七年级数学上册-线段和角精选练习题

合集下载

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)

直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

浙教版数学七年级上册专项突破四 与线段、角有关的计算(含答案)

浙教版数学七年级上册专项突破四  与线段、角有关的计算(含答案)
接近7点,他又看了一下手表,发现此时分针与时针再次成120°,
则张师傅此次散步的时间是________分钟.
【解析】
分钟每分钟走6°,时针每分钟走
1 2
°.设张师傅此次
散步的时间是x分钟.由题意,得6x-
1 2
x=120×2,解得x=
480 11

∴张师傅此次散步的时间是41810分钟.
【答案】
480 11
【答案】 60
抓重点
9.(2021秋·杭州市钱塘区期末)已知线段AB=24 cm, D是线段AB的中点,直线AB上有一点C,且CD=3BC, 则线段CD=________cm.
【答案】 9 或 18
抓重点
10.(2021秋·舟山市定海区期末)张师傅晚上出门散步,出门时6点
多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时
13.(2021秋·湖州市长兴县期末)已知∠AOB=160°,∠COE是直角,OF平分 ∠AOE. (1)如图①,若∠COF=32°,则∠BOE=________.
抓重点
(2)如图①,若∠COF=m°,则∠BOE=____________.∠BOE与∠COF之间 的数量关系为__________________. (3)在已知条件不变的前提下,当∠COE绕点O按逆时针方向转动到如图②所示 的位置时,(2)中∠BOE与∠COF之间的数量关系是否仍然成立?请说明理由.
三、解答题抓重点
11.(2020秋·湖州市安吉县期末)如图,已知线段CD,延
长线段CD到点B,使DB=
1 2
CB,延长DC到点A,使AC
=2DB.若AB=8 cm,求CD与AD的长.
【解析】∵DB=12CB,∴CD=DB. ∵AC=2DB,∴AC=BC=12AB. ∵AB=8 cm,∴CD=14AB=2 cm,AD=34AB=6 cm.

七年级数学上册线段和角的定值问题课堂学案及配套作业(解析版)

七年级数学上册线段和角的定值问题课堂学案及配套作业(解析版)

