PKPM钢结构计算
PKPM钢结构计算实例
某车间计算实例房屋概况:南北朝向,为一幢单层双跨排架结构建筑物,建筑面积约1460.00m2,建造于2008年。
共计8间,开间除两端为5.40m外其余均为6.00m,跨度为16.00+16.00m。
上部结构由砼柱、钢梁承重,屋盖采用C型钢檩条(175×70×25×2.5@1450mm),彩钢瓦屋面,砖砌围护墙。
3~4轴、8~9轴屋面各设6道水平支撑,水平支撑间设刚性杆;A、B、C轴柱顶钢梁间各设1道刚性水平通长系杆;檩条与钢梁间隔根设隅撑,檩条间设置直拉条/斜拉条;B~C轴设有一台5.0吨吊车。
排架立面示意图结构平面图结构验算:一、新建工程→钢结构→门式刚架→门式钢架二维设计(或新建工程→钢结构→框排架→pk交互输入与优化计算)2、网络生成→快速建模→门式刚架3、柱、梁布置1、截面定义→增加→选取截面类型→输入截面参数注:1、对于钢构件则需要区分轴压对Y截面分类(具体参考钢结构设计规范表5.1.2-1);4、计算长度(平面外、平面内)注:1、平面内计算长度系统默认;2、平面外计算长度(柱:取柱间支撑的高度。
梁:取水平支撑或隅撑的间距)。
五、铰接构件注:1、对于节点处由螺栓连接<6颗螺栓时设铰接点;2、对于钢/砼构件连接处设铰接点。
6、恒载输入→梁间恒载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式:屋面恒载*(梁左侧开间的一半+梁右侧开间的一半)。
7、活载输入→梁间活载注:1、梁间恒载需将屋面恒荷载换算成梁间线荷载;2、计算公式同梁间恒载;3、屋面荷载取值:不上人屋面取0.5(荷载规范);若水平投影面积大于60m2则屋面活荷载可取不小于0.3(门规);以上荷载取值与屋面雪荷载取值相比取大值。
八、左、右风输入→自动布置注:1、砼排架柱、轻钢屋面结构可参照(门规);2、地面粗糙度、风压参考(荷载规范)。
九、吊车荷载注:1、在吊车数据库选取吊车类型、跨度、吨位相同或相近的吊车数据。
钢结构PKPM抗震计算模型一
一、结构模型概况
1.楼层信息
(一)楼层表
2.材料信息
(一)材料表
(二)配筋信息
(1) 梁、柱、支撑
(2) 剪力墙
3.风荷载信息
基本风压:0.55(kN/m2)
地面粗糙度:D
风压高度变化修正系数η:1.00
风荷载计算用阻尼比:0.02 4.工况和组合
(一)工况表
(二)组合表
二、分析结果
1.地震作用下的基底总反力
2.结构周期及振型方向
3.各地震方向参与振型的有效质量系数
4.竖向构件的倾覆力矩及百分比
(1) X向规定水平力
(2) Y向规定水平力
5.竖向构件地震剪力及百分比
6.规定水平作用下的位移比验算
(1) X向规定水平力
(2) Y向规定水平力
7.地震作用下的楼层位移和位移角验算
(1) 单向地震力作用
结构的最大层间位移为1/1707(塔1的第2F层)
7.弹塑性层间位移角
8.抗倾覆验算
【结论】整体抗倾覆能力足够,零应力区面积满足规范要求。
9.整体稳定刚重比验算
该结构ΣN/ΣH/250 > 0.1,应考虑重力二阶效应
塔1刚重比验算
【结论】该结构刚重比Di*Hi/Gi ≥ 5,能够通过高钢规(6.1.7)的整体稳定验算
三、时程分析包络结果
1.结构底部地震剪力包络结果
2.楼层剪力包络结果
3.楼层位移角包络结果
4.楼层位移包络结果
5.层间位移包络结果。
PKPM建模计算全过程
PKPM建模计算全过程PKPM(钢结构通用计算程序)是中国速算机械报主持研制的一套软件,主要用于钢结构设计和分析计算。
PKPM建模计算全过程包括以下几个步骤:建模、加载、计算、结果分析与设计。
建模:建模是PKPM建模计算全过程的第一步。
在PKPM中,可以通过绘制模型、输入节点坐标、输入截面尺寸等方式对结构进行建模。
用户可以根据实际情况选择适当的建模方式,完成结构的几何模型。
加载:加载是PKPM建模计算全过程的第二步。
在PKPM中,可以对结构施加各种力和约束。
用户可以通过输入荷载大小和荷载类型的参数,对结构进行加载。
荷载类型可以包括静力荷载、动力荷载等。
计算:计算是PKPM建模计算全过程的第三步。
在PKPM中,可以进行静力弹性计算和动力计算。
静力弹性计算以静力平衡为基础,利用刚度法进行力的平衡计算。
动力计算可以进行结构的自振频率计算和动力响应计算。
用户可以输入相应的计算参数,进行结构的计算。
结果分析与设计:结果分析与设计是PKPM建模计算全过程的最后一步。
在PKPM中,可以对计算结果进行分析和设计。
用户可以查看结构的内力分布图、位移云图等结果,并根据需要进行设计修改。
PKPM还提供了很多设计功能,可以对结构进行等效静力设计、构件正、副筋配筋等。
总结:PKPM建模计算全过程主要包括建模、加载、计算、结果分析与设计四个步骤。
通过这个全过程,用户可以完成钢结构的建模、加载、计算和分析设计工作。
PKPM作为一款通用计算程序,在钢结构设计和分析领域有着广泛的应用,为工程师提供了一个方便、高效、准确的工具。
PKPM计算流程最全
PKPM计算流程最全PKPM(平面空间钢结构分析与设计软件)是一种广泛应用于钢结构工程设计中的计算软件。
它包括了建模、荷载输入、分析计算、结果输出等多个步骤。
下面是PKPM计算流程的详细介绍。
1.建模:首先,需要根据实际情况使用PKPM软件进行建模。
建模主要包括定义结构的几何特征和材料特性。
几何特征包括结构的尺寸、形态和连接方式等;材料特性主要包括钢材的强度、弹性模量和重量等。
通过上述信息的输入,PKPM可以自动生成结构的三维模型。
2.荷载输入:在完成建模后,需要考虑实际使用条件下所受的荷载。
荷载包括静态荷载和动态荷载。
静态荷载包括自重、直接作用荷载和附加作用荷载等;动态荷载包括风荷载、地震荷载和温度荷载等。
根据实际情况,使用PKPM软件进行荷载输入,并定义荷载的作用位置和方向。
3.分析计算:在完成荷载输入后,需要进行结构的力学分析计算。
PKPM软件会根据建模和荷载输入的信息,利用结构力学的理论进行计算。
主要的分析计算包括线性静力分析、弯矩-剪力分析和构造稳定性分析等。
这些计算可以得到结构的内力和变形等数据。
4.结果输出:在完成分析计算后,需要将结果输出。
PKPM软件可以将分析计算得到的数据以图表和报告的形式进行展示。
结果输出包括结构受力状态、应力分布、位移变形、结构的安全评估和合理性检验等。
根据输出结果,可以对设计方案进行优化和改进,并进行相应的结构调整。
总结起来,PKPM计算流程主要包括建模、荷载输入、分析计算和结果输出等步骤。
通过PKPM软件进行这些步骤可以有效地进行结构的分析和设计工作,提高工作效率和设计质量。
PKPM钢结构计算实例
PKPM钢结构计算实例PKPM是一种常用的钢结构计算软件,广泛应用于房屋建筑、工业厂房、桥梁和高层建筑等领域。
下面将通过一个实际的钢结构计算实例来介绍PKPM的使用。
假设我们需要设计一个用于工业厂房建筑的钢结构。
首先,我们需要给出建筑的设计参数,包括建筑的类型、使用情况、结构形式和尺寸等。
在PKPM软件中,我们可以选择“新建工程”来创建一个新的项目。
然后,在“模型”选项卡中,我们可以输入建筑的基本参数,例如建筑类型为工业厂房,使用要求为普通状况,结构形式为框架结构。
接下来,我们需要输入建筑的尺寸参数。
在PKPM软件中,可以使用“节点”和“荷载”选项卡来输入节点和荷载信息。
首先,在“节点”选项卡中,我们可以输入建筑的节点坐标和节点类型。
可以通过手动输入或导入自动绘图软件生成的节点坐标文件来完成节点的输入。
然后,在“荷载”选项卡中,我们可以输入建筑的荷载参数。
可以输入自重荷载、活荷载、风荷载和温度荷载等参数。
需要注意的是,建筑的荷载参数需要根据工程实际情况进行合理估计。
PKPM软件提供了自动计算荷载的功能,可以根据建筑尺寸和使用要求自动计算出荷载参数。
完成节点和荷载信息的输入后,我们就可以开始进行结构的分析和计算。
在PKPM软件中,我们可以选择“分析”选项卡,然后选择“线性分析”或“非线性分析”来进行结构的分析计算。
线性分析适用于小荷载和较简单的结构,而非线性分析适用于大荷载和复杂的结构。
在分析计算过程中,PKPM软件会根据输入的节点和荷载信息自动生成结构的刚度矩阵和荷载矩阵,并进行相应的求解和计算。
分析完成后,我们可以查看和分析计算结果。
PKPM软件提供了丰富的结果展示功能,可以生成结构的受力图、变形图和应力图等,帮助工程师直观地了解和评估结构的受力性能。
最后,根据结果分析和评估,我们可以对结构进行优化设计。
在PKPM软件中,我们可以通过修改节点坐标、荷载参数或材料参数等来进行设计优化。
并且,PKPM软件提供了多种设计规范和标准的支持,可以根据工程要求选择不同的设计规范进行设计。
pkpm钢结构高厚比验算
pkpm钢结构高厚比验算摘要:1.pkpm 钢结构高厚比验算的背景和意义2.pkpm 钢结构高厚比的计算方法和限值3.pkpm 钢结构计算中出现高厚比超限的问题和解决方法4.pkpm 钢结构计算中的其他注意事项5.结论和建议正文:一、pkpm 钢结构高厚比验算的背景和意义pkpm 是一种广泛应用于钢结构设计的软件,其中涉及到的高厚比验算,是指对钢结构中腹板的局部稳定性进行计算和检验。
高厚比主要是指腹板的高度与厚度的比值,这个比值对于钢结构的稳定性和安全性有着重要的影响。
因此,在进行钢结构设计时,对高厚比进行验算,可以确保设计方案的合理性和安全性。
二、pkpm 钢结构高厚比的计算方法和限值在pkpm 中,高厚比的计算方法是通过腹板的高度和厚度来确定的。
通常情况下,高厚比的限值是由设计规范来规定的,一般情况下,高厚比的限值不应大于3。
如果计算得到的高厚比超过这个限值,就需要对设计方案进行调整,以确保结构的安全性。
三、pkpm 钢结构计算中出现高厚比超限的问题和解决方法在使用pkpm 进行钢结构计算时,有时会出现高厚比超限的问题。
这可能是由于设计方案不合理,或者计算参数设置不当等原因导致的。
对于这个问题,可以通过调整设计方案,或者修改计算参数来解决。
比如,可以尝试增加腹板的厚度,或者减小腹板的高度,以降低高厚比。
四、pkpm 钢结构计算中的其他注意事项在进行pkpm 钢结构计算时,还需要注意一些其他的问题,比如构件的规格和材料性能等。
构件的规格应该根据实际需求和设计规范来选择,材料性能也应该根据实际情况来确定。
这样才能保证计算结果的准确性和可靠性。
