ∥平面. (2)如图,在平面BEG 内,过点B 作BQ CE ∥, ∵BE EC ⊥,∴BQ BE ⊥,又∵AB BEC ⊥平面,∴AB BE ⊥,AB BQ ⊥,以B 为原点,分别以BE uur ,BQ uu u r ,BA uu r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则(0,0,2)(0,0,0)2,0,0)(2,2,1)(A B E F ,,, ∵AB BEC ⊥平面,∴(0,0,2)BA =uu r为平面BEC 的法向量,设(,,)n x y z =r为平面AEF 的法向量.又(2,0,2)BE =-uur ,(2,2,1)AF =-uuu r由垂直关系可得220220n AE x z n AF x y z ⎧==-=⎪⎨==+-=⎪⎩r uu u r r uuu r,取2z =可得(2,1,2)n =-r . ∴2cos ,3||||n BA n BA n BA 〈〉>=r uu rr uu r g r uu r∴平面AEF 与平面BEC 所成锐二面角的余弦值为23. 解法二:(1)如图,取AB 中点M ,连接MG ,MF , 又G 是BE 的中点,可知GM AE ∥,且12GM AE =又AE ⊂平面ADE ,GM ⊄平面ADE , ∴GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点可得MF AD ∥. 又AD ⊂平面ADE ,MF ⊄平面ADE ,∴MF ADE ∥平面. 又∵GM MF M =I ,GM ⊂平面GMF ,MF GMF ⊂平面∴平面GMF ADE ∥平面,∵GF GMF ⊂平面,∴GF ADE ∥平面 (2)同解法一.【提示】解法一:(1)取AE 的中点H ,连接HG ,HD ,通过证明四边形HGFD 是平行四边形来证明GF DH ∥,由线面平行的判定定理可得;(2)以B 为原点,分别以BE uur ,BQ uu u r,BA uu r 的方向为x 轴,y 轴,z轴的正方向建立空间直角坐标系,可得平面BEC 和平面AEF 的法向量,由向量夹角的余弦值可得.解法二:(1)如图,取AB 中点M ,连接MG ,MF ,通过证明平面GMF ∥平面ADE 来证明GF ∥平面ADE ; (2)同解法一.【考点】用空间向量求平面间的夹角,直线与平面平行的判定.18.【答案】(1)22142x y +=(2)见解析【解析】解法一:(1)由已知得222b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩,解得2a b c =⎧⎪⎨==⎪⎩,∴椭圆E 的方程为22142x y +=. (2)设点11)(A x y ,22)(,B x y ,AB 中点为00)(,H x y .由221142x my x y =-⎧⎪⎨+=⎪⎩,化为22(2)230m y my +--=,∴12222m y y m +=+,12232y y m -=+,∴022m y m =+. 9,04G ⎛⎫- ⎪⎝⎭, ∴222222200000095525||(1)44216GH x y my y m y my ⎛⎫⎛⎫=++=++=+++ ⎪ ⎪⎝⎭⎝⎭.222222212121212012()()(1)[()4]||(1)()444x x y y m y y y y AB m y y y -+-++-===+-, 故222222012222||52553(1)25172||(1)042162(2)21616(2)AB m m m GH my m y y m m m ++-=+++=-+=>+++. ∴2||||2AB GH >,故G 在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点11)(A x y ,22)(,B x y ,则119,4GA x y ⎛⎫=+ ⎪⎝⎭uu r ,229,4GB x y ⎛⎫=+ ⎪⎝⎭uu u r .由221142x my x y =-⎧⎪⎨+=⎪⎩,化为222)230(m y my +--=,∴12222m y y m +=+,12232y y m -=+,从而12129944GA GB x x y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭uu r uu u r g12125544my my y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭21212525(1)()416m y y m y y =++++22222253(1)2517202(2)21616(2)m m m m m m ++=-+=>+++ ∴0GA GB >uu r uu u r g 又GA uu r ,GB uu u r不共线,∴AGB ∠为锐角.故点9,04G ⎛⎫- ⎪⎝⎭在以AB 为直径的圆外.【提示】解法一:(1)由已知得2222b ca abc ⎧=⎪⎪=⎨⎪⎪=+⎩,解得即可得出椭圆E 的方程.(2)设点11)(,A x y ,22)(,B x y ,AB 中点为00(),H x y .直线方程与椭圆方程联立化为22(2)230m y my +--=,利用根与系数的关系中点坐标公式可得:022m y m =+.222009||4GH x y ⎛⎫=++ ⎪⎝⎭.2221212(1)[()4]||44m y y y y AB ++-=,作差22|||4|AB GH -即可判断出. 解法二:(1)同解法一.(2)设点1122(,(,))A x y B x y ,,则119=,4GA x y ⎛⎫+ ⎪⎝⎭uu r ,229=,4GB x y ⎛⎫+ ⎪⎝⎭uu u r .直线方程与椭圆方程联立化为22(2)230m y my +--=,计算12129944GA GB x x y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭uu r uu u r g即可得出AGB ∠,进而判断出位置关系. 【考点】直线与圆锥曲线的综合问题 19.【答案】(1)()2sin f x x =ππ()2x k k =+∈Z(2)(i)( (ii )见解析【解析】(1)将c (s )o x g x =的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到2cos y x =的图象,再将2cos y x =的图象向右平移π2个单位长度后得到π2cos 2y x ⎛⎫=- ⎪⎝⎭的图象,故()2sin f x x =,从而函数()2sin f x x =图象的对称轴方程为ππ()2x k k =+∈Z .(2)(i)()()2sin cos )f x g x x x x x x ϕ⎫+=++=+⎪⎭(其中sin ϕ=cos ϕ=依题意,in )(s x ϕ+在区间[0,2π)内有两个不同的解αβ,,1<,故m的取值范围是(. (ii )因为αβ,)x m ϕ+=在区间[0,2π)内的两个不同的解,所以sin()αϕ+=,sin()βϕ+=.当1m ≤<时,π22αβϕ⎛⎫+=- ⎪⎝⎭,即π2()αββϕ-=-+;当1m <时,23π2αβϕ+=-⎛⎫⎪⎝⎭,即3π2()αββϕ-=-+;所以2222cos()cos2()2sin ()12115m αββϕβϕ-=-+=+-=-=-.【提示】(1)由函数sin()y A x ωϕ=+的图象变换规律可得:()2sin f x x =,从而可求对称轴方程.(2)(i )由三角函数中的恒等变换应用化简解析式可得:()())f x g x x ϕ+=+(其中sin ϕ=,cos ϕ=,1<,即可得解.(ii)由题意可得sin()αϕ+=,sin()βϕ+=当1m ≤π2()αββϕ-=-+,当0m <时,可求3π2()αββϕ-=-+,由2cos()2sin ()1αββϕ-=+-,从而得证. 【考点】三角函数中的恒等变换应用,函数sin()y A x ωϕ=+的图象变换. 20.【答案】(1)证明见解析 (2)证明见解析 (3)见解析【解析】(1)证明:令()()ln(1)f x f x x x x =-=+-,0x ≥ 则有1()111xf x x x '=-=-++, ∵0x ≥,∴()0f x '≤,∴()f x 在[0,)+∞上单调递减, ∴当,()0x ∈+∞时,有()(0)0f x f =<, ∴0x >时,()f x x <;(2)证明:令()()ln(1())g x f x g x x kx =-=+-,,()0x ∈+∞,则有1(1)()11kx k g x k x x -+-'=-=++,当0k ≤时,()0g x '>, ∴()g x 在(0,)+∞上单调递增, ∴()(0)0g x g >=,故对任意正实数0x 均满足题意.当01k <<时,令()0g x '=,得1110k x k k-==->.取011x k =-,对任意0)(0,x x ∈,恒有()0g x '>,∴()g x 在0(0,)x 上单调递增,()(0)0g x g >=,即()()f x g x >.综上,当1k <时,总存在00x >,使得对任意的0)(0,x x ∈,恒有()()f x g x >; (3)解:当1k >时,由(1)知,对于任意,()0x ∈+∞,()()x g x f x >>, 故()()g x f x >,()()()()ln(1)f x g x g x f x kx x -=-=-+, 令2ln(1)()M x kx x x =-+-,,()0x ∈+∞,则有212(2)1()211x k x k M x k x x x -+-+-'=--=++,故当x ⎛ ∈ ⎝⎭时,()0M x '>,()M x在0⎡⎢⎣⎢⎭上单调递增,故()(0)0M x M >=,即2()()||f x x g x ->,∴满足题意的t 不存在. 当1k <时,由(2)知存在00x >,使得对任意的0(0,)()()f x x x g x ∈>,. 此时|()()|()()ln(1)f x g x f x g x x kx -=-=+- 令2ln(1)0(),)[N x kx x x x =+--∈+∞,,则有212(2)121(1)x x k x k N k x x x--+-+'=--=++, 故当x ⎛ ∈ ⎝⎭时,0()N x '>,()N x在⎡⎢⎢⎭⎣上单调递增,故()(0)0N x N >=, 即2()()x f x g x ->,记0x1x ,则当1)(0,x x ∈时,恒有2()()||f x x g x ->,故满足题意的t 不存在.当1k =,由(1)知,当,()0x ∈+∞时,()()|()|()ln(1)f x g x g x f x x x =-=-+-, 令2ln(1)([0),)H x x x x x =-+-∈+∞,,则有2121)121(x xH x x xx --'=--=++, 当0x >,()0H x '<,∴()H x 在[0,)+∞上单调递减,故()(0)0H x H <=, 故当0x >时,恒有2()()||f x x g x -<,满足0t >的实数t 存在. 综上,1k =【提示】(1)令()()ln(1)f x f x x x x =-=+-,0x ≥,求导得到()0f x '≤, 说明()f x 在[0,)+∞上单调递减,则0x >时,()f x x <;(2)令(()ln (1))()f x g x g x x kx =-=+-,,()0x ∈+∞,可得0k ≤时,()0g x '>, 说明()g x 在(0,)+∞上单调递增,存在00x >,使得对任意0)(0,x x ∈,恒有()()f x g x >; 当01k <<时,由()0G x '=求得1110k x k k-==->. 