专题19线段和角的定值问题(解析版)第一部分教学案类型一线段中的定值问题1.(2019秋•北仑区期末)如图,C为射线AB上一点,AB=30,AC比BC的14多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=12BQ时,t=12;④M,N两点之间的距离是定值.其中正确的结论(填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论.解:∵AB=30,AC比BC的14多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.总结提升:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.(2020秋•东西湖区期末)如图,已知直线l上有两条可以左右移动的线段:AB=a,CD=b,且a,b满足|a﹣2|+(b﹣6)2=0.M为线段AB的中点,N为线段CD中点.(1)求线段AB、CD的长;(2)若线段AB以每秒2个单位长度的速度向右运动,同时线段CD以每秒1个单位长的速度也向右运动,在运动前A点表示的数为﹣2.BC=6,设运动时间为t秒,求t为何值时,MN=4;(3)若将线段CD固定不动,线段AB以每秒2个单位长度的速度向右运动,在运动前AD=36,在线段AB向右运动的某一个时间段内,始终有MN+BC为定值,求出这个定值,并求出t的取值范围.思路引领:(1)根据非负数的性质即可得到结论;(2)t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,然后根据MN=4列出方程可得答案;(3)根据题意分类讨论得到结果.解:(1)∵|a﹣2|+(b﹣6)2=0,∴a﹣2=0,b﹣6=0,∴a=2,b=6,∴AB=2,CD=6;(2)∵运动前A点表示的数为﹣2,BC=6,∴点B表示的数是0,点C、D表示的数分别是6和12,∵M为线段AB的中点,N为线段CD中点,∴点M、N表示的数分别是﹣1和9,t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,∴|(﹣1+2t)﹣(9+t)|=4,解得t=14或6,答:t=14秒或6秒时,MN=4;(3)运动t秒后,MN=|32﹣2t|,BC=|28﹣2t|,当0≤t<14时,MN+BC=32﹣2t+28﹣2t=60﹣4t,当14≤t≤16时,MN+BC=32﹣2t+2t﹣28=4,当t >16时,MN +BC =2t ﹣32+2t ﹣28=4t ﹣60, ∴当14≤t ≤16时,MN +BC 为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.3.(2020秋•遵化市期末)如图,已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若|m ﹣12|+(6﹣n )2=0. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,BC =4,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA−PB PC是定值,②PA+PB PC是定值,请选择你认为正确的一个并加以说明.思路引领:(1)先由|m ﹣12|+(6﹣n )2=0,根据非负数的性质求出n =6,m =12,即可得到AB =12,CD =6;(2)需要分类讨论:①如图1,当点C 在点B 的右侧时,根据“M 、N 分别为线段AC 、BD 的中点”,先计算出AM 、DN 的长度,然后计算MN =AD ﹣AM ﹣DN ;②如图2,当点C 位于点B 的左侧时,利用线段间的和差关系求得MN 的长度;(3)计算①或②的值是一个常数的,就是符合题意的结论. 解:(1)∵|m ﹣12|+(6﹣n )2=0, ∴|m ﹣12|=﹣(6﹣n )2, ∴m ﹣12=0,6﹣n =0, ∴n =6,m =12, ∴AB =12,CD =6;(2)如图1,∵M 、N 分别为线段AC 、BD 的中点, ∴AM =12AC =12(AB +BC )=8, DN =12BD =12(CD +BC )=5, ∴MN =AD ﹣AM ﹣DN =9;如图2,∵M 、N 分别为线段AC 、BD 的中点,∴AM =12AC =12(AB ﹣BC )=4, DN =12BD =12(CD ﹣BC )=1,∴MN =AD ﹣AM ﹣DN =12+6﹣4﹣4﹣1=9;(3)②正确.理由如下: ∵PA+PB PC =(PC+AC)+(PC−CB)PC=2PC PC=2,∴②PA+PBPC 是定值2.总结提升:本题考查了一元一次方程的应用,比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.(2018秋•江夏区期末)已知,如图所示,一条直线上依次有A 、B 、C 三个点. (1)若BC =10,AC =3AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 中点,点N 为CD 中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 的中点,点F 是BC 的中点(E ,F 不重合).下列结论中:①EF AC+BP是定值;②EFAC−BP是定值,其中只有一个结论正确,请选择正确结论并求出其值.思路引领:(1)由AC =AB +BC =3AB 可得;(2)分三种情况:①D 在BC 之间时②D 在AB 之间时③D 在A 点左侧时;(3)分三种情况讨论:①F 、E 在BC 之间,F 在E 左侧②F 在BC 之间,E 在CP 之间③F 、E 在BC 之间,F 在E 右侧;解:(1)∵BC =10,AC =AB +BC =3AB ,∴AB=5;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2MN,∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN﹣NB=MN+DM﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①F、E在BC之间,F在E左侧,EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴EFAC−BP =−12.②F在BC之间,E在CP之间,EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =−12.③F、E在BC之间,F在E右侧,EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =12,∴只能是②EFAC−BP 是定值,定值为12.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.5.(越秀区期末)已知线段AB=8(点A在点B的左侧)(1)若在直线AB上取一点C AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明P A+PB﹣2PM是一个定值.思路引领:(1)①当点C在线段AB上时,如图1,②当点C在线段AB的延长线上时,如图2,③当点C在BA的延长线上时,明显,次情况不存在;列方程即可得到结论;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,代入P A+PB﹣2PM即可得到结论.解:(1)①当点C在线段AB上时,如图1,∵AC=3BC,设BC=x,则AC=3x,∵AB=AC+BC,∴8=3x+x,∴x=2,∴BC=2,AC=6,∵点D是CB的中点,∴CD=BD=12BC=1,∴AD=AC+CD=6+1=7;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=3BC=3x,∵AB=AC﹣BC=2x=8,∴x=4,∴BC=4,AC=12,AB=8,∵点D是CB的中点,∴BD=CD=12BC=2,∴AD=AB+BD=8+2=10;③当点C在BA的延长线上时,明显,次情况不存在;综上所述,AD的长为7或10;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,∴P A+PB﹣2PM=8+x+x﹣2(4+x)=0,∴P A+PB﹣2PM是一个定值0.总结提升:本题考查了两点间的距离,线段中点的定义,正确的作出图形是解题的关键.6.(2020秋•奉化区校级期末)如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n 满足|m﹣4|+(n﹣8)2=0.