五、结论和建议pkpm 钢结构高厚比验算是钢结构设计中非常重要的一环,对于确保结构的安全性和稳定性有着重要的作用。
在进行高厚比验算时,应该严格按照设计规范和计算方法来进行,同时,还需要注意一些其他的问题,比如构件的规格和材料性能等。
PKPM计算分析
PKPM计算分析PKPM是国内常用的工程结构计算软件,是一款专业的钢结构计算分析软件,主要用于对钢结构进行受力分析和设计计算。
PKPM包括了许多功能模块,如结构建模、受力分析、稳定性分析、设计计算和结果输出等。
下面将对PKPM的计算分析进行详细介绍。
首先,PKPM的计算分析的第一步是进行结构建模。
用户可以根据实际情况,选择合适的构件材料、截面形状和连接方式等进行构件的绘制。
PKPM提供了多种绘图工具,使得用户可以方便地进行结构的建模。
在完成结构建模后,就可以进行受力分析。
PKPM通过有限元法对结构进行受力分析,将结构分割成多个小单元,对每个小单元进行受力计算,并计算出整个结构的受力情况。
在进行受力分析时,用户需要设置相应的受力边界条件,如约束条件、外荷载等。
受力分析完成后,可以进行稳定性分析。
稳定性分析是评价结构是否可以抵抗弯曲、扭转、屈曲等稳定性失稳形式的能力。
PKPM可以根据结构的几何形状和结构的材料特性进行稳定性分析,评估结构的稳定性。
接下来,可以进行设计计算。
设计计算是根据结构要求和材料特性,计算出结构构件的尺寸和截面形状等。
PKPM根据国家规范和设计准则进行设计计算,计算出结构构件的尺寸和截面形状,满足结构的安全要求。
最后,PKPM可以输出计算结果。
结果输出包括受力分析结果、稳定性分析结果和设计计算结果等。
用户可以根据需要选择输出结果,可以以图形形式和表格形式展示计算结果,便于用户进行结果分析和评估。
总的来说,PKPM计算分析是一种专业的钢结构计算软件,主要用于对钢结构进行受力分析和设计计算。
PKPM具有结构建模、受力分析、稳定性分析、设计计算和结果输出等功能,可以方便地进行工程结构计算分析。
通过PKPM计算分析,可以帮助用户评估结构的受力情况、稳定性和设计尺寸,确保结构的安全和可靠。
PKPM 设计参数- 钢结构新型结构-
PKPM 设计参数PKPM 设计参数楼层组装—设计参数a.总信息1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。
2.结构主材(钢筋混凝土,砌体,钢和混凝土)。
3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。
4.底框层数,地下室层数按实际选用。
5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。
6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。
7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。
b.材料信息1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。
2.钢材容重取 78。
3.梁柱主筋类别,按设计需要选取。
优先采用三级钢,可以节约钢材。
SATWE设计参数a.总信息1.水平力与整体坐标夹角(度),通常采用默认值。
(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数)2.混凝土容重取 26-27,钢材容重取 78。
3.裙房层数,转换层所在层号,地下室层数,均按实际取用。
(如果有转换层必须指定其层号)。
4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。
5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。
6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。
最全PKPM钢结构计算
最全PKPM钢结构计算PKPM做钢结构的经验集萃1、优化设计并非是把别人的设计拿过来,按照原设计思路死扣用钢量(俗称“蚊子腿上剔精肉”),因为这样通常大幅度降低了原设计的安全度,“荷载优化”是选取适当的荷载,应当兼顾业主对结构小幅改动的可能性,比如吊挂灯具、功能分区重新布局。
把恒载取得很小,用钢量没有减小太多,功能限制则限制太死。
优化首先考虑变化方案,简化结构传力模式和传力途径,做到大处节省,具体到杆件节点则要放宽。
如果原结构各部件安全储备相差严重时,可以选择一个合适的安全储备标准来调整各构件型号,该加大的加大,该减小的减小。
结构安全是整体安全,个别杆件强大没啥用。
2、《建筑工程施工质量验收统一标准》(GB50300-2001)5.0.6条:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。
一级建造师《项目管理》中讲:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。
对未达要求的行为承担“违约责任”。
3、网架焊接球如果采用压制钢板制作,钢板厚度公差接近±2.5mm,《强规》规定偏差不大于13%和1.5mm。
怎么办呢?制作时可以把钢板加厚1mm就可以避质检找麻烦了。
4、设置20吨以上的吊车的厂房在国内不允许按《门式刚架规程》设计,主要在于国内吊车梁安装偏差和吊车轨道安装偏差造成卡规,使水平力增加4-5倍,导致厂房剧烈晃动,没法正常使用。
总之,任何先进的设计方法都无法超越实际施工水平来实现,要求符合国情(或者“公司加工实力”)。
比如对20吨驾操吊车的门架按美国规范控制柱头位移为H/240(国内H/400),晃动得没人愿意驾操,省那一点点钢材和厂房适用性相比就显“设计扣到家”有多么可笑了。
5、什么样的维护系统需要考虑阵风系数?(1)、对脆性材料。
如玻璃幕墙,必须采用阵风系数。
(2)、对阵风作用下,对荷载临时提高能够承受的钢材等,不需要考虑阵风系数。
(3)、不该考虑阵风系数的维护系统考虑了阵风系数,安全度比主结构高出一倍,不利于主体安全。
PKPM钢结构计算实例
PKPM钢结构计算实例钢结构计算是指通过应用力学原理和相关设计规范,对钢结构进行受力分析、计算和设计的过程。
钢结构计算是确保钢结构安全可靠的重要环节,也是建筑工程中的核心内容之一、本文将以PKPM钢结构计算软件为例,介绍钢结构计算的主要内容和步骤。
1.设计输入在进行钢结构计算之前,首先需要进行设计输入。
设计输入包括工程的基本信息、结构的几何尺寸和截面尺寸、材料的力学性质和工况等。
PKPM软件提供了直观简便的图形用户界面,可以方便地输入设计参数。
2.结构受力分析在设计输入完成后,需要进行结构的受力分析。
受力分析是指根据工况和结构的初始状态,对结构的受力情况进行计算和分析。
PKPM软件提供了静力分析、动力分析和地震分析等功能,可以对结构的受力情况进行全面的分析。
3.构件设计和验算钢结构中的构件包括梁、柱、悬挑梁、桁架等。
在进行构件设计和验算时,需要根据受力分析的结果和设计规范,计算构件的强度和稳定性。
PKPM软件提供了钢结构构件的设计和验算功能,可以快速准确地计算构件的承载力和变形。
4.钢结构整体设计和验算完成构件的设计和验算后,需要进行钢结构整体的设计和验算。
钢结构的整体设计和验算是指对结构的整体强度、稳定性和刚度进行计算和分析。
PKPM软件提供了钢结构整体的设计和验算功能,可以对结构的整体安全性进行评估。
5.结果分析和优化设计完成结构的计算和分析后,需要对计算结果进行分析和评估。
结果分析是指对结构的强度、刚度、稳定性和变形进行评价和分析。
PKPM软件提供了强度验算、变形分析和稳定性分析等功能,可以帮助工程师进行结构优化设计。
6.结果输出和工程报告最后,需要将结构的计算结果进行输出和整理,编写工程报告。
PKPM 软件提供了结果输出和报表功能,可以将计算结果导出为Excel表格和Word文档,方便整理和交流。
总结起来,PKPM钢结构计算软件是一款专业的钢结构计算和设计工具,能够帮助工程师进行结构受力分析、构件设计和整体设计等工作。
PKPM-STSL钢结构算量软件演示流程
05
结果查看与导出
结果查看方式
图形查看
软件支持以三维图形的方式展示 计算结果,用户可以直观地查看 结构的应力分布、位移变化等。
数据表格
软件提供详细的数据表格,用户 可以查看各部分的应力、应变、 位移等详细数据。
曲线图
软件支持生成各种数据曲线图, 用户可以通过曲线图查看数据的 变化趋势。
结果导出格式
安装完成
安装程序自动关闭,软件已成功安装在计算机上。
软件启动流程
打开软件安装目录
找到安装的PKPM-STSL钢结 构算量软件所在的文件夹。
1
运行软件
双击软件启动图标,开始启 动软件。
加载软件界面
等待软件加载,直至软件界 面完全显示。
开始使用软件
在软件界面中,根据需求选 择相应的功能模块,开始进 行钢结构算量工作。
兼容性
确保与其他软件的兼容性,方便用户在不同软 件间进行数据交换。
导入流程
提供详细的导入流程指南,帮助用户快速完成模型数据的导入。
模型编辑与修改
实时联动
支持对模型进行实时编辑和修改,确保数据的一致性和准确性。
参数化编辑
提供参数化编辑工具,方便用户对模型进行参数化调整和优化。
历史记录管理
保留历史记录,方便用户回溯和对比不同版本之间的差异。
04
算量设置与计算
材料设置
钢材类型
选择适用的钢材类型,如Q235、 Q345等,并设置相应的材料属性, 如密度、弹性模量、泊松比等。
连接方式
根据实际工程需要,选择合适的连接 方式,如焊接、螺栓连接等,并设置 相应的连接参数。
计算参数设置
截面类型
根据实际工程需要,选择合适的截面类型,如H型钢、工字钢等,并设置相应的截面参数。
2024最新PKPM钢结构计算经验全集
2024最新PKPM钢结构计算经验全集1.设计前的准备工作在进行PKPM钢结构计算前,需要进行一些准备工作。
首先要明确设计要求和标准,如国家标准、建筑规范等。
其次要对设计的结构进行充分的了解,包括结构形式、截面形状、荷载情况等。
还要了解PKPM软件的使用方法和计算原理。
2.结构模型的建立在PKPM软件中建立结构模型时,应按照实际结构的情况进行准确的建模。
要选择合适的材料性能参数,包括钢材的弹性模量、屈服强度、抗拉强度等。
3.荷载的施加在进行钢结构计算时,首先要施加正确的荷载。