取011x k=-,对任意0)(0,x x ∈,恒有()0g x '>,()g x 在上单调递增, ()0)0(g x g >=,即()()f x g x >;(3)分1k >、1k <和1k =把不等式2|()()|f x g x x -<的左边去绝对值, 当1k >时,利用导数求得2|()()|f x g x x ->,满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意0()0,x x ∈,()()f x g x >. 令2()(ln 1)N x x x x k =+--,,[)0x ∈+∞,求导数分析满足题意的t 不存在. 当1k =,由(1)知,当,[)0x ∈+∞时,()|()()()n |l (1)g x f x x f x x x g -=-=-+, 令2()ln(1)H x x x x =-+-,,[)0x ∈+∞,则有0x >,()0H x '<,()H x 在[0,)+∞上单调递减,故()(0)0H x H =<,说明当0x >时,恒有2|()()|f x g x x -<,此时,满足0t >的实数t 存在.【考点】导数在最大值、最小值问题中的应用21.【答案】(1)312221⎛⎫-⎪ ⎪ ⎪-⎝⎭(2)32223⎛⎫⎪ ⎪ ⎪--⎝⎭【解析】(1)因为||23142A =⨯-⨯=,所以131312222422122A --⎛⎫⎛⎫ ⎪-⎪==⎪ ⎪- ⎪ ⎪- ⎪⎝⎭⎝⎭; (2)由AC B =得11()A A C A B --=,故1313112222012123C B A -⎛⎫⎛⎫-⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭---⎝⎭⎝⎭. 【提示】(1)求出矩阵的行列式,即可求A 的逆矩阵1A -; (2)由AC B =得11()A A C A B --=,即可求矩阵C ,使得AC B =. 【考点】逆变换与逆矩阵22.【答案】(1)22(1)(2)9x y -++=0x y m -+=(2)3-±【解析】(1)消去参数t ,得到圆的普通方程为22(1)(2)9x y -++=,πsin 4m θ⎛⎫-= ⎪⎝⎭,得sin cos 0m ρθρθ--=,所以直线l 的直角坐标方程为:0x y m -+=.(2)依题意,圆心(1,2)C -到直线0l x y m -+=:的距离等于22=,解得3m =-±.【提示】(1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可. (2)直接利用点到直线的距离个数求解即可. 【考点】圆的参数方程,简单曲线的极坐标方程. 23.【答案】(1)4 (2)87【解析】(1)因为|()|||||()()||f x x a x b c x a x b c a b c =++-+≥+--+=++, 当且仅当a x b -≤≤时,等号成立,又00a b >>,,所以||a b a b +=+, 所以()f x 的最小值为a b c ++,所以4a b c ++=;(2)由(1)知4a b c ++=,由柯西不等式得,2222211(491)231()164923a b a b c c a b c ⎛⎫⎛⎫++++≥++=++= ⎪ ⎪⎝⎭⎝⎭g g g, 即222118497a b c ++≥ 当且仅当1132231b a c ==,即87a =,187b =,27c =时,等号成立.所以2221149a b c ++的最小值为87.【提示】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值; (2)运用柯西不等式,注意等号成立的条件,即可得到最小值. 【考点】一般形式的柯西不等式。
2015年福建省高中数学竞赛暨数学联赛福建赛区预赛
2015年福建省高中数学竞赛暨2015年全国高中数学联赛(福建省赛区)预赛试卷(考试时间:2015年5月24日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.设集合403x A x x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,从集合A 中随机抽取一个元素x ,记2x ξ=,则随机变量ξ的数学期望E ξ= 。
2.已知()()f x x g x =+,其中()g x 是定义在R 上,最小正周期为2的函数。
若()f x 在区间[)24,上的最大值为1,则()f x 在区间[)1012,上的最大值为 。
3.1F 、2F 为椭圆C :22221x y a b+=(0a b >>)的左、右焦点,若椭圆C 上存在一点P ,使得12PF PF ⊥,则椭圆离心率e 的取值范围为 。
【答案】12⎫⎪⎪⎣⎭, 【解答】设A 为椭圆C 的上顶点,依题意有1290F AF ∠≥︒。
∴ 245F AO ∠≥︒,1c b ≥。
222c a c ≥-,2212c a ≥,12e ≤<。
4.已知实数x ,y ,z 满足2222324x y z ++=,则23x y z ++的最小值为 。
5.已知函数2()cos2xf x x π=,数列{}n a 中,()(1)n a f n f n =++(*n N ∈),则数列{}n a 的前100项之和100S = 。
6.如图,在四面体ABCD 中,2DA DB DC ===,DA DB ⊥,DA DC ⊥,且DA 与平面ABC所成角的余弦值为3则该四面体外接球半径R = 。
7.在复平面内,复数1z 、2z 、3z 的对应点分别为1Z 、2Z 、3Z 。
若12z z ==120OZ OZ ⋅=uuu r uuu r,1231z z z +-=,则3z 的取值范围是 。
8.已知函数()()x x f x e x ae =-恰有两个极值点1x ,2x (12x x <),则a 的取值范围为 。
2015年福建省高考数学试卷(理科)及答案
2015年福建省高考数学试卷(理科)一、选择题(共10小题,每小题5分,共50分)2015年普通高等学校招生全国统一考试(福建卷)数学(理工类)1.(5分)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅2.(5分)下列函数为奇函数的是()A.y=B.y=|sinx| C.y=cosx D.y=e x﹣e﹣x3.(5分)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11 B.9 C.5 D.34.(5分)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8根据上表可得回归直线方程,其中,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元5.(5分)若变量x,y满足约束条件则z=2x﹣y的最小值等于()A.B.﹣2 C.D.26.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.2 B.1 C.0 D.﹣17.(5分)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6 B.7 C.8 D.99.(5分)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.2110.(5分)若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.二、填空题:本大题共5小题,每小题4分,共20分.11.(4分)(x+2)5的展开式中,x2的系数等于.(用数字作答)12.(4分)若锐角△ABC的面积为,且AB=5,AC=8,则BC等于.13.(4分)如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.14.(4分)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.15.(4分)一个二元码是由0和1组成的数字串,其中x k (k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于.三、解答题16.(13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.17.(13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.18.(13分)已知椭圆E:+=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.19.(13分)已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍,横坐标不变,再将所得到的图象向右平移个单位长度.(1)求函数f(x)的解析式,并求其图象的对称轴方程;(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β(i)求实数m的取值范围;(ii)证明:cos(α﹣β)=﹣1.20.(7分)已知函数f(x)=ln(1+x),g(x)=kx,(k∈R)(1)证明:当x>0时,f(x)<x;(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g (x);(3)确定k的所有可能取值,使得存在t>0,对任意的x∈(0,t),恒有|f(x)﹣g(x)|<x2.四、选修4-2:矩阵与变换21.(7分)已知矩阵A=,B=(1)求A的逆矩阵A﹣1;(2)求矩阵C,使得AC=B.五、选修4-4:坐标系与参数方程22.(7分)在平面直角坐标系xoy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为ρsin(θ﹣)=m,(m∈R)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.六、选修4-5:不等式选讲23.(7分)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.2015年福建省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)2015年普通高等学校招生全国统一考试(福建卷)数学(理工类)1.(5分)(2015•福建)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅【分析】利用虚数单位i的运算性质化简A,然后利用交集运算得答案.【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.2.(5分)(2015•福建)下列函数为奇函数的是()A.y=B.y=|sinx| C.y=cosx D.y=e x﹣e﹣x【分析】根据函数奇偶性的定义进行判断即可.【解答】解:A.函数的定义域为[0,+∞),定义域关于原点不对称,故A为非奇非偶函数.B.f(﹣x)=|sin(﹣x)|=|sinx|=f(x),则f(x)为偶函数.C.y=cosx为偶函数.D.f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则f(x)为奇函数,故选:D3.(5分)(2015•福建)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11 B.9 C.5 D.3【分析】确定P在双曲线的左支上,由双曲线的定义可得结论.【解答】解:由题意,双曲线E:=1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴由双曲线的定义可得|PF2|﹣|PF1|=6,∴|PF2|=9.故选:B.4.(5分)(2015•福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8根据上表可得回归直线方程,其中,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元【分析】由题意可得和,可得回归方程,把x=15代入方程求得y值即可.【解答】解:由题意可得=(8.2+8.6+10.0+11.3+11.9)=10,=(6.2+7.5+8.0+8.5+9.8)=8,代入回归方程可得=8﹣0.76×10=0.4,∴回归方程为=0.76x+0.4,把x=15代入方程可得y=0.76×15+0.4=11.8,故选:B.5.(5分)(2015•福建)若变量x,y满足约束条件则z=2x﹣y的最小值等于()A.B.﹣2 C.D.2【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1)﹣=.故选:A.6.(5分)(2015•福建)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.2 B.1 C.0 D.﹣1【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件i>5,退出循环,输出S的值为0.【解答】解:模拟执行程序框图,可得i=1,S=0S=cos,i=2不满足条件i>5,S=cos+cosπ,i=3不满足条件i>5,S=cos+cosπ+cos,i=4不满足条件i>5,S=cos+cosπ+cos+cos2π,i=5不满足条件i>5,S=cos+cosπ+cos+cos2π+cos=0﹣1+0+1+0=0,i=6满足条件i>5,退出循环,输出S的值为0,故选:C.7.(5分)(2015•福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用直线与平面平行与垂直关系,判断两个命题的充要条件关系即可.【解答】解:l,m是两条不同的直线,m垂直于平面α,则“l⊥m”可能“l∥α”也可能l⊂α,反之,“l∥α”一定有“l⊥m”,所以l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的必要而不充分条件.故选:B.8.(5分)(2015•福建)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6 B.7 C.8 D.9【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故选:D.9.(5分)(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21【分析】建系,由向量式的几何意义易得P的坐标,可化=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.10.(5分)(2015•福建)若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.【分析】根据导数的概念得出>k>1,用x=代入可判断出f ()>,即可判断答案.【解答】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.二、填空题:本大题共5小题,每小题4分,共20分.11.(4分)(2015•福建)(x+2)5的展开式中,x2的系数等于80.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的x2项的系数.【解答】解:(x+2)5的展开式的通项公式为T r=•x5﹣r•2r,+1令5﹣r=2,求得r=3,可得展开式中x2项的系数为=80,故答案为:80.12.(4分)(2015•福建)若锐角△ABC的面积为,且AB=5,AC=8,则BC 等于7.【分析】利用三角形的面积公式求出A,再利用余弦定理求出BC.【解答】解:因为锐角△ABC的面积为,且AB=5,AC=8,所以,所以sinA=,所以A=60°,所以cosA=,所以BC==7.故答案为:7.13.(4分)(2015•福建)如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.【分析】分别求出矩形和阴影部分的面积,利用几何概型公式,解答.【解答】解:由已知,矩形的面积为4×(2﹣1)=4,阴影部分的面积为=(4x﹣)|=,由几何概型公式可得此点取自阴影部分的概率等于;故答案为:.14.(4分)(2015•福建)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,2] .【分析】当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+log a x≥4,即log a x ≥1,故有log a2≥1,由此求得a的范围,综合可得结论.【解答】解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)=6﹣x≥4.当x>2时,由f(x)=3+log a x≥4,∴log a x≥1,∴log a2≥1,∴1<a≤2.综上可得,1<a≤2,故答案为:(1,2].15.(4分)(2015•福建)一个二元码是由0和1组成的数字串,其中x k(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2…x7的码元满足如下校验方程组:其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.【分析】根据二元码x1x2…x7的码元满足的方程组,及“⊕”的运算规则,将k的值从1至7逐个验证即可.【解答】解:依题意,二元码在通信过程中仅在第k位发生码元错误后变成了1101101,①若k=1,则x1=0,x2=1,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=1,故k≠1;②若k=2,则x1=1,x2=0,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠2;③若k=3,则x1=1,x2=1,x3=1,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠3;④若k=4,则x1=1,x2=1,x3=0,x4=0,x5=1,x6=0,x7=1,从而由校验方程组,得x1⊕x3⊕x5⊕x7=1,故k≠4;⑤若k=5,则x1=1,x2=1,x3=0,x4=1,x5=0,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,故k=5符合题意;⑥若k=6,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=1,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠6;⑦若k=7,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=0,x7=0,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠7;综上,k等于5.故答案为:5.三、解答题16.(13分)(2015•福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.【分析】(1)根据概率的公式即可求当天小王的该银行卡被锁定的概率;(2)随机变量X的取值为:1,2,3,分别求出对应的概率,即可求出分布列和期望.【解答】解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=.(2)有可能的取值是1,2,3又则P(X=1)=,P(X=2)==,P(X=3)==,所以X的分布列为:X123PEX=1×+2×+3×=.17.(13分)(2015•福建)如图,在几何体ABCDE中,四边形ABCD是矩形,AB ⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.【分析】解法一:(1)取AE的中点H,连接HG,HD,通过证明四边形HGFD是平行四边形来证明GF∥DH,由线面平行的判定定理可得;(2)以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,可得平面BEC和平面AEF的法向量,由向量夹角的余弦值可得.解法二:(1)如图,取AB中点M,连接MG,MF,通过证明平面GMF∥平面ADE来证明GF∥平面ADE;(2)同解法一.【解答】解法一:(1)如图,取AE的中点H,连接HG,HD,∵G是BE的中点,∴GH∥AB,且GH=AB,又∵F是CD中点,四边形ABCD是矩形,∴DF∥AB,且DF=AB,即GH∥DF,且GH=DF,∴四边形HGFD是平行四边形,∴GF∥DH,又∵DH⊂平面ADE,GF⊄平面ADE,∴GF∥平面ADE.(2)如图,在平面BEG内,过点B作BQ∥CE,∵BE⊥EC,∴BQ⊥BE,又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1)∵AB⊥平面BEC,∴为平面BEC的法向量,设=(x,y,z)为平面AEF的法向量.又=(2,0,﹣2),=(2,2,﹣1)由垂直关系可得,取z=2可得.∴cos<,>==∴平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)如图,取AB中点M,连接MG,MF,又G是BE的中点,可知GM∥AE,且GM=AE又AE⊂平面ADE,GM⊄平面ADE,∴GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点可得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,∴MF∥平面ADE.又∵GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF∴平面GMF∥平面ADE,∵GF⊂平面GMF,∴GF∥平面ADE(2)同解法一.18.(13分)(2015•福建)已知椭圆E:+=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.【分析】解法一:(1)由已知得,解得即可得出椭圆E的方程.(2)设点A(x1,y1),B(x2,y2),AB中点为H(x0,y0).直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,利用根与系数的关系中点坐标公式可得:y0=.|GH|2=.=,作差|GH|2﹣即可判断出.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,计算=即可得出∠AGB,进而判断出位置关系.【解答】解法一:(1)由已知得,解得,∴椭圆E的方程为.(2)设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,∴y0=.G,∴|GH|2==+=++.===,故|GH|2﹣=+=﹣+=>0.∴,故G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1y1),B(x2,y2),则=,=.由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,从而==+y1y2=+=﹣+=>0.∴>0,又,不共线,∴∠AGB为锐角.故点G在以AB为直径的圆外.19.