应根据实际使用情况,包括静载、动载和温度荷载等,合理设置荷载参数。
对于地震作用的计算,应根据规范要求选择设计地震动参数。
4.结果的分析与判断在PKPM软件中进行结构计算后,应仔细分析计算结果。
要对结构内力进行检查,确保结构的强度、刚度和稳定性等满足设计要求。
如果结构存在问题,如局部屈曲、应力过大等,要重新优化设计。
5.设计注意事项钢结构计算过程中需要注意以下几个方面。
首先是梁的计算,应根据梁的受力特点选择合适的截面形式和尺寸。
其次是柱的计算,应根据柱的轴力和弯矩确定合适的截面尺寸。
还要注意钢构件的连接方式和节点设计,确保连接处的强度和刚度。
6.设计案例分析为了更好地理解PKPM钢结构计算的应用,可以通过一些实际的设计案例进行分析。
可以选择一些具有代表性的钢结构项目,如钢框架、钢桥梁、钢屋面等,分析其受力情况、结构设计和计算结果等。
通过实例分析,可以更加直观地了解PKPM软件在钢结构计算中的应用。
7.设计中的常见问题及解决方法在使用PKPM软件进行钢结构计算过程中,可能会遇到一些常见的问题。
如其中一构件出现不平衡荷载、模型收敛失败等。
对于这些问题,可以通过调整荷载设置、优化结构模型和调整参数等方式解决。
通过以上的经验全集,可以帮助工程师更好地应用PKPM软件进行钢结构计算。
这些经验可以帮助工程师提高计算的准确性和效率,同时保证结构的安全性和可靠性。
pkpm钢结构设计如何生成计算书
pkpm钢结构设计如何生成计算书1. PKPM钢结构设计计算书的概述计算书是钢结构设计中非常重要的一部分,它是一种以数字、图形和文字形式表达对结构分析、设计过程的总结和结果的书面文献。
PKPM钢结构设计计算书是根据《钢结构设计规范》等国家标准,结合PKPM软件应用程序,进行计算和分析后形成的。
PKPM钢结构设计计算书可分为主要计算书和附录计算书两部分。
前者包括结构框架、屋面、空间柱、楼板、梯级、扶手等部分,后者包括荷载计算、钢材计算、连接件计算、地震监视、斜杆和索条等部分。
本文将从以下几个方面介绍PKPM钢结构设计计算书的编写过程。
2. PKPM钢结构设计计算书的编写2.1 测量和获取设计数据在编写PKPM钢结构设计计算书之前,需要进行测量和获取设计数据。
在这一过程中需要对建筑结构进行详细的调研,包括了解建筑物的形状、尺寸、结构构成、建筑环境及使用功能等信息。
还需要获取建筑物的荷载信息,确定荷载计算,包括自重、活载、建筑物使用荷载、风荷载、地震荷载等。
这部分设计数据是计算书编写的重要前提。
2.2 计算模型的建立和计算通过PKPM软件,建立相应的计算模型。
目前,常用的是二维和三维空间有限元模型。
在建立模型时,需考虑结构体系、荷载等因素,并根据要求设置参数。
然后进行荷载计算,包括荷载作用点、作用面及大小方向等信息。
接着进行静力弹性分析,得到结构内力与变形等参数,通过较为准确的计算方法,得到各个节点、构件所受内力,即完成了PKPM钢结构计算书主要内容的计算。
2.3 计算结果的整理和格式化通过PKPM软件得到的是一系列内力、外力大小方向等参数,需要将其整理、计算、分类等,并根据钢结构设计规范进行验算和评价,最后结合PKPM钢结构设计计算书的需求,对数据进行格式化,变成可读性较好的文本格式和表格格式。
在计算书格式化过程中,应根据不同章节设置相应的标准格式,如字体、字号、对齐方式、引用方式、图表编号及名称等,以使计算书具有一致性、整体性和规范性。
PKPM钢结构框架柱的计算长度系数 该怎么选取呢
钢结构框架柱的计算长度系数该怎么选取呢?是按照程序默认值呢(没有选取P-△二阶效应), 还是改为1 ,1(选取P-△二阶效应),呢?1.如果是高层钢结构:可以按照《高层民用建筑钢结构技术规程》JGJ99-98的6.3.2条执行。
简言之:(1)有支撑或剪力墙的结构,层间位移角小于1/250时,可以取计算长度系数1.0;(2)纯框架体系,层间位移角小于1/1000时,按照无侧移的公式(6.3.2-2)。
2.如果是多层钢结构:可以按照《钢结构设计规范》GB50017-2003的5.3.5条执行。
(1)无支撑纯框架:1)采用一阶弹性分析方法,按照附录D表D-2;2)采用二阶弹性分析方法,即在每层柱顶附加考虑公式3.2.8-1的假象水平力,框架计算长度取1.0(此方法也就是很多人认为的P-△二阶效应)(2)有支撑框架:分为强支撑(无侧移)和弱支撑。
现在谈谈P-△二阶效应计算方法:常用有以下几种:1.《高层民用建筑钢结构技术规程》JGJ99-98第5.2.11的条文说明的方法2.《钢结构设计规范》GB50017-2003第3.2.8条的方法3.《高层建筑混凝土结构技术规程》JGJ3-2002第5.4.3条的方法4.Wilson教授提出的等效几何刚度的方法(可以参看Wilson著《结构静力与动力分析》第11章,也可以参看徐培福等《复杂高层建筑结构设计》第五章第三节,另外也可以参考高小旺等《建筑抗震设计规范理解与应用》2.5节)PKPM等软件考虑P-△二阶效应计算方法采用第4种,即等效几何刚度法。
因此不能将PKPM软件的“P-△二阶效应计算”与柱计算长度系数联系起来。
我个人认为:1.对于高层钢结构,尤其是比较重要的高层钢结构、超高层钢结构,一般需要考虑P-△二阶效应,而且可以使用PKPM计算,即采用Wilson 教授的方法,与计算长度系数没有关系。
2.PKPM讲稿上的计算长度判断方法可以采用:(1)当楼层最大杆间位移小于1/1000时,可以按无侧移设计;(2)当楼层最大杆间位移大于1/1000但小于1/300时,柱长度系数可以按1.0设计;(3)当楼层最大杆间位移大于1/300时,应按有侧移设计。
pkpm钢结构高厚比验算
pkpm钢结构高厚比验算(实用版)目录1.PKPM 钢结构高厚比验算的概念和意义2.高厚比的计算方法和限值3.在 PKPM 软件中进行高厚比验算的步骤4.高厚比验算中常见的问题及解决方法5.总结正文正文”。
请从以下文本开始任务,文本:pkpm 钢结构高厚比验算一、PKPM 钢结构高厚比验算的概念和意义PKPM 钢结构高厚比验算是指在 PKPM 软件中对钢结构的腹板高度与厚度之比进行计算和验算,以确保钢结构的稳定性和安全性。
高厚比是专门指腹板的局部稳定,通常是指腹板高度比上腹板厚度。
在钢结构设计中,高厚比的合理控制至关重要,因为它直接影响到钢结构的稳定性和安全性。
二、高厚比的计算方法和限值在钢结构设计中,高厚比的计算方法和限值通常遵循相关的设计规范。
计算方法一般为:高厚比 = 腹板高度 / 腹板厚度。
根据不同的设计要求和规范,高厚比的限值会有所不同。
通常情况下,高厚比的限值应控制在100 以内,以确保钢结构的稳定性和安全性。
三、在 PKPM 软件中进行高厚比验算的步骤1.打开 PKPM 软件,并导入需要进行高厚比验算的钢结构模型。
2.找到“高厚比验算”功能模块,并点击进入。
3.在“高厚比验算”界面中,输入相关的设计参数,如腹板高度、腹板厚度等。
4.点击“计算”按钮,软件将自动进行高厚比验算,并显示结果。
5.根据验算结果,如果高厚比超过限值,需要对钢结构设计进行调整,以确保高厚比的合理控制。
四、高厚比验算中常见的问题及解决方法在 PKPM 钢结构高厚比验算中,可能会遇到一些问题,如高厚比超限等。
针对这些问题,可以采取以下解决方法:1.调整腹板高度和厚度:通过调整腹板高度和厚度,使得高厚比控制在合理范围内。
2.优化钢结构设计:对钢结构设计进行优化,简化结构传力模式和传力途径,以减小高厚比。
3.咨询专业工程师:如果高厚比问题无法解决,可以咨询专业工程师,寻求专业的技术支持。
五、总结PKPM 钢结构高厚比验算是确保钢结构稳定性和安全性的重要环节。
PKPM钢结构计算
你好,介绍如下一、建模1、重新编排PKPM主界面,项目清晰,操作方便。
2、仿Auto CAD全新操作界面,动态查询构件及菜单信息。
3、改进正交轴网对话框,可以定义、标注上下开间不对称建筑,任意拼接轴网。
4、采用对话框方式对构件边定义边布置,可以对构件排序、检索、查询。
5、增加通过抬高上节点标高,按斜率成批输入斜梁功能。
6、将次梁、层间梁布置提前到与主梁一同布置,使用更便捷。
7、增加楼板自重计算功能,由用户选择使用。
8、将梁、柱、墙、节点、次梁的荷载输入修改,前移到与建模同时进行。
9、完善了原有的楼层拼装拷贝、工程拼装拷贝功能。
10、可以随时动态观看全楼模型三维渲染造型效果。
11、可以转换DWG图形为PKPM模型数据及录入异形柱截面。
二、计算1、SATWE软件增添了新的求解器,运算速度大大提高,对于大型项目计算十分有利。
2、允许对任意单构件定义抗震等级、砼强度等级及钢材等级。
3、在配筋简图中,标出了柱非加密区箍筋面积和节点核心区箍筋面积,标出了地下室剪力墙平面外的竖向分布筋面积。
4、在“特殊构件定义”中,增加了门式钢架梁、组合梁、门式钢架柱定义,并对门式钢架梁柱、组合梁进行验算和配筋。
5、在“荷载组合”参数定义中,增加人工自定义组合系数功能。
6、增加在梁和节点上定义特殊风荷载。
7、增加温度应力、支座位移、弹性支座的分析计算功能。
8、增加并改进了对水平风荷载、多塔结构、变截面构件、方钢管混凝土截面构件、刚性杆、水平支撑、柱间支撑的分析验算功能。
9、增加框架整体稳定验算功能,做到高规第5.4.4强制性条文规定的验算要求。
10、增加楼层层间受剪承载力验算功能。
11、增加人防荷载按房间定义的功能。
12、改进异型柱构件配筋计算,固定钢筋和分布钢筋的直径可不同。
13、改进受弯构件人防配筋计算,可按容许延性比要求进行优化筋配计算。
14、改进楼板内力及挠度计算,可以作人防计算并生成计算书。
15、弹塑性动力时程分析软件EPDA更加实用化,并已分析计算多项实际工程。
PKPM计算全参数
PKPM计算全参数PKPM(Physical Diagram Analysis Method)是一种针对钢结构进行结构分析和设计的计算方法。
它是根据物理图解分析的原理和方法,通过对结构的内力平衡条件和位移协调条件进行分析,来计算结构的受力状态和变形情况的一种理论计算方法。
在PKPM计算中,需要考虑的参数较多,下面将详细介绍PKPM计算的全参数。
1.结构材料参数:-弹性模量(E):钢结构的弹性模量是指单位面积受力后产生的应力与应变之比,是材料刚性和变形能力的量度。
根据每种钢材料的不同,其弹性模量的数值也会有差异。
-屈服强度(σy):钢材的屈服强度是指单位面积受力时,钢材开始发生塑性变形的应力值。
不同类型的钢材具有不同的屈服强度。
-破坏应变(εu):钢材的破坏应变是指材料发生破坏时的应变值。
不同类型的钢材在破坏时表现出不同的应变值。
2.截面参数:-截面面积(A):截面面积是指钢结构截面上各个部分的面积之和,是计算受力和弯曲等问题时的重要参数。
-惯性矩(I):惯性矩是指钢结构截面对于弯曲应力分布的阻力能力,是刚度和变形性能的一个重要指标。
3.荷载参数:-静载荷(G):静载荷是指所有稳定作用于结构上的自重和外部荷载的总和。
静载荷的大小直接影响结构的受力状态。
-活载荷(Q):活载荷是指结构在使用过程中受到的非永久性、可变化的荷载,如人员、货物等。
活载荷的大小会影响结构的变形和破坏。
4.边界条件:-支座刚度(k):支座刚度是指结构受力点的支座的刚度,是模拟结构与地基之间约束程度的参数。
支座刚度的大小会影响结构的位移和变形情况。
5.结构拆装参数:-焊接强度(τ):焊接强度是指焊接接头的承载能力和破坏程度的指标,是决定焊接接头在使用过程中是否安全可靠的参数。
-螺栓预紧力(N):螺栓预紧力是指通过对螺栓施加预紧力来使螺栓接头形成一定的摩擦力,从而使结构受力的一种方法。
螺栓预紧力的大小会影响结构的受力和变形情况。
6.安全系数:-安全系数(γ):安全系数是指结构或材料承受的荷载与其承载能力之间的比值,用于保证结构在使用过程中的安全性。
PKPM钢结构计算书
PKPM钢结构计算书####### ### ### ###### ## ######## ## #### #### ## #### ## ######### ## ### ## ###### ## ## ######## ## # ## ## ######## #### ## ## ####### ## ## ##====================================== ======================================== BUILDING STRUCTURE ANALYSIS PROGRAMVersion 7.0Institute of Building Structure,China Academy of Building Research.Copyright (C) 1997-2011. All rights reserved.Address : 30,Bei San Huan Dong Road,Beijing,P.R.China. Post : 100013Telephone : (010)84276262,64517586Project Name : 大壳TBOutput File Name : 大壳TB.JSSCurrent Date : 2016/ 4/25Current Time : 21: 4:35PMSAP 计算书目录________________________(ITEM001) 系统总信息(ITEM002) 本工程中各工况的设定(ITEM003) 构件内力基本组合系数(ITEM004) 结构质量分布表(吨)(ITEM005) 各楼层各类构件数量及材料统计(ITEM006) 各层弹性楼板面积统计(ITEM007) 各层风荷载(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比(ITEM012) 各地震方向参与振型的有效质量系数(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数(ITEM015) 各楼层的总剪力和总弯矩(ITEM016) 结构周期及振型方向(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数(ITEM019) 水平荷载作用下的楼层位移及位移比(ITEM020) 风荷载作用下结构顶点最大加速度(m/s**2)(ITEM021) 结构分塔剪重比(ITEM022) 各楼层抗剪承载力及与上层承载力的比值(ITEM023) 大震下弹塑性层间位移角(简化方法)(ITEM024) 抗倾覆验算(ITEM025) 整体稳定刚重比验算(ITEM026) 剪力墙底部加强区范围(ITEM027) 结构时程响应汇总第 1 页(ITEM028) 各层框架剪力及倾覆弯矩百分比(ITEM029) 框支框架地震剪力及倾覆力矩百分比(ITEM030) 高位转换时转换层上部与下部结构的剪弯刚度比(ITEM031) 框架承担的倾覆力矩百分比(用V*H求和方法计算)(ITEM001) 系统总信息________________________1.总信息建筑物所在地区 (0全国1上海) IAREA= 0 (全国) 材料(0=砼1/2=钢+砼3=钢4=砌体) IEARTHFCE= 3 (无填充墙的钢结构)结构类型(1框架2框剪3框架筒...) KIND_TB= 1 (框架结构)结构规则性(0规则1立2平3立平) IREGULAR= 0 (立面平面均规则)多层或高层(0=高层1=多层) MULTI_HEI= 0 (高层结构)是否复杂高层结构(1/0) ICOMPLICATED= 0 (非复杂高层结构) 地震作用方向数 NEDIR= 2是否考虑竖向地震作用(1/0) I_EZ_EZZ= 0 (不考虑竖向地震作用) 是否考虑双向地震效应(1/0) IEQUAKE_XY= 0 (不考虑双向地震效应)是否考虑P-DELT效应(1/0) IPDELT= 0 (不考虑P-DELTA效应) 是否自动考虑梁柱刚域(1/0) IAUTORIGID= 0 (不考虑梁柱交接部位刚域)考虑施工影响标志(0/1/2/3) IIISGYX= 1 (施工模拟算法1)特征值算法选择(1=Guyan 2=Mritz) IEIGEN= 1 (Guyan 方法) 刚度阵存储(1=双精度0=单精度) IREADWRITE= 0 (单精度计算模式)混凝土容重(kN/m**3) ROU_CONCRETE= 25钢材容重(kN/m**3) ROU_STEEL= 78.500结构是否按中/大震不屈服设计(1/0) IMIDEAR= 0 (否)框架梁端配筋考虑受压钢筋 NGB_CONSIDERED= 0 (框架梁端配筋不考虑受压钢筋)楼层刚度算法(1剪切2剪弯3抗规) ISTIFRATIO= 3 (楼层刚度比采用层间剪力比层间位移算法)梁和弹性楼板的竖向定位BEAM_EZ= 0 (梁和弹性楼板的中性面与柱顶对齐)开洞墙梁转框架梁的跨高比WBTOBEAM= 0 (不启用墙梁转框架梁功能)钢构件净毛面积比 RNET= 0.900钢柱长度系数计算方式 ICLEN_COEF= 0 (钢柱计算长度系数采用有侧移算法)结构是否按中/大震弹性设计 IMIDEAR_ELA= 0 (否)第 2 页2.剪力墙信息剪力墙模型(0:细分1:简化) IWALLMODEL= 1 (简化模型)墙水平边界细分尺寸(m) WSIDE_LENX= 1墙垂直边界细分尺寸(m) WSIDE_LENY= 1墙侧节点是否预先消去(1/0) IWPRESOLVE= 1 (墙侧节点预先消去)判断边缘构件时考虑轴压比(1/0) K646TAB= 03.楼板信息自动形成刚性楼板假定(2/1/0) IRIGIDSLAB= 2 (考虑自然刚性楼板假定)计算楼板应力和配筋(2/1/0) IPOLY_REIN= 1 (计算楼板应力和配筋)楼板网格类型(0/1/2/3) IPOLY_MESH= 1 (非规则网格)采用强制刚性楼板假定(1/0) JRIGIDSLAB= 0 (不采用强制刚性楼板假定)4.温度荷载信息温度荷载工况数 NTCASE= 0温度荷载组合系数 T_COM= 0混凝土弹性模量折减系数 E_REDUCE= 1温度场类型(0=CONTINUOUS;1=STEP) ITEMTYPE= 0 (连续型温差场)砼构件温度效应折减系数 TEM_REDUCE= 0.3005.地震反应谱分析信息地震分组(0,1,2代表1,2,3组) NEARFAR= 0 (第一组)地震烈度 LIEDU= 7场地类型 IGRDTYPE= 2振型效应组合方式(0=CQC;1=SRSS) ICOMTYPE= 0 (CQC 组合方式)框架抗震等级 IEFR= 1剪力墙抗震等级 IEW= 2振型阻尼比 DAMP= 0.050参与振型个数 NMODE= 15周期折减系数 REDUCET= 1地震作用放大系数 ELDCOEF= 1活荷载质量折减系数 RLOAD_MASS_LIVE= 0.500是否考虑偶然偏心地震(0不考虑) NEDIRA= 0 (不考虑偶然偏心地震)自动计算最不利地震方向(1/0) IAUTOEANGLE= 0 (程序不自动考虑最不利地震工况EXO和EYO)水平地震影响系数最大值 (g) ALFMAX= 0.080特征周期 (s) TG= 0.350结构阻尼类型(0/1/2/3/4) KDAMP= 0确定结构阻尼的第一频率序号指定 IOMIGA1= 0确定结构阻尼的第二频率序号指定 IOMIGA2= 0是否采用抗规5.2.5条的剪重比调整IAUTO525= 2 (考虑抗规5.2.5 条的剪重比调整)自定义地震设计谱插值点数 NPSPEC= 0 (采用抗第 3 页震规范地震设计谱)钢框架抗震等级 IE_STS= 1抗震构造措施抗震等级提高 NDEGREE_GZ= 0竖向地震作用系数底线值 EV_COEF_MIN= 06.风荷载信息风荷载数 NWINDLOAD= 2第 1 风荷载工况号 LDN= 3第 1 风荷载作用角度(度) ALF= 0第 1 风荷载基本风压(kN/m**2) W0= 0第 1 风荷载体型系数 RMUS= 1.300第 1 风荷载地面粗糙度类别 ISMOOTH= 3第 1 风荷载作用方向结构周期(s) T= 0.200第 2 风荷载工况号 LDN= 4第 2 风荷载作用角度(度) ALF= 90第 2 风荷载基本风压(kN/m**2) W0= 0第 2 风荷载体型系数 RMUS= 1.300第 2 风荷载地面粗糙度类别 ISMOOTH= 3第 2 风荷载作用方向结构周期(s) T= 0.200竖向风荷载数 NZWINDLOAD= 0风荷载作用下结构的阻尼比 DAMP_WIND= 0.050舒适度验算采用的结构风压(kN/m**2) W0ACC= 0舒适度验算采用的结构阻尼比 DAMP_WIND_SSD= 0.0207.