(13分)(2015•福建)已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍,横坐标不变,再将所得到的图象向右平移个单位长度.(1)求函数f(x)的解析式,并求其图象的对称轴方程;(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β(i)求实数m的取值范围;(ii)证明:cos(α﹣β)=﹣1.【分析】(1)由函数y=Asin(ωx+φ)的图象变换规律可得:f(x)=2sinx,从而可求对称轴方程.(2)(i)由三角函数中的恒等变换应用化简解析式可得f(x)+g(x)=sin(x+φ)(其中sinφ=,cosφ=),从而可求||<1,即可得解.(ii)由题意可得sin(α+φ)=,sin(β+φ)=.当1≤m<时,可求α﹣β=π﹣2(β+φ),当﹣<m<0时,可求α﹣β=3π﹣2(β+φ),由cos(α﹣β)=2sin2(β+φ)﹣1,从而得证.【解答】解:(1)将g(x)=cosx的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y=2cosx的图象,再将y=2cosx的图象向右平移个单位长度后得到y=2cos(x﹣)的图象,故f(x)=2sinx,从而函数f(x)=2sinx图象的对称轴方程为x=k(k∈Z).(2)(i)f(x)+g(x)=2sinx+cosx=()=sin(x+φ)(其中sinφ=,cosφ=)依题意,sin(x+φ)=在区间[0,2π)内有两个不同的解α,β,当且仅当||<1,故m的取值范围是(﹣,).(ii)因为α,β是方程sin(x+φ)=m在区间[0,2π)内的两个不同的解,所以sin(α+φ)=,sin(β+φ)=.当1≤m<时,α+β=2(﹣φ),即α﹣β=π﹣2(β+φ);当﹣<m<1时,α+β=2(﹣φ),即α﹣β=3π﹣2(β+φ);所以cos(α﹣β)=﹣cos2(β+φ)=2sin2(β+φ)﹣1=2()2﹣1=.20.(7分)(2015•福建)已知函数f(x)=ln(1+x),g(x)=kx,(k∈R)(1)证明:当x>0时,f(x)<x;(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g (x);(3)确定k的所有可能取值,使得存在t>0,对任意的x∈(0,t),恒有|f(x)﹣g(x)|<x2.【分析】(1)令F(x)=f(x)﹣x=ln(1+x)﹣x,x>0,求导得到F′(x)<0,说明F(x)在(0,+∞)上单调递减,则x>0时,f(x)<x;(2)令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),可得k≤0时,G′(x)>0,说明G(x)在(0,+∞)上单调递增,存在x0>0,使得对任意x ∈(0,x0),恒有f(x)>g(x);当0<k<1时,由G′(x)=0,求得.取,对任意x∈(0,x0),恒有G′(x)>0,G(x)在上单调递增,G(x)>G(0)=0,即f(x)>g(x);(3)分k>1、k<1和k=1把不等式|f(x)﹣g(x)|<x2的左边去绝对值,当k>1时,利用导数求得|f(x)﹣g(x)|>x2,满足题意的t不存在.当k<1时,由(2)知存在x0>0,使得对任意的任意x∈(0,x0),f(x)>g (x).令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),求导数分析满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f (x)=x﹣ln(1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有x>0,H′(x)<0,H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,说明当x>0时,恒有|f(x)﹣g(x)|<x2,此时,满足t>0的实数t存在.【解答】(1)证明:令F(x)=f(x)﹣x=ln(1+x)﹣x,x>0,则有F′(x)=﹣1=﹣,∵x>0,∴F′(x)<0,∴F(x)在(0,+∞)上单调递减,∴F(x)<F(0)=0,∴x>0时,f(x)<x;(2)证明:令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),则有G′(x)=﹣k=,当k≤0时,G′(x)>0,∴G(x)在(0,+∞)上单调递增,∴G(x)>G(0)=0,故对任意正实数x0均满足题意.当0<k<1时,令G′(x)=0,得.取,对任意x∈(0,x0),恒有G′(x)>0,∴G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x).综上,当k<1时,总存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g (x);(3)解:当k>1时,由(1)知,对于任意x∈(0,+∞),g(x)>x>f(x),故g(x)>f(x),|f(x)﹣g(x)|=g(x)﹣f(x)=kx﹣ln(1+x),令M(x)=kx﹣ln(1+x)﹣x2,x∈(0,+∞),则有,故当时,M′(x)>0,M(x)在[0,)上单调递增,故M(x)>M(0)=0,即|f(x)﹣g(x)|>x2,∴满足题意的t不存在.当k<1时,由(2)知存在x0>0,使得对任意的任意x∈(0,x0),f(x)>g (x).此时|f(x)﹣g(x)|=f(x)﹣g(x)=ln(1+x)﹣kx,令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),则有,故当时,N′(x)>0,M(x)在[0,)上单调递增,故N(x)>N(0)=0,即f(x)﹣g(x)>x2,记x0与中较小的为x1,则当x∈(0,x1)时,恒有|f(x)﹣g(x)|>x2,故满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f(x)=x ﹣ln(1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有,当x>0,H′(x)<0,∴H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,故当x>0时,恒有|f(x)﹣g(x)|<x2,满足t>0的实数t存在.综上,k=1.四、选修4-2:矩阵与变换21.(7分)(2015•福建)已知矩阵A=,B=(1)求A的逆矩阵A﹣1;(2)求矩阵C,使得AC=B.【分析】(1)求出矩阵的行列式,即可求A的逆矩阵A﹣1;(2)由AC=B得(A﹣1A)C=A﹣1B,即可求矩阵C,使得AC=B.【解答】解:(1)因为|A|=2×3﹣1×4=2,所以;(2)由AC=B得(A﹣1A)C=A﹣1B,故.五、选修4-4:坐标系与参数方程22.(7分)(2015•福建)在平面直角坐标系xoy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为ρsin(θ﹣)=m,(m∈R)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.【分析】(1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可.(2)直接利用点到直线的距离个数求解即可.【解答】解:(1)消去参数t,得到圆的普通方程为(x﹣1)2+(y+2)2=9,由ρsin(θ﹣)=m,得ρsinθ﹣ρcosθ﹣m=0,所以直线l的直角坐标方程为:x﹣y+m=0.(2)依题意,圆心C(1,﹣2)到直线l:x﹣y+m=0的距离等于2,即,解得m=﹣3±2.六、选修4-5:不等式选讲23.(7分)(2015•福建)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c 的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.。
厦门大学第十二届(2015)景润杯数学竞赛试卷答案(理工类)评分标准
厦门大学第十二届“景润杯”数学竞赛试卷(理工类)参考答案一、求下列各题极限(每小题4分,共8分)(1) 求极限 20(32sin )3lim tan x xx x x→+-. 解一:20(32sin )3lim tan xxx x x →+-2002(1sin )13lim3lim xx x x x x→→+-=⋅ …………………………..1分 2ln(1sin )32e1limx x x x +→-= …………………………..2分202ln(1sin )3lim x x x x →+= ……………………………….1分 02sin 23lim 3x xx →== ……………………………………..1分解二:20(32sin )3lim tan x x x x x →+-ln(32sin )ln320e e lim x x x x x +→-= ………………………………………..1分20[ln(32sin )ln3]lime x x x xξ→+-= ……………………2分 202ln(1sin )3lim x x x x→+= …………………………….1分 02sin 23lim 3x xx →== …………………………………..1分其中ξ在ln(32sin )ln3x x x +与之间. (2)设12121,2,(2,3,)n n n x x x x x n --===+=,求极限1limn nx →∞. 解一:由题设条件知,对2n ∀>,0n x >,且120n n n x x x ---=>,即{}n x 严格单增,所以, 1212n n n n x x x x ---=+<,112n n x x ->,即有 2112n n x x -->, 故 211121213333()()()2222n n n n n n n x x x x x x ------=+>>>>= …………………….3分所以,11103()2n n x -≤≤, ……………………….1分 由11lim 03()2n n →∞-=得1lim 0.n n x →∞= ………………………..1分解二:用归纳法证明:n x n ≥,1,2,n =事实上,当1,2n =时,结论成立。
2012-2015年全国高中数学联合竞赛福建省预赛试题 Word版含答案
2013福建省高中数学竞赛2014年福建省高中数学竞赛暨2014年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2014年5月17日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.已知直线1l :260ax y ++=,2l :2(1)10x a y a +-+-=,若12l l ⊥,则a = 。
【答案】23【解答】12212(1)03l l a a a ⊥⇔⨯++-=⇔=。
2.函数23()3sin sin cos 2f x x x x =+-(122x ππ⎡⎤∈⎢⎥⎣⎦,)的值域为 。
【答案】 112x ⎡⎤∈-⎢⎥⎣⎦, 【解答】1cos 21313()3sin 2sin 2cos 2sin(2)222223x f x x x x x π-=⨯+-=-=-。
由122x ππ⎡⎤∈⎢⎥⎣⎦,知,22633x πππ-≤-≤,1sin(2)123x π-≤-≤。
3.在三棱锥D ABC -中,2AB BC ==,AB BC ⊥,BC CD ⊥,DA AB ⊥,60CDA ∠=︒。
则三棱锥D ABC -的体积为 。
【答案】 43【解答】如图,作DE ABC ⊥面于E ,连EA 、EC 、ED 。