活荷信息梁活荷不利布置考虑至几层 LIVE23_LEV= 0折减墙柱设计活荷(1/0) IREDUCE_CWLL= 0 (不折减墙、柱设计活荷)折减传给基础的活荷(1/0) IREDUCE_BASELL= 0 (不折减传给基础的活荷)1层折减系数 REDUCE_LL1= 12-3层折减系数 REDUCE_LL23= 0.8504-5层折减系数 REDUCE_LL45= 0.7006-8层折减系数 REDUCE_LL68= 0.6509-20层折减系数 REDUCE_LL920= 0.60020层以上折减系数 REDUCE_LL20UP= 0.550梁活荷折减的临界从属面积(m**2) B_ATT_A= 25梁活荷折减系数 BEAM_COEF_LL= 0.900 (当梁的从属面积超过临界从属面积时起作用)8.地下室信息地下室层数 NBASEMENT0= 0地面Z坐标(m) Z_GROUND= 63.885X向回填土刚度系数 (KN/m/m**2) SOILKX= 0 Y向回填土刚度系数 (KN/m/m**2) SOILKY= 0 地下室沿X向的宽度(m) WIDTH_X= 113.422 地下室沿Y向的宽度(m) WIDTH_Y= 113.422 回填土高度(m) [结构底面到地面的距离] SH= 0 回填土X向总刚度值(KN/m) RKX= 0回填土Y向总刚度值(KN/m) RKY= 0X向受回填土约束的节点总数 NPOINTX= 0Y向受回填土约束的节点总数 NPOINTY= 0顶部回填土刚度折减系数 TSOIL_FACTOR= 1 第 4 页竖向人防荷载工况号 LDN= 0横向人防荷载工况号 LDNLAT= 0人防等级 NDEGREE= 5人防层数 NST= 0外墙荷载(KN/M**3) QLAT= 0顶板荷载(KN/M**2) QTOP= 0水土压力工况号 LDN= 0墙面外保护层厚度(M) DS_WALL= 0.035回填土密度 (t/m**3) ROU_SOIL= 1.800室外地坪标高(M) HSOIL= -0.350地下水位标高(M) HWATER= -20回填土侧压力系数 PCOEF= 0.500室外地面附加荷载(KN/M**2) Q_GROUND= 0 9.计算调整信息0.2V0剪力调整分段数 NSEG02Q= 0塑性梁端负弯矩调幅系数 CBL= 0.850梁设计弯矩放大系数 CLL= 1连梁刚度折减系数 BEC= 0.700梁刚度放大系数下限值 BEZ_MIN= 1梁刚度放大系数上限值 BEZ_MAX= 3梁扭矩折减系数下限值 BET_MIN= 0.400梁扭矩折减系数上限值 BET_MAX= 1转换层层号 ITFLOOR= 0结构重要性系数 STRU_IMPORTANCE= 1强制指定的薄弱层个数 NWEAKST= 0指定的底部加强区起算层号ISUB0_STRENGTHEN= 1 指定的底部加强区终止层号ISUB1_STRENGTHEN= 0 薄弱层地震效应调整系数 COEF_WEAKST= 1.250考虑结构使用年限的活荷调整系数FLIVE_COEF= 1 风荷载内力放大系数 FWIND_COEF= 1墙刚度折减系数 SHEARWALL_STIF_COEF= 1柱轴压比按纯框架结构控制 IACR_TO_FRAME= 0强制指定的约束层个数 NRES_FLOOR= 0强制指定的过渡层个数 NGD_FLOOR= 0嵌固端所在层号 ISUB_FIX= 0按抗规6.1.14条调整地下室顶板梁内力 K6114= 0加强层个数 NJQ= 0框支柱剪力调整系数上限 COEF_KZZ02Q_MAX= 5 框架0.2V0调整系数上限 COEF_KJ02Q_MAX= 2 10.配筋设计信息柱主筋级别 AGCB= 3柱箍筋级别 AVCB= 3墙主筋级别 AGW= 3墙水平分布筋级别 AVW= 3墙竖向分布筋配筋率 UTW= 0.003楼板钢筋级别 AGP= 3梁箍筋加密区间距(mm) BGUJM= 100柱箍筋加密区间距(mm) CGUJM= 100墙水平筋间距(mm) WGUJM= 200柱箍筋类型(0普通1复合2...) IGUJIN_TYPE= 0 (普通箍)柱配筋算法(0=双偏压1=单偏压) IUNIMOMENT= 1 (柱主筋第 5 页计算采用单偏压算法)梁保护层厚度(mm) DS_BEAM= 35柱保护层厚度(mm) DS_COLU= 35板保护层厚度(mm) DS_SLAB= 20剪力墙边缘构件箍筋级别 AVBMEM= 3实配钢筋超配系数 GJCPCOEF= 1.150墙竖向分布筋级别 AVW_VER= 3梁主筋级别 AGBB= 3梁箍筋级别 AVBB= 311.时程分析信息时程分析标志(1考虑0不考虑) IDYN= 0 (不考虑时程分析计算) 地震波作用方向数 NDDIR= 2地震波条数 NWAVE= -312.荷载分项系数及组合值系数永久荷载分项系数(永久荷载控制) GAMA_G1= 1.350永久荷载分项系数(可变荷载控制) GAMA_G2= 1.200活荷载分项系数 GAMA_L = 1.400活荷载组合值系数 PSI_L = 0.700风荷载分项系数 GAMA_W = 1.400风荷载组合值系数(不与地震组合) PSI_W1 = 0.600风荷载组合值系数(与地震组合) PSI_W2 = 0.200水平地震作用分项系数 GAMA_EH= 1.300竖向地震分项系数(不组合水平地震)GAMA_EV1= 1.300竖向地震分项系数(组合水平地震) GAMA_EV2= 0.500活荷载准永久值系数 PSIQ_L= 0.500风荷载准永久值系数 PSIQ_W= 0地震荷载准永久值系数 PSIQ_E= 0活荷载频遇值系数 PSIF_L= 0.600风荷载频遇值系数 PSIF_W= 0.400地震荷载频遇值系数 PSIF_E= 0.100温度荷载准永久值系数 PSIQ_TEM= 0温度荷载频遇值系数 PSIF_TEM= 0温度荷载组合值系数(与风组合) PSI_TEMW= 0温度荷载组合值系数(与地震风组合)PSI_TEME= 013.砌体结构信息砌块种类(0=烧结砖1=蒸压砖2=砼砌块)MBLOCK= 0 (烧结砖) 砌块容重(KN/M**3) ROU_BLOCK= 0构造柱刚度折减系数 RCON= 0托砖墙的梁的恒活内力放大系数 RCONBEAM= 0底部框架层数 NFST= 0砌块种类变化起始层号 MFST= 0第一种砌块弹性模量(N/MM**2) EBLOCK1= 0第一种砌块抗压设计强度(N/MM**2) FCBLOCK1= 0第一种砌块抗拉设计强度(N/MM**2) FTBLOCK1= 0第一种砌块抗剪设计强度(N/MM**2) FVBLOCK1= 0第二种砌块弹性模量(N/MM**2) EBLOCK2= 0第二种砌块抗压设计强度(N/MM**2) FCBLOCK2= 0第二种砌块抗拉设计强度(N/MM**2) FTBLOCK2= 0第 6 页第二种砌块抗剪设计强度(N/MM**2) FVBLOCK2= 0 (ITEM002) 本工程中各工况的设定__________________________________工况 1: DL 恒荷载工况 2: LL 活荷载工况 3: WX ( 0.0度) X向风载工况 4: WY ( 90.0度) Y向风载工况 5: EZ Z向地震(抗震规范)工况 6: WZX X正向风载工况 7: WZY Y正向风载工况 8: WFX X负向风载工况 9: WFY Y负向风载工况10: S 用户自定义荷载工况11: LX ( 0.0度) X静震 (对应于EX 地震的静力工况)工况12: PX ( 0.0度) X静震P (对应于EX 地震的正偏心静力工况) 工况13: MX ( 0.0度) X静震M (对应于EX 地震的负偏心静力工况)工况14: LY ( 90.0度) Y静震 (对应于EY 地震的静力工况)工况15: PY ( 90.0度) Y静震P (对应于EY 地震的正偏心静力工况)工况16: MY ( 90.0度) Y静震M (对应于EY 地震的负偏心静力工况)工况17: EX ( 0.0度) X向地震工况18: EY ( 90.0度) Y向地震(ITEM003) 构件内力基本组合系数__________________________________基本组合系数表:1 1.35*DL 0.98*LL2 1.20*DL 1.40*LL 0.84*WX3 1.20*DL 1.40*LL -0.84*WX4 1.20*DL 1.40*LL 0.84*WY5 1.20*DL 1.40*LL -0.84*WY6 1.20*DL 0.98*LL 1.40*WX7 1.20*DL 0.98*LL -1.40*WX8 1.20*DL 0.98*LL 1.40*WY9 1.20*DL 0.98*LL -1.40*WY10 1.00*DL 0.98*LL11 1.00*DL 1.40*LL 0.84*WX13 1.00*DL 1.40*LL 0.84*WY14 1.00*DL 1.40*LL -0.84*WY第 7 页15 1.00*DL 0.98*LL 1.40*WX16 1.00*DL 0.98*LL -1.40*WX17 1.00*DL 0.98*LL 1.40*WY18 1.00*DL 0.98*LL -1.40*WY19 1.20*DL 0.60*LL 0.28*WX 1.30*EX20 1.20*DL 0.60*LL -0.28*WX 1.30*EX21 1.20*DL 0.60*LL 0.28*WY 1.30*EY22 1.20*DL 0.60*LL -0.28*WY 1.30*EY23 1.20*DL 0.60*LL 0.28*WX -1.30*EX24 1.20*DL 0.60*LL -0.28*WX -1.30*EX25 1.20*DL 0.60*LL 0.28*WY -1.30*EY26 1.20*DL 0.60*LL -0.28*WY -1.30*EY27 1.00*DL 0.50*LL 0.28*WX 1.30*EX28 1.00*DL 0.50*LL -0.28*WX 1.30*EX29 1.00*DL 0.50*LL 0.28*WY 1.30*EY30 1.00*DL 0.50*LL -0.28*WY 1.30*EY31 1.00*DL 0.50*LL 0.28*WX -1.30*EX32 1.00*DL 0.50*LL -0.28*WX -1.30*EX33 1.00*DL 0.50*LL 0.28*WY -1.30*EY34 1.00*DL 0.50*LL -0.28*WY -1.30*EY35 1.20*DL 1.40*LL 0.84*WZX36 1.20*DL 1.40*LL 0.84*WFX37 1.20*DL 1.40*LL 0.84*WZY38 1.20*DL 1.40*LL 0.84*WFY39 1.20*DL 0.98*LL 1.40*WZX40 1.20*DL 0.98*LL 1.40*WFX42 1.20*DL 0.98*LL 1.40*WFY43 1.00*DL 1.40*LL 0.84*WZX44 1.00*DL 1.40*LL 0.84*WFX45 1.00*DL 1.40*LL 0.84*WZY46 1.00*DL 1.40*LL 0.84*WFY47 1.00*DL 0.98*LL 1.40*WZX48 1.00*DL 0.98*LL 1.40*WFX49 1.00*DL 0.98*LL 1.40*WZY50 1.00*DL 0.98*LL 1.40*WFY51 1.20*DL 0.60*LL 0.28*WZX 1.30*EX52 1.20*DL 0.60*LL 0.28*WFX 1.30*EX53 1.20*DL 0.60*LL 0.28*WZY 1.30*EY54 1.20*DL 0.60*LL 0.28*WFY 1.30*EY55 1.20*DL 0.60*LL 0.28*WZX -1.30*EX56 1.20*DL 0.60*LL 0.28*WFX -1.30*EX57 1.20*DL 0.60*LL 0.28*WZY -1.30*EY58 1.20*DL 0.60*LL 0.28*WFY -1.30*EY59 1.00*DL 0.50*LL 0.28*WZX 1.30*EX60 1.00*DL 0.50*LL 0.28*WFX 1.30*EX61 1.00*DL 0.50*LL 0.28*WZY 1.30*EY62 1.00*DL 0.50*LL 0.28*WFY 1.30*EY63 1.00*DL 0.50*LL 0.28*WZX -1.30*EX64 1.00*DL 0.50*LL 0.28*WFX -1.30*EX65 1.00*DL 0.50*LL 0.28*WZY -1.30*EY66 1.00*DL 0.50*LL 0.28*WFY -1.30*EY (ITEM004) 结构质量分布表(吨)________________________________第 8 页层号 Xc Yc Zc 层质量累积层质量层扭转质量矩累积层扭转质量矩1 0.286 -0.025 77.263 84.68 84.68 159491.19 159491.19结构的楼层质量比--------------------层号层质量本层质量/下层质量超限提示1 84.685 1.00结构总质量 = 84.7 Ton结构总质心绝对坐标 (XCG,YCG,ZCG) = 0.286 -0.025 77.263结构总质心相对坐标 (XCR,YCR,ZCR) = 0.503 0.500 0.535结构在X向的抗倾覆力矩 X-MOM = 41749.5结构在Y向的抗倾覆力矩 Y-MOM = 41949.0(ITEM005) 各楼层各类构件数量及材料统计__________________________________________层号塔号构件材料数量层高(m)1 1 柱单元 Q345 1672 24.737层号柱纵筋柱箍筋梁纵筋梁箍筋墙主筋墙水平分布筋墙竖向分布筋边缘构件箍筋墙竖筋率(%) 楼板钢筋1 3 3 3 3 3 3 3 3 0.300 3(ITEM006) 各层弹性楼板面积统计__________________________________层号四边形板三角形板多边形板本层面积1 0.000 0.000 0.000 0.000整体结构弹性楼板总面积 = 0.000######## 结构主控自由度总数 = 3246######## 结构出口自由度总数 = 3246######## 结构独立自由度总和 = 3246第 9 页(ITEM007) 各层风荷载________________________*风载* WX 工况 3 方向角 0.0 结构类型1 地面粗糙度3 体型系数1.30 基本风压 0.00地区0 层数 1 周期 0.20层号标高迎风面积风压本层风荷层剪力层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN*风载* WY 工况 4 方向角 90.0 结构类型1 地面粗糙度3 体型系数 1.30 基本风压 0.00地区0 层数 1 周期 0.20层号标高迎风面积风压本层风荷层剪力层弯矩1 24.737 2805.720 0.000 0.000 0.000 0.000该方向总风载= 0.0 kN 总迎风面积= 2805.720 m**2 总附加扭矩= 0.0 kN*m 次方向总风载= 0.0 kN(ITEM008) 各工况外载力系向O(x0,y0,z0)点的静力等效力矢_________________________________________________________(X0,Y0,Z0) = ( 0.000 0.000 0.000)Fx Fy Fz Mx My Mz工况 1 (DL ) 0.000 0.000 -803.467 20.922 242.566 0.000(ITEM009) 按高规附录(E.0.1)条计算的楼层侧向剪切刚度比_________________________________________________________第 10 页*下列输出适用于多塔、广义层结构*层号塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度X向刚度比 Y向总刚度 Y向刚度比1 1 0.755E+07 0.748E+07 0.000E+00 0.000E+00 0.755E+07 1.00 0.748E+07 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号塔号 RX RY1 1 1.25 1.25(ITEM010) 按高规附录(E.0.2)条计算的楼层侧向剪弯刚度比_________________________________________________________*下列输出适用于多塔、广义层结构*层号塔号 X柱刚度 Y柱刚度 X向墙刚度 Y向墙刚度 X 向总刚度X向刚度比 Y向总刚度 Y向刚度比1 1 0.120E+08 0.119E+08 0.000E+00 0.000E+00 0.120E+08 1.00 0.119E+08 1.00注: 下面的RX,RY是本层刚度与上层刚度70%的比值和本层刚度与上三层平均刚度80%的比值中的较小者若某层的RX或RY小于1,则该楼层为柔软层层号塔号 RX RY1 1 1.25 1.25* 程序自动确定的最不利地震方向角 = 4.66 度(ITEM011) 按[楼层剪力/层间位移]计算的楼层刚度比___________________________________________________第 11 页*下列输出适用于多塔、广义层结构*X刚度比 : 本层X刚度比下层X刚度Y刚度比 : 本层Y刚度比下层Y刚度X刚度比1: 本层X刚度比上层X刚度的70%和上三层X刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)Y刚度比1: 本层Y刚度比上层Y刚度的70%和上三层Y刚度平均值的80%中的小者(抗规3.4.3;高规3.5.2-1)X刚度比2: 本层X刚度与本层层高的乘积与上层X刚度与上层层高的乘积的比值(高规3.5.2-2)Y刚度比2: 本层Y刚度与本层层高的乘积与上层Y刚度与上层层高的乘积的比值(高规3.5.2-2)层号塔号 X刚度 Y刚度 X刚度比 Y刚度比 X刚度比1 Y刚度比1X刚度比2 Y刚度比2 刚度比2下限薄弱层调整系?1 1 0.560E+08 0.554E+08 1.00 1.00 1.25 1.25 1.00 1.00 1.50 1.00(ITEM012) 各地震方向参与振型的有效质量系数______________________________________________MODE NO. EX EY1 0.017 0.017 0.005 0.0052 0.005 0.022 0.021 0.0263 0.000 0.023 0.000 0.0264 0.001 0.024 0.000 0.0265 0.004 0.027 0.000 0.0266 0.005 0.032 0.000 0.0267 0.000 0.033 0.006 0.0328 0.000 0.033 0.000 0.0329 0.012 0.045 0.008 0.04010 0.007 0.052 0.011 0.05111 0.000 0.052 0.000 0.05112 0.000 0.052 0.000 0.05113 0.000 0.052 0.000 0.05114 0.000 0.052 0.006 0.05615 0.005 0.057 0.000 0.057第 1 地震方向 EX ( 0.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !第 2 地震方向 EY ( 90.0度) 的有效质量系数为 0.057,参与振型数不够,建议增加振型数重算 !