∵ BC CD ⊥,DA AB ⊥,∴ EC CB ⊥,EA AB ⊥,四边形EABC 为矩形。
由AB BC =知,四边形EABC 为正方形,且DA DC =。
又60CDA ∠=︒,因此,DAC △为正三角形,DA AC =。
∴2222EA ED EA EC +=+。
于是,2ED EC ==。
∴ 三棱锥D ABC -的体积为114(22)2323⨯⨯⨯⨯=。
4.已知1F 、2F 为双曲线C :22124y x -=的左、右焦点,P 为双曲线C 上一点,且点P 在第一象限。
若1243PF PF =,则12PF F △内切圆半径为 。
厦门大学高数(非数学专业)理工类竞赛卷答案
学号院系 高等数学竞赛(理工类)试题姓名 ( 2006年7月6日 晚 7•00 ~ 9•00 )一、单项选择题(每题4分 共20分)1.方程x e x =--21在),0(+∞内实根的个数为( B )。
A. 0B. 1C. 2D. 32. 若)(x f 在]1,0[上连续且可导,1)0()1(=-f f ,⎰'=102)]([dx x f I , 则有( C )。
A. I = 1B. I < 1C. I ≥1D. I = 03.设(,)f x y 连续,且(,)(,),Df x y xy f u v dudv =+⎰⎰其中D 是由0y =2,1y x x ==所围区域,则(,)f x y 等于( D )。
A .xy ; B. 2xy ; C. 1xy +; D. 18xy +。
4. 设f 在Ω上可积,且Ω区域具有轮换对称性(即若(,,)x y z ∈Ω,则(,,),(,,)y z x z x y ∈Ω∈Ω),则( A )。
A.(,,)(,,)(,,)f x y z dv f y z x dv f z x y dv ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰;B. 1(,,)2(,,)f x y z dv f x y z dv ΩΩ=⎰⎰⎰⎰⎰⎰ 其中1Ω为Ω的0z ≥部分区域; C.(,,)0f x y z dv Ω=⎰⎰⎰;D. 以上结论均不成立。
5. 设函数(),(),()p x q x f x 都连续,且11223()()()y c y x c y x y x =++是非齐次线性微分方程()()()y p x y q x y f x '''++=的通解,则( B )。
A. 123y y y +-是方程的解B. 123,,y y y 线性无关C. 123,,y y y 可能线性无关,也可能线性相关。
D. 123,,y y y 线性相关二、填空题(每题4分 共20分) 1.设函数xx xx x x x f ++-+-+=22ln 212arctan)(222,则 =')(x f 2。
厦门双十中学2015届高三毕业班热身考试数学(理科)试卷参考答案及评分标准
厦门双十中学2015届高三毕业班热身考试数学(理科)参考答案及评分标准一、选择题:本大题共10小题,每小题5分,共50分.1.【解析】cos 05θ=-<,,2πθπ⎡⎤∴∈⎢⎥⎣⎦,sin 5θ∴==,sin tan 2cos θθθ∴==-,故答案为A.【考点】同角三角函数的基本关系 2.【答案】D【解析】根据所给的关于复数的等式,整理出要求的z 的表示式,进行复数的乘法运算,得到复数的最解:∵复数z (2)12z i i i =-=+,∴12z i =-,对应的点的坐标是(1,2)- D 3.或}2≥y ()U A C B =故选C.【考点】集合的交并补运算 4.【答案】B【解析】正态曲线是关于μ=x 对称,且在μ=x ,由图易得321μμμ=<,,故321σσσ<=5.【解析】由于向量()()3,4,211,4a a b =-=,设(,)b x y =则2(32a b -=-(11,4)=,3-24,y =-= 则(4,0)b =-3(a b a b⋅⨯=⋅,故选B.【考点】平面向量的坐标运算6.【答案】D【解析】先由三视图画出几何体的直观图,再由图中所给数据及柱体、锥体体积计算公式计算此几何体体积即可.由三视图可知此几何体为组合体:正方体去掉一角,其直观图如图:∵正方体的边长为11,D . 7.【答案】C【解析】当2,2>>b a 且时, 4>+b a ,但是反过来不成立,所以命题p 为真命题;“∃x 0∈R ,使得20x -x 0>0”的否定是:“∀x ∈R ,均有20x x -≤”,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C .910.【答案】C【解析】由题知,111212122212k k k k kk a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭ 由加法原理和乘法原理得, 同时同意第1,2号同学当选的人数为()11211222211122122121k k k k a a a aa a a a a a a a ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪⎝⎭,故选C.二、填空题:本大题共5小题,每小题4分,共20分.11. 【解析】作出平面区域图,易知y x 2+在A 处取得最大值,由⎩⎨⎧=+=31y x x 得)2,1(A , 故()522112max =⨯+⨯=+y x 【考点】线性规划 12.【答案】4【解析】根据流程图所示的顺序,程序的运行中各变量值变化为:第一圈 循环1,1S k ==;第二圈循环1123,2S k =+==;第三圈循环33211,3S k =+==;第四圈循环11112,4S k =+=,第五圈100?S <,否,所以停止循环,输出4k =.【考点】1.程序框图;2.指数运算. 13.【答案】sin12-【解析】两边同时积分,得()()()1111cos 3f x dx xdx f x dx dx =+⎰⎰⎰⎰,因为()1f x dx ⎰为常数,所以()()111cos 3(10)f x dx xdx f x dx =+⨯-⨯⎰⎰⎰,即()()()11110sin |3sin13f x dx x f x dx f x dx =+=+⎰⎰⎰,解得()1sin12f x dx =-⎰. 14.【答案】1283【解析】,甲、乙两组数据中位数相同所以3=m ,所以甲的平均数解得8=n ,所以二项式4()m x +可化为二项式48()3x x +,通项公式4442144()()()833r r rr r r r r T C C x x ---+==⋅,令420r -=,得2r =,所以常数项为2222141128()833T C +==.【考点】由茎叶图求中位数及平均数,二项展开式通项公式.15.【答案】(1)!1n +-【解析】对23401234x n n e a a x a x a x a x a x =++++++,两边求导: 2311234234x n n e a a x a x a x na x -=+++++,令x =0得:11111a a =⇒=,再两边求导:22234213243(1)x n n e a a x a x n n a x -=⨯+⨯+⨯+⨯-+,令x =0得:2211122!12a a =⇒=⨯=⨯, 再两边求导:334321432(1)(2)x n n e a a x n n n a x -=⨯⨯+⨯⨯+--+,令x =0得:32111233!123a a =⇒=⨯⨯=⨯⨯, …猜想:11123!123n n a n n n a =⇒=⨯⨯⨯=⨯⨯⨯, 所以![(1)1]!(1)!!nnn n n n n n a =⨯=+-=+-, 所以123123(2!1!)(3!2!)[(1)!!](1)!1nnn n n a a a a ++=-+-++-=+-【考点】本题类比解题方法,同时考查推理中蕴含的知识.三、解答题:本大题共6小题,每小题分数见旁注,共80分. 16.(本小题满分13分)直线2分·································· 3分·································· 4分 ·································· 6分···················································· 8分···················································· 9分·················································· 10分 ··················································· 11分 ·················································· 13分17.(本小题满分13分)【解析】(Ⅰ)因为33410115q p q =⎧⎪+=⎨+⎪⎪⎪⎩解得25p =,25q =. ·············································································· 4分 设“甲、乙选择不同车型”为事件A ,则123213()554545P A +⨯⨯=+=. ······················································································ 6分 答:所以甲、乙选择不同车型的概率是35. ······································································· 7分(Ⅱ)X 可能取值为7,8,9,10. ··································································································· 8分111(7)5420P X ==⨯=, 13211(8)54544P X ==⨯+⨯=, 21232545(9)45P X ⨯⨯===+; 233(10)5410P X ==⨯=. ···································· 10分 所以································· 11分 所以11231797891020451020EX =⨯+⨯+⨯+⨯=. ···························································· 12分 答:甲、乙两人购车所获得的财政补贴之和.的数学期望是17920. ··································· 13分18.(本小题满分13分)【解析】(Ⅰ)由24x y =得214y x =,所以1'2y x =,所以直线l 的斜率为2'|1x y ==, ··························· 1分 故直线l 的方程为1y x =-,所以点A 的坐标为(1,0). ····························································· 2分设(,)Q x y ,则(1,0),(2,),(1,)AB BQ x y AQ x y ==-=-,·················································· 3分由20AB BQ AQ ⋅+=得(2)00x y -+⋅+=,整理得2212x y +=. 