(ITEM013) 各振型的基底地震力(按抗规5.2.5调整前)___________________________________________________第 12 页(X0,Y0,Z0) = 0.000 0.000 63.895*地震工况* 1 EX ( 0.0度)振型号 Fx Fy Fz Mx My Mz1 1.136 0.545 0.000 -7.484 15.826 0.8322 0.272 -0.576 0.000 7.918 3.719 0.3673 0.004 -0.003 0.000 0.042 0.046 -1.9344 0.005 0.001 0.000 -0.018 0.034 0.0155 0.008 0.007 0.000 -0.101 0.034 0.1716 0.002 0.001 0.000 -0.021 -0.022 0.0277 0.000 0.000 0.000 0.002 0.000 0.0018 0.001 0.001 0.000 -0.013 0.022 0.0249 2.000 1.629 0.000 -23.059 28.117 1.07110 1.276 -1.575 0.000 22.308 18.148 0.27411 0.000 0.000 0.000 0.003 0.002 -0.30212 0.000 0.000 0.000 -0.002 0.000 0.00513 0.028 0.004 0.000 -0.068 0.537 0.01514 0.006 -0.052 0.000 0.955 0.094 -0.01115 0.499 0.037 0.000 -0.715 9.059 -0.088 *地震工况* 2 EY ( 90.0度)振型号 Fx Fy Fz Mx My Mz1 0.261 -0.545 0.000 7.592 3.590 0.399第 13 页2 1.220 0.576 0.000 -7.871 16.761 -0.7773 0.003 0.003 0.000 -0.038 0.036 1.6304 0.000 -0.001 0.000 0.007 0.004 0.0035 0.006 -0.007 0.000 0.028 0.082 0.1406 0.001 -0.001 0.000 -0.013 0.012 0.0167 0.000 0.000 0.000 -0.003 -0.019 0.0088 0.001 -0.001 0.000 0.016 0.009 0.0179 1.327 -1.629 0.000 22.904 18.784 0.87210 1.944 1.575 0.000 -22.399 27.532 -0.33911 0.001 0.000 0.000 -0.005 0.008 0.88812 0.000 0.000 0.000 0.000 0.004 0.00913 0.001 -0.004 0.000 0.073 0.009 0.00214 0.480 0.052 0.000 -0.873 8.901 0.09815 0.003 -0.037 0.000 0.671 0.053 -0.006(ITEM014) 按抗规(5.2.5)条计算的地震力放大系数_________________________________________________地震方向地震力放大系数结构最小剪重比规范限值EX ( 0.0度) 3.437 0.465 % 1.600 %EY ( 90.0度) 3.428 0.467 % 1.600 %(ITEM015) 各楼层的总剪力和总弯矩____________________________________第 1 地震方向 EX ( 0.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)层号本方向剪力垂直方向剪力本方向弯矩垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 4.0( 0.02%)第 2 地震方向 EY ( 90.0度) 各楼层的总剪力、总弯矩 (楼层内力截面处的内力)第 14 页层号本方向剪力垂直方向剪力本方向弯矩垂直方向弯矩1 12.9( 1.60%) 0.3( 0.04%) 182.0( 0.91%) 3.3( 0.02%)第 1 地震方向 EX ( 0.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号本方向作用力垂直方向作用力1 12.4 0.3第 2 地震方向 EY ( 90.0度) 各楼层的地震荷载 (楼层内力截面至层顶范围内的地震作用)层号本方向作用力垂直方向作用力1 12.4 0.2(ITEM016) 结构周期及振型方向________________________________周期(s) 方向角(度) 类型扭振成份 X侧振成份 Y侧振成份总侧振成份1 1.213365 87.4 X 0.00 0.82 0.181.002 1.207427 -2.9 Y 0.00 0.18 0.82 1.003 1.159994 98.0 TORSION 0.99 0.00 0.00 0.014 0.981672 0.9 X 0.05 0.84 0.11 0.955 0.961936 -1.3 X 0.13 0.59 0.28 0.876 0.936758 -0.1 X 0.02 0.97 0.01 0.987 0.927494 90.0 Y 0.00 0.02 0.98 1.008 0.884398 90.5 Y 0.19 0.02 0.79 0.819 0.554793 80.7 X 0.00 0.60 0.40 1.0010 0.553835 -4.7 Y 0.00 0.40 0.60 1.0011 0.534496 66.9 TORSION 1.00 0.00 0.00 0.0012 0.513016 21.0 Y 0.27 0.25 0.48 0.7313 0.467615 3.4 X 0.00 0.98 0.02 1.0014 0.465131 91.3 Y 0.00 0.01 0.99第 15 页1.0015 0.463516 1.3 X 0.00 1.00 0.00 1.00(ITEM017) 适用于不规则结构的楼层水平位移及位移角统计________________________________________________________静力工况 WX ( 0.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 WY ( 90.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 0.000 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 0.000 (发生于 1 层 1 塔)静力工况 LX ( 0.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.82 0.79 1.04 1/90495 1/97519 1.08本工况下全楼最大层间位移角= 1/90495 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.038 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.078 (发生于 1 层 1 塔)静力工况 PX ( 0.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.85 0.79 1.08 1/85649 1/98466 1.15第 16 页本工况下全楼最大层间位移角= 1/85649 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.078 (发生于 1 层 1 塔)静力工况 MX ( 0.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.90 0.79 1.13 1/78170 1/97098 1.24 本工况下全楼最大层间位移角= 1/78170 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.130 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.242 (发生于 1 层 1 塔)静力工况 LY ( 90.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.81 0.81 1.01 1/91045 1/92603 1.02 本工况下全楼最大层间位移角= 1/91045 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.010 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.017 (发生于 1 层 1 塔)静力工况 PY ( 90.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.83 0.79 1.05 1/83805 1/93241 1.11 本工况下全楼最大层间位移角= 1/83805 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.049 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.113 (发生于 1 层 1 塔)静力工况 MY ( 90.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 0.84 0.82 1.03 1/84675 1/92175 1.09 本工况下全楼最大层间位移角= 1/84675 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.032 (发生于 1 层 1 塔)第 17 页地震工况 EX ( 0.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 2.99 2.86 1.04 1/23410 1/24714 1.06本工况下全楼最大层间位移角= 1/23410 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.044 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.056 (发生于 1 层 1 塔)地震工况 EY ( 90.0度) 的楼层位移统计层号塔号最大位移平均位移位移比最大位移角平均位移角位移角比值1 1 2.93 2.88 1.02 1/23967 1/24909 1.04本工况下全楼最大层间位移角= 1/23967 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.017 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.039 (发生于 1 层 1 塔)(ITEM018) 单塔多塔通用的框架0.2V0(0.25V0)调整系数_____________________________________________________SFCE_FACTOR1= 0.250 SFCE_FACTOR2= 1.800第 1 地震工况 EX 的0.2V0调整系数层号塔号调整系数框架剪力框架剪力底限本段最大框架剪力基底剪力基底塔块1 1 1.000 0. 0. 0. 687. 1 - 1;第 2 地震工况 EY 的0.2V0调整系数层号塔号调整系数框架剪力框架剪力底限本段最大框架剪力基底剪力基底塔块第 18 页1 1 1.000 0. 0. 0. 689. 1 - 1;(ITEM019) 水平荷载作用下的楼层位移及位移比______________________________________________( 1 ).WX ( 0.0度)风荷载引起的楼层位移层号塔号节点号最大位移平均位移比值节点号最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WX ( 0.0度)风荷载引起的楼层层间位移层号塔号节点号最大层间位移平均层间位移比值节点号最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)本工况下全楼最大层间位移比= 1.000 (发生于 1 层 1 塔)( 2 ).WY ( 90.0度)风荷载引起的楼层位移层号塔号节点号最大位移平均位移比值节点号最小位移1 1 0 0.00 0.00 1.00 0 0.00本工况下全楼最大楼层位移= 0.000 (发生于 1 层 1 塔)本工况下全楼最大位移比 = 1.000 (发生于 1 层 1 塔)WY ( 90.0度)风荷载引起的楼层层间位移层号塔号节点号最大层间位移平均层间位移比值节点号最小层间位移1 1 0 1/999999 1/999999 1.00 01/999999本工况下全楼最大层间位移角= 1/999999 (发生于 1 层 1 塔)第 19 页。
pkpm钢结构高厚比验算
pkpm钢结构高厚比验算摘要:1.pkpm 钢结构高厚比验算的背景和意义2.pkpm 钢结构高厚比的定义和计算方法3.pkpm 钢结构高厚比验算中常见的问题和解决方法4.pkpm 钢结构高厚比验算的实际应用案例5.pkpm 钢结构高厚比验算的注意事项和建议正文:一、pkpm 钢结构高厚比验算的背景和意义pkpm 是一种广泛应用于建筑结构设计的软件,其中钢结构设计是其重要的应用之一。
在钢结构设计中,高厚比验算是一个非常关键的环节。
高厚比是指腹板的局部稳定,通常是指腹板高度比上腹板厚度。
高厚比验算的目的是确保钢结构在受力情况下具有足够的稳定性和安全性。
二、pkpm 钢结构高厚比的定义和计算方法在pkpm 中,高厚比的计算方法是比较腹板的高度和厚度。
具体的计算公式为:高厚比= 腹板高度/ 腹板厚度。
腹板高度是指腹板顶部到腹板底部的垂直距离,腹板厚度是指腹板的厚度。
通常情况下,高厚比的限值是由设计规范规定的,如果计算得到的高厚比超过限值,则需要进行调整。
三、pkpm 钢结构高厚比验算中常见的问题和解决方法在pkpm 钢结构高厚比验算中,常见的问题包括高厚比超限、计算结果不稳定等。
这些问题的解决方法主要包括调整构件规格、修改设计参数、重新进行计算等。
四、pkpm 钢结构高厚比验算的实际应用案例例如,在一座钢结构桥梁的设计中,需要进行高厚比验算以确保桥梁的稳定性和安全性。
通过pkpm 软件进行计算,可以得到桥梁各个部分的高厚比,如果计算结果超过设计规范的限值,则需要进行调整,直到满足设计要求。
五、pkpm 钢结构高厚比验算的注意事项和建议在进行pkpm 钢结构高厚比验算时,需要注意以下几点:1.准确输入构件的规格和材料参数,以确保计算结果的准确性。
2.根据设计规范选择合适的高厚比限值。
3.如果计算结果超过限值,需要及时调整构件规格或设计参数,以确保结构的稳定性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你好,介绍如下
一、建模
1、重新编排PKPM主界面,项目清晰,操作方便。
2、仿Auto CAD全新操作界面,动态查询构件及菜单信息。
3、改进正交轴网对话框,可以定义、标注上下开间不对称建筑,任意拼接轴网。
4、采用对话框方式对构件边定义边布置,可以对构件排序、检索、查询。
5、增加通过抬高上节点标高,按斜率成批输入斜梁功能。
6、将次梁、层间梁布置提前到与主梁一同布置,使用更便捷。
7、增加楼板自重计算功能,由用户选择使用。
8、将梁、柱、墙、节点、次梁的荷载输入修改,前移到与建模同时进行。
9、完善了原有的楼层拼装拷贝、工程拼装拷贝功能。
10、可以随时动态观看全楼模型三维渲染造型效果。
11、可以转换DWG图形为PKPM模型数据及录入异形柱截面。
二、计算
1、SATWE软件增添了新的求解器,运算速度大大提高,对于大型项目计算十分有利。
2、允许对任意单构件定义抗震等级、砼强度等级及钢材等级。
3、在配筋简图中,标出了柱非加密区箍筋面积和节点核心区箍筋面积,标出了地下室剪力墙平面外的竖向分布筋面积。
4、在“特殊构件定义”中,增加了门式钢架梁、组合梁、门式钢架柱定义,并对门式钢架梁柱、组合梁进行验算和配筋。
5、在“荷载组合”参数定义中,增加人工自定义组合系数功能。
6、增加在梁和节点上定义特殊风荷载。
7、增加温度应力、支座位移、弹性支座的分析计算功能。
8、增加并改进了对水平风荷载、多塔结构、变截面构件、方钢管混凝土截面构件、刚性杆、水平支撑、柱间支撑的分析验算功能。
9、增加框架整体稳定验算功能,做到高规第5.4.4强制性条文规定的验算要求。
10、增加楼层层间受剪承载力验算功能。
11、增加人防荷载按房间定义的功能。
12、改进异型柱构件配筋计算,固定钢筋和分布钢筋的直径可不同。
13、改进受弯构件人防配筋计算,可按容许延性比要求进行优化筋配计算。
14、改进楼板内力及挠度计算,可以作人防计算并生成计算书。
15、弹塑性动力时程分析软件EPDA更加实用化,并已分析计算多项实际工程。
16、任意空间建模软件Spas CAD有重大改进,已完成多项奥运标志工程建模任务。
17、增加动态云斑图显示功能,生动形象地表达结构变形和受力状态。
三、出图
1、更新为仿Windows软件操作界面,图形编辑、打印、转换、管理功能大大增强。
2、所有构件(梁、斜支撑、柱、墙等)及钢筋的图层、线宽、颜色、线型均可修改,各种标注字符的大小也可以任意修改。
3、增加梁竖向强制归并功能,确保各楼层同一位置的梁编号相同。
4、绘制梁平法施工图时,可以对任何楼层操作,做任何操作后都能保存其结果永不丢失,更好地支持回退功能。
5、平法图增加了钢筋的表格修改方式,可以快速拷贝录入,及直接修改挑梁。
6、增加配筋修改自动保护功能,当计算配筋大于实配钢筋时,用红色字警示。
7、绘制柱平法施工图时,增加了修改钢筋级别和立面改筋的功能。
8、增加画楼板剖面的功能,楼板负筋的标注位置可选梁中或梁边。
9、楼板钢筋表中的钢筋与图中所画钢筋相一致,没有画出的钢筋不出现在钢筋表中。
四、基础
1、完善了基础计算文档中基本参数的输出,增加局部承压计算书。
2、增加筏板和弹性地基梁的平面钢筋表示法。
3、增加筏板基础剖面画法,并可以复制其他图形。
4、增加基础三维动态显示功能。
5、增加用于沉降计算的筏板反力计算,并考虑主体和裙房之间反力的差异。
6、梁元法计算增加了考虑基础刚度和上部结构刚度,并考虑分层综合总和法的地基刚度变化影响的沉降计算功能。
7、梁元法增加地梁、筏板人防计算,可计算5、6级人防荷载下的梁板内力与配筋,并与非人防计算结果综合配筋。
8、增加梁的裂缝宽度计算。
9、解决了梁下桩基的计算问题,计算结果更加合理明确。
10、改进有限压缩层模型的计算方法,结果更加合理。
五、钢结构
1、改进快速二维建模;增加若干参数;可以针对不同截面的构件定义验算规范;可以考虑焊接组合H形截面翼缘为焰切边还是轧制边对稳定系数影响;可以导入优化结果。
2、改进截面优化程序,可以对框架,框排架等所有二维建模的钢结构进行优化。
3、二维结构计算增加楔形构件腹板变化率60mm/m时的控制;改进计算结果输出。
4、工具箱改进:
增加了连续檩条支座搭接长度的优化和檩条截面自动优化选择功能。
增加了连续墙梁的计算。
吊车梁改进了优化功能;增加了3种变截面类型(圆弧式,直角式,梯形)吊车梁的计算和施工图绘制。
新增钢管(圆钢管,方钢管)节点连接计算。
新增钢结构专业连接计算与绘图工具。
5、新的门式刚架三维建模与设计,集成刚架模型输入、截面优化、分析计算、施工图;屋面墙面设计;三维模型数据可以根据刚架截面优化结果立即更新;整体用钢量统计和报价;可以绘制柱脚锚栓平面布置图。
6、框架节点设计修改:
对抗震极限承载能力不满足时给出节点加强的办法,可以绘制节点加强后的施工图。
完成了带锚栓托座的柱脚,埋入式柱脚,包脚式柱脚的设计与结果输出,以及施工图绘制。
对底层为框架,顶层为门式刚架的结构,可以整体进行节点设计,下部框架连接按照框架的连接方式设计,顶层斜梁与柱的连接、梁与梁的连接按照门式刚架节点来设计。
7、框架施工图针对设计院的设计图出图方式,推出新的节点归并方法,新的设计图表达方式,图纸数量大大减少。
8、复杂空间建模与分析程序,对于型钢构件(角钢,槽钢,工字钢,热轧钢管等)组成,按照支撑布置的塔架,空间桁架,网架,软件增加了是否进行截面满应力优化的选项。
六、其他
1、增加剪力墙截面注写施工图方式。
2、增强剪力墙节点,如暗柱、翼柱的自动合并功能。
3、剪力墙增加了组合大样图、详细构造大样图和箍筋示意图。
4、改进矩形房间楼梯及楼梯梁的快捷输入方式,并可以显示楼梯三维动态造型。
5、增加楼梯平法、表式修改钢筋方式,完善了楼梯计算书和拼图功能。
6、改善了不规则房间、不规则楼梯的智能化建模与计算过程。
7、改进螺旋楼梯板的配筋选筋模式。
8、增加钢筋混凝土箱形截面构件设计计算。
9、增加钢筋混凝土叠合构件设计计算。
10、增加混凝土空心砌块构造住加芯柱结构类型。
11、增加配筋砌块砌体结构计算功能。
12、允许编辑修改特大型工程图纸,提高了读写及操作速度。
13、允许在.T图中插入图片,可以与DWG图交换数据。