2x(Ⅱ)解法一:联立椭圆C 和直线l 的方程,221,2x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y ,得222(12)4220k x ktx t +++-=, ··························································································· 7分设,M N 的横坐标分别为12,x x ,则122412ktx x k+=-+. ···························································· 8分 设椭圆Γ的方程为22221(0,0,)x y m n m n m n +=>>≠, ····························································· 9分联立方程组22221x y m n y kx t ⎧+=⎪⎨⎪=+⎩,消去y ,得22222222()2()0n m k x ktm x m t n +++-=,设,H K 的横坐标分别为34,x x ,则2342222ktm x x n m k +=-+. ····················································· 10分∵弦MN 的中点与弦HK 的中点重合, ····················································································· 11分∴12x x +=34x x +,2412kt k -=+22222ktm n m k-+, ∵0,0k t ≠≠,∴化简得222m n =, ······················································································· 12分求得椭圆Γ的离心率e ===··································································· 13分 解法二:设椭圆E 的方程为22221(0,0,)x y m n m n m n+=>>≠,并设11223344(,),(,),(,),(,)M x y N x y H x y K x y . ∵,M N 在椭圆C 上,∴221122x y +=且222222x y +=,两式相减并恒等变形得12122x x k y y +=-⨯+. ···························· 8分 由,H K 在椭圆Γ上,仿前述方法可得234234x x m k n y y +=-⨯+.······················································ 11分∵弦AB 的中点与弦HK 的中点重合,∴222m n =, ····························································································································· 12分求得椭圆Γ的离心率e ===··································································· 13分19.(本小题满分13分)【解析】 (Ⅰ)证明:因为平面ABD ⊥平面ADC ,CD ⊥AD ,CD ⊂平面ABD ,平面ABD ∩平面ADC =AD ························································································ 2分 所以CD ⊥平面ABD ,又AB ⊂平面ABD ,所以AB ⊥CD .······································································································· 3分(Ⅱ)在如图1所示的△ABC 中,设(03)BD x x =<<,则3CD x =-.由AD BC ⊥,45ACB ∠=知,△ADC 为等腰直角三角形,所以3AD CD x ==-. 由折起前AD ⊥BC 知,折起后(如图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,又由(Ⅰ)可知,90BDC ∠=,所以11(3)22BCD S BD CD x x ∆=⋅=-, 于是321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=-+. ······················································· 5分令321()(69)6f x x x x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<. 所以当1x =时,()f x 取得最大值. ······································································································· 7分故当BD =x =1,即AC =A -BCD 的体积最大. ······················································ 8分 (Ⅲ)以D 为原点,DB 、DC 、DA 分别为x ,y ,z 轴建立空间直角坐标系D -xyz . 由(Ⅱ)知,当三棱锥A -BCD 体积最大时,BD =1,AD =CD =2,于是可得1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A ME ,则(1,1,1)BM =- ········· 9分设(0,,0)N λ,则1(,1,0)2EN λ=--. 因为EN ⊥BM 等价于0EN BM ⋅=,即 11(,1,0)(1,1,1)1022λλ--⋅-=+-=,解得12λ=,即1(0,,0)2N ············································ 10分 所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为(,,)n x y z =,由,,BN BM n n ⎧⊥⎪⎨⊥⎪⎩及1(1,,0)2BN =-,得20,0x y x y z -+=⎧⎨-++=⎩可取(1,2,1)n =-. ································································································· 11分 设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =--,(1,2,1)n =-,可得112cos ,2EN n EN n EN n--⋅<>===-········································································ 12分 因为02πθ<<,所以sin cos ,EN n θ=<>=,即60θ=. ·················································· 13分20.(本小题满分14分)【解析】(Ⅰ)依题意,1'()2f x ax b x=++,'(1)12f a b =++ ································································ 1分 又由切线方程可知,1(1)2f =- ,斜率12k =,所以1'(1)12,21(1)2f a b f a b ⎧=++=⎪⎪⎨⎪=+=-⎪⎩解得0,12a b =⎧⎪⎨=-⎪⎩,所以()ln 2x f x x =- ················································· 3分 所以112'()(0)22xf x x x x-=-=>, 当0x >时,,'(),()x f x f x 的变化如下:所以()(2)ln 21f x f ==-极大值,无极小值. ······················································································ 5分(Ⅱ)依题意,2()ln f x x ax x =++,所以2121'()21(0)ax x f x ax x x x++=++=> ①当0a ≥时,'()0f x >在(0,)+∞上恒成立,故无极值; ····························································· 6分②当0a <时,令'()0f x =,得2210ax x ++=,则180a ∆=->,且两根之积12102x x a=<, 不妨设120,0x x <>,则122()()'()a x x x x f x x--=,即求使2()0f x >的实数a 的取值范围. ···· 7分由方程组2222222210,ln 0ax x x ax x ⎧++=⎪⎨++>⎪⎩消去参数a 后,得221ln 02x x -+>, ············································· 8分 构造函数1()ln 2x g x x -=+,则11'()02g x x =+>,所以()g x 在(0,)+∞上单调递增, ············· 9分又(1)0g =,所以()0g x >解得1x >,即21x =>,解得10a -<<.由①②可得,a 的范围是10a -<<. ································································································· 10分(Ⅲ)由(Ⅰ)可知,当10,2a b ==-时,0,()ln 21x f x ∀>≤-,即ln ln 212xx -≤-, ·············································································· 11分两边取e 为底的指数,得()2(0)xx x e ≤∀>,所以*2n n N e ∀∈≤,即()2112nn en ≤⋅, ············································································· 12分 于是①当1n =72e =<,不等式成立; 1(e )n ++21)n ++ 21)11n ++-·················································· 13分 11111152n -+-+-++--1)]1n + 综上,*n N ∀∈,()1172ii e i =<⋅∑. ································································································ 14分21.(本小题满分14分)【解析】(1) (本小题满分7分) 选修4-2:矩阵与变换【说明】用矩阵工具研究平面的几何变换是本选修重要方法,几乎年年必考.由几何关系建立线性变换找出对应矩阵不仅考查计算,对能力有更高要求,应引起重视. (Ⅰ)设变换T x ax byy cx dy '=+⎧⎨'=+⎩,()()()()2,00,2,2,11,3A A B B ''→→- 20222123a c a b c d =⎧⎪=⎪∴⎨+=-⎪⎪+=⎩解得0111a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,即0111M -⎛⎫= ⎪⎝⎭,2003N ⎛⎫= ⎪⎝⎭ ······························································· 4分 (Ⅱ)200102031133NM --⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设直线l 上任一点(),x y 依次在矩阵M ,N 即矩阵NM 所对应的线性变换作用下对应点(),x y '',则233x yy x y '=-⎧⎨'=+⎩代入10x y ''++=得310x y ++=,∴直线l 的方程是310x y ++=. ·············· 7分(2) (本小题满分7分) 选修4-4:极坐标与参数方程【说明】本题考查直线的极坐标、椭圆的参数方程与普通方程互化,椭圆的参数方程的应最值问题上的应用.(Ⅰ)2cos ,x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数) ···································································································· 2分919cos()(cos )3222πρθρθθ+=-⇒=-,即1922x y =-,整理得,90x += ············································································································· 4分(Ⅱ)设(2cos )P ϕϕ,P 到直线l的距离2cos 3sin 92cos 3sin 92d ϕϕϕϕ-+-+===2tan 3α=所以当sin()1ϕα-=-时,max92d =············································································· 7分(3) (本小题满分7分) 选修4-5:不等式选讲【说明】绝对值不等式,柯西不等式是高考考试热点(Ⅰ)依题意得15x x m ++-≥的解集为R ,所以min (1)5x x m ++-≥由绝对值不等式得11x x m m ++-≥+,即min (1)1x x m m ++-=+ ························· 2分 所以15m +≥,解得4m ≥ ····································································································· 4分 (Ⅱ)依题意得2224,16a b m a b m +=-+=-由柯西不等式得222()(11)()a b a b +≤++,即22(4)(11)(16)m m -≤+- 解得443m -≤≤,所以4m =. ································································································ 7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门大学第十二届“景润杯”数学竞赛试卷(理工类)参考答案一、求下列各题极限(每小题4分,共8分)(1) 求极限 20(32sin )3lim tan x xx x x→+-. 解一:20(32sin )3lim tan xxx x x →+-2002(1sin )13lim3lim xx x x x x→→+-=⋅ …………………………..1分 2ln(1sin )32e1limx x x x +→-= …………………………..2分202ln(1sin )3lim x x x x →+= ……………………………….1分 02sin 23lim 3x xx →== ……………………………………..1分解二:20(32sin )3lim tan x x x x x →+-ln(32sin )ln320e e lim x x x x x +→-= ………………………………………..1分20[ln(32sin )ln3]lime x x x xξ→+-= ……………………2分 202ln(1sin )3lim x x x x→+= …………………………….1分 02sin 23lim 3x xx →== …………………………………..1分其中ξ在ln(32sin )ln3x x x +与之间. (2)设12121,2,(2,3,)n n n x x x x x n --===+=,求极限1limn nx →∞. 解一:由题设条件知,对2n ∀>,0n x >,且120n n n x x x ---=>,即{}n x 严格单增,所以, 1212n n n n x x x x ---=+<,112n n x x ->,即有 2112n n x x -->, 故 211121213333()()()2222n n n n n n n x x x x x x ------=+>>>>= …………………….3分所以,11103()2n n x -≤≤, ……………………….1分 由11lim 03()2n n →∞-=得1lim 0.n n x →∞= ………………………..1分解二:用归纳法证明:n x n ≥,1,2,n =事实上,当1,2n =时,结论成立。
假设结论对n k =时成立. 则当1n k =+时,1111k k k x x x k k k +-=+≥+-≥+ ……………………….3分因此,110n x n≤≤ ……………………….1分 由1lim0n n →∞=得1lim 0n nx →∞=. ……………………….1分二、(8分)设可微函数()f x 满足 0()lim 1x f x x→=,求0t +→解:2]d 2f y y f y += ……………………….2分2t xu ⎰……………………….2分t tt t ++→→=tut +→= ……………………….2分30()d πlim tt uf u u t +→=⎰ ……………………….1分20()ππlim 33t tf t t +→== ……………………….1分 三、(8分)设函数()f x 满足1()()caf x bf x x+= (0x ≠),其中,,a b c 都是非零常数,且||||a b ≠,求(())f f x 的导数.解:由已知条件,当0x ≠时,1()()(1)1()()(2)c af x bf x x af bf x cx x ⎧+=⎪⎪⎨⎪+=⎪⎩, .…………….1分(1)(2)a b ⨯-⨯,得22()()aca b f x bcx x-=-,即 22()()()c af x bx a b x=--, 0x ≠, ……………….2分 则 222()()()c af x b a b x '=---, 0x ≠. .…………….1分令 22()()()c au f x bx a b x==--,则 d[(())]d[()]d d ()d d d d f f x f u u uf u x u x x'=⋅=⋅ .……………………….2分222222()()()()c a c ab b a b u a b x =--⋅----2222222222()[()]()()c a a b a a bx b b a b c x x --=-++-,0x ≠且2a x b≠ .……….….2分 四、(8分)设函数()f x 在[0,1]上有连续的导数,且(0)(1)0f f '==,证明至少存在一点(0,1)ξ∈,使得()()f f ξξ'=.证明:构造辅助函数()e()xF x f x -=, ……………………….2分则()F x 在[0,1]上连续可导,且()e [()()]x F x f x f x -''=-,1(0)(0),(1)e (1),F f F f -'''==- ………………….1分若对(0,1),()0x F x '∀∈≠,则有下面两种情况对(0,1),()0x F x '∀∈>,此时()F x 单调增加,(1)(0)0F F >=,1e (1)0f ->,从而(1)0F '<,这与1(1)lim ()0x F F x -→''=≥矛盾, ……………………….2分 对(0,1),()0x F x '∀∈<,此时()F x 单调减少,(1)(0)0F F <=,1e (1)0f -<,从而(1)0F '>,这与1(1)lim ()0x F F x -→''=≤矛盾。
………………………2分从而至少存在一点(0,1)ξ∈,使得()()f f ξξ'=. ……………………….1分 五、(8分) 证明不等式sin π(1)(01)πxx x x >-<<. 证明:设sin π()(1)(01)πxF x x x x =--<<, …………………….1分 则()cos π21F x x x '=+-,2()2πsin ππ(sin π)πF x x x ''=-=- ……………………….1分令()0,F x '= 解得驻点为10,,12x = ………………….1分在区间1(0,)2上,2()π(sin π)πF x x ''=-仅有唯一的一个零点1ξ,且当10x ξ<<时,()0F x ''>,当112x ξ<<时,()0F x ''<.又1(0)()02F F ''==, 因此在1(0,)2上,()0F x '>,从而在1(0,)2上,()F x 单调增加,且()(0)0F x F >=. ………………………2分类似地,在区间1(,1)2上,2()π(sin π)πF x x ''=-仅有唯一的一个零点2ξ,且当212x ξ<<时,()0F x ''<,当21x ξ<<时,()0F x ''>.又1()(1)02F F ''==,因此在1(,1)2上,()0F x '<,从而()F x 在1(,1)2上单调减少,且()(1)0F x F >=. ………………………2分综上所述,()F x 在区间(0,1)上恒大于零,即()F x 在[0,1]上的最小值为(0)0F =,即()0,(0,1)F x x >∀∈,从而不等式成立。
………………………1分六、(10分)设幂级数nn n a x∞=∑的系数满足012,1,1n n a na a n n -==+-≥,求此幂级数的收敛半径R 及和函数()S x .解:首先用数学归纳法证明对n,1n a ∀>,即数列{}n a 有下界1.当k=1时,102a a ==,假设k=n-1时,11n a ->,当k=n 时,1111n n na a n n n -=+->+-=, 故1n a >,由归纳法假设,数列{}n a 有下界1. 又11111111n n n a n n a n a n n n----=+⋅<+=,即1n n a a ->,数列{}n a 是单调降的,故有lim 1n n a a →∞=≥.………………………2分且11lim lim[]1n n n n a n a a n n -→∞→∞-==+=,111lim lim1n n n n n a a a →∞→∞--==,所以幂级数的收敛半径1R =. ………………………1分设0()nn n S x a x∞==∑,则11()n nn S x na x∞-='=∑,由条件11n n na a n -=+-,当1x <时,有11111111()(1)()()n n nn n n n n n S x a xn xS x nx S x x nx ∞∞∞∞----===='=+-=+=+∑∑∑∑ …………………2分2()()()1(1)x xS x x S x x x '=+=+-- ………………………1分 解此一阶线性微分方程,得1()e 1xS x C x=+- . ………………………3分 由(0)2S =,得1C =,故1()e 1xS x x=+- , 1 1.x -<< .………………………1分七、(10分)设(),g()f x x 是[,]a b 上的连续函数,且对[,]x,y a b ∀∈有[()()][g()g()]0f x f y x y --≤ (称()g()f x x 与具有反序性)(1)证明:()d ()d ()()g()d ;bb baaaf x xg x x b a f x x x ⋅≥-⎰⎰⎰(2)利用(1)的结论,证明:若()f x 是[0,1]上的连续函数,且对[0,1]x ∀∈有0()1f x ≤<,则11100()d ()d 1()1()d f x x f x x f x f x x ≥--⎰⎰⎰.证:(1)由[()()][()g()]0f x f y g x y --≤ 得()g()()g()()g()()g()f x x f y y f x y f y x +≤+ ……………………1分不等式两端在D 上求二重积分,其中{(,)|,}D x y a y b a x b =≤≤≤≤,即()g()d d ()g()d d ()g()d d ()g()d d DDDDf x x x y f y y x y f x y x y f y x x y +≤+⎰⎰⎰⎰⎰⎰⎰⎰……………………2分 即 ()()g()d ()d g()d bb baaab a f x x x f x x x x -≤⎰⎰⎰ .………………………2分另解:做辅助函数()()d ()d ()()g()d ;xxxaaax f t t g t t x a f t t t ϕ=⋅--⎰⎰⎰ .……………………1分()()()d ()()d ()g()d ()()()x x xaaax f x g t t g x f t t f t t t x a f x g x ϕ'=+---⎰⎰⎰.………………………1分[()()][()()]d 0xaf x f tg x g t t =---≥⎰ ………………………2分故()()0b a ϕϕ≥=,即()d ()d ()()g()d .bb baaaf x xg x x b a f x x x ⋅≥-⎰⎰⎰ ……………….………1分(2)由于对[0,1]x ∀∈有0()1f x ≤<,[]2()()[()()](1())(1())01()1()[1()][1()]f x f y f x f y f x f y f x f y f x f y ⎡⎤-----=-≤⎢⎥----⎣⎦即()1()f x f x -与1()f x -在上[0,1]具有反序性, ……………….………2分则由(1),11110000()()()d (1())d d (1())d 1()1()f x f x f x x f x x x f x x f x f x =-≤---⎰⎰⎰⎰1100()d [1()d ]1()f x x f x x f x ≤⋅--⎰⎰ ……………….………2分因为11()d 0f x x ->⎰,所以 11100()d ()d 1()1()d f x x f x x f x f x x≥--⎰⎰⎰ .……………….………1分 八、(10分)已知曲线2C :3(1)y xz y ⎧=⎨=-⎩,在纵坐标为1y =的点处的切线为L ,∏是通过L 且与曲面22:4x y z ∑+=相切的平面,求∏的方程.解:若以y 为参数,曲线C 的参数方程为2:3(1)x y C y y z y ⎧=⎪=⎨⎪=-⎩,C 在对应1y =点(1,1,0)处的切向量为11T {(),,()}{2,1,3}|{2,1,3}y y x y y z y y =='''===, ……………….………1分所以C 在点(1,1,0)处的切线L 的方程为11213x y z--==,或者 210330x y y z -+=⎧⎨--=⎩ ……………….………1分过L 的平面束方程为(33)(21)0y z x y λ--+-+=,即(32)30x y z λλλ+--+-= (1) …………….………2分记22(,,)4F x y z x y z =+-,设∏与曲面∑的切点为0000()M x ,y ,z ,则曲面∑在点0000()M x ,y ,z 处的法向量为000{,,}{2,2,4}M M M F F F x y xyz∂∂∂=-∂∂∂,由于所求的平面∏与∑相切,因此λ应满足0321224x y λλ--==-,由此可得, 002,64x y λλ==-. ………….………3分因为0M 在∑上,则2220001()51294z x +y λλ==-+, ……………….………1分 又因为0000()M x ,y ,z 也应在∏上,将其代入(1)得222(32)(64)(5129)30λλλλλλ+----++-=,即 251160λλ-+=,解得61,5λ=, ……………….………1分 因而得到所求的∏的平面方程为20x y z +--=或63590x y z +--= .……………….………1分九、(10分)设,a b 分别是函数π2()|cos |d x xf x t t +=⎰在[0,π]上的最大值和最小值,L 是连接原点与点(1,0)A 的位于第一象限内的光滑曲线,并且与线段OA 围成的闭区域D 的面积为1,求关于坐标的曲线积分.(3e sin )d (e cos )d x x LI by y x ax y y =++++⎰(其中L 为逆时针方向)解:先确定,a b ,再计算I .由()f x 的积分表达式 πsin cos 02()|sin ||cos |πsin cos π2x x x f x x x x x x ⎧-≤<⎪⎪'=-=⎨⎪+≤≤⎪⎩,于是()0f x '=的根为π3π,44x =. .……………….………2分3ππ3ππ3π42424πππππ44224π()|cos |d |cos |d sin |sin 24f t t t t t t ==+=-=⎰⎰⎰5π5π5π4443π3π3π4443π()|cos |d cos d sin 4f t t t t t ==-=-=⎰⎰. πππ222000(0)|cos |d cos d sin |1f t t t t t ====⎰⎰, 3π3π3π222πππ(π)|cos |d cos d sin |1f t t t t t ==-=-=⎰⎰所以π3πmax{(),(),(0),(π)}44a f f f f ==π3πmin{(),(),(0),(π)}244b f f f f == .……………….………3分(3(2e sin )d e cos )d x x LI y y x y y =++++⎰ (由格林公式)e cos )[3(2e sin ]{}d d x x Dy y y x y x y ∂+∂++=-∂∂⎰⎰(3(2e sin )d e cos )d x x OAy y x y y -++++⎰ .……………….………2分12)d d 3d 2)35Dx y x =-=-=⎰⎰⎰. .……………….………3分十、(12分)设L 是过原点,方向为{},,αβγ(其中2221αβγ++=)的直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕L 旋转 (1)求其转动惯量;(2)其转动惯量关于方向{},,αβγ的最大值和最小值.解:(1)设旋转轴L 的方向向量为{},,αβγ,椭球内任意一点(,,)P x y z 到旋转轴L 的距离的平方为{}{}222222222[,,,,]()d x y z x y z x y z x y z αβγαβγ=++-⋅=++-++222222(1)(1)(1)222x y z xy yz xz αβγαββγγα=-+-+---- .…………….………2分由积分区域的对称性,[222]d d d 0xy yz xz x y z αββγγαΩ++=⎰⎰⎰, .……………….………1分其中222222{(,,)|1}x y z x y z a b cΩ=++≤,而22222223222214πd d d d d d π(1)d 15aay z x a a b c a x a bc x x y z x x y z x bc x a -+≤--Ω==-=⎰⎰⎰⎰⎰⎰⎰.同理 33224π4πd d d ,d d d 1515ab c abc y x y z z x y z ΩΩ==⎰⎰⎰⎰⎰⎰. .……….………2分 所求的转动惯量为22222224πd d d [(1)(1)(1)]15abc I d x y z a b c αβγΩ==-+-+-⎰⎰⎰ ……………1分 (2)设考虑目标函数222222(1)(1)(1)a b c αβγ-+-+-在约束条件2221αβγ++=下的条件极值. 设拉格朗日函数为222222222(,,,)(1)(1)(1)(1)L a b c αβγλαβγλαβγ=-+-+-+++- .………….………1分令2222222()02()0,2()0,1.L a L b L c αβγαλβλγλαβγ⎧=-=⎪=-=⎪⎨=-=⎪⎪++=⎩,. 求得极值点为 21(1,0,0,)Q a ±,22(0,1,0,)Q b ±,23(0,0,1,).Q c ± .……………….………3分通过比较可知,当(,,)(0,0,1)αβγ=±时,即绕旋转轴L 轴转动惯量最大,即22max 4π()15abc I a b =+, .……………….………1分 当(,,)(1,0,0)αβγ=±时,即绕旋转轴L 轴转动惯量最小,即22min 4π()15abc I b c =+. .……………….………1分 十一、(8分)在不断抽打下,陀螺会飞快地旋转,但当一旦停止对它进行抽打,它也就不再转动而停下来.设陀螺材质均匀,且旋转体所占的立体区域为222{()|()2},0}x,y,z x y z a a aΩ=+≤≤>,试求当陀螺停止转动后,在稳定平衡状态下它的中心轴与水平地面的夹角θ. 如图(轴截面)(其中A 为陀螺停止转动后,在稳定平衡状态下与地平面的接触点) .解:首先求陀螺的质心坐标.由于陀螺材质均匀的旋转体,所以它的质心就是几何体的形心,根据对称性可知,必有0x y ==. 由于223πd d d d d π2zaaD az v z x y z a Ω===⎰⎰⎰⎰⎰⎰⎰,222400π4d d d d d π23za a D az z v z z x y z a Ω===⎰⎰⎰⎰⎰⎰⎰.所以d 43d z vz a vΩΩ==⎰⎰⎰⎰⎰⎰,即陀螺的质心坐标为4G(0,0,)3a . .……………….………2分 当陀螺停止转动后,在稳定平衡状态下时,它的质心到水平地面的距离应达到最短. 如图轴截面,设陀螺在稳定平衡状态下,它与水平地面的切点为(,)A y z . 于是问题就转化为一个条件极值问题,其目标函数为2223()()4L GA y z a ==+-,约束条件为22z y a=(陀螺侧面的轴截线)将其代入目标函数,有22223(),04L y y a y a a =+-≤≤. …………….………1分令222d 2(82)0d L y y a y a =-=,得012y a =. 当102y a <<时,d 0d L y <,当12a y a <<时,d 0d L y >,从而得到点A 的坐标为11(,)22a a . ………………………2分轴截线22z y a =与y 轴在点11(,)22A a a 处的切线与y 轴的夹角为 1122d 4arctan()|arctan()|arctan 2d y a y az yy a α===== …………….………2分 π2θα=-,π11tan tan()cot 2tan 2θααα=-===,1arctan 2θ= ….….…1分。