(1)求线段AB,CD的长;(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=0,∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M’在点N’左边时,由MN+NN’=MM’+M’N’,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M’在点N’右边时,则MM’=MN+NN’+M’N’,即6×4=2+BC+4+6×1+4,解得BC=8,(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.7.(2022秋•平南县月考)如图AB=48,C为线段AB的延长线上一点,M,N分别是AC,BC的中点.(1)若BC=10,求MN的长;(2)若BC的长度为不定值,其它条件不变,MN的长还是定值吗?若是,请求出MN的长;若不是,请说明理由.思路引领:(1)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案.解:(1)由已知得AC=AB+BC=58.由M,N分别是AC,BC的中点,得CM=29,NC=5.由线段的和差,得MN=CM﹣NC=29+5=24;(2)若BC的长度为不定值,其它条件不变,MN的长是定值.由M,N分别是AC,BC的中点,得CM=12(AB+BC),CN=12BC,MN=CM﹣NC=12(AB+BC)−12BC=12AB=24.总结提升:本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键,又利用了线段的和差.类型二角中的定值问题8.(2017秋•宁海县期末)如图,已知在同一平面内OA⊥OB,OC是OA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.(1)若α=60即∠AOC=60°时,则∠BOC=°,∠DOE=°.(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.思路引领:(1)先得到∠BOC=∠AOB+∠AOC=150°,再根据角平分线的定义得到∠DOC=75°,∠EOC=30°,然后计算∠DOC﹣∠EOC得到∠DOE的度数;(2)根据角平分线的定义∠DOC=12∠BOC=45°+12α,∠EOC=12∠AOC=12α,所以∠DOE=∠DOC﹣∠EOC=45°,从而可判断∠DOE的度数是一个定值.解:(1)∵OA⊥OB,∴∠AOB=90°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,∵OD平分∠BOC,∴∠DOC=12∠BOC=75°,∵OE平分∠AOC,∴∠EOC=12∠AOC=30°,∴∠DOE=∠DOC﹣∠EOC=75°﹣30°=45°;故答案为150°;45°;(2)在α的变化过程中,∠DOE的度数是一个定值,为45°.∵OD平分∠BOC,∴∠DOC=12∠BOC=12(90°+α)=45°+12α∵OE平分∠AOC,∴∠EOC=12∠AOC=12α,∴∠DOE=∠DOC﹣∠EOC=45°+12α−12α=45°,即∠DOE的度数是一个定值.总结提升:本题考查了角度的计算:会利用几何图形计算角度的和与差.也考查了角平分线的定义.9.(2020秋•平山区校级期中)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣2035°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.10.(2019秋•沙坪坝区校级期中)如图,已知∠AOC=80°,∠BOD=30°,若OM平分∠AOB,ON平分∠COD.(1)如图1,当OC 与OB 重合时,求∠MON 的度数;(2)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (0<m <90)时,∠BOM ﹣∠DON 的值是否为定值?若是定值,求出∠BOM ﹣∠DON 的值;若不是定值,请说明理由;(3)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (30<m <70)时,满足∠AOD +∠MON =7∠BOD ,求m 的值.思路引领:(1)由角平分线的定义求∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,然后求∠MON ;(2)用含有m 的式子表示∠AOM 、∠BOD 和∠AOD ,然后利用角的和差关系求∠BOM ﹣∠DON ; (3)分别用含有m AOD 、∠MON 和∠BOD ,然后根据已知条件列出方程,从而得到m 的值.解:(1)∵OM 平分∠AOB ,ON 平分∠COD ,∴∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD , ∵∠AOB =80°,∠COD =30°, ∴∠MOC =40°,∠NOC =15°,∴∠MON =∠MOC +∠NOC =40°+15°=55°; (2)∠BOM ﹣∠DON 为定值25°,理由如下: 由题意可知:∠AOD =∠AOB +∠COD +m =110°+m ,由(1)可知:∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,∴∠BOM =∠AOM =∠12(∠AOC +m )=12(80°+m ),∠DON =12(∠BOD +m )=12(30°+m ),∴∠BOM﹣∠DON=12(80°+m)−12(30°+m)=25°,∴∠BOM﹣∠DON的值为25°;(3)由(2)知:∠AOD=110°+m,∠AOM=12(80°+m),∠DON=12(30°+m),∴∠MON=∠AOD﹣∠AOM﹣∠DON=110°+m−12(80°+m)−12(30°+m)=55°,∵∠AOD+∠MON=7∠BOD,∠BOD=30°,∴110°+m+55°=7×30°,∴m=45°.总结提升:本题考查了角平分线的定义和图形的旋转,探究角与角之间的关系时,要注意先理清楚所求角与已知角的和差关系,然后再逐步求解.11.(2022秋•沁阳市期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=17°时,t=秒.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+17)°,故3t+17=20+32t,解方程即可求出t的值.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+17)°,∴3t+17=20+32 t,解得t=2.故答案为2.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.12.(2017秋•宿豫区期末)如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;(2)试说明∠CAE﹣∠BAD=30°;(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.思路引领:(1)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角的和差即可得到结论;(2)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,列方程即可得到结论;(3)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角平分线的定义和角的和差即可得到结论.解:(1)∠BAE+∠CAD=150°,理由:∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAE=∠BAD+∠CAD+∠CAE=60°+90°﹣∠CAD,∴∠BAE+∠CAD=150°;(2)∵∠BAD+∠CAD=60CAE+∠CAD=90°,∴∠CAD=60°﹣∠BAD,∠CAD=90°﹣∠CAE,∴60°﹣∠BAD=90°﹣∠CAE,∴∠CAE﹣∠BAD=90°﹣60°=30°;(3)在旋转过程中∠MAN的值不会发生变化,如图,∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAD=60°﹣∠CAD,∠CAE=90°﹣∠CAD,∵AM,AN分别是∠∠BAD和∠CAE的平分线,∴∠MAD=12∠BAD=30°−12∠CAD,∠NAC=12∠CAE=45°−12∠CAD,∵∠MAN=∠MAD+∠CAD+∠NAC=30°−12∠CAD+∠CAD+45°−12∠CAD=75°.总结提升:本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.13.(2022秋•晋州市期中)如图所示,以直线AB上的一点O为端点,在直线AB的上方作射线OP,使∠BOP=68°,将一块直角三角尺(∠MON=90°)的直角顶点放在点O处,且直角三角尺在直线AB的上方.设∠BOM=n°(0<n<90).(1)当n=30时,求∠PON的大小;(2)当OP恰好平分∠MON时,求n的值;(3)当n≠68时,嘉嘉认为∠AON与∠POM的差为定值,淇淇认为∠AON与∠POM的和为定值,且二人求得的定值相同,均为22°,老师说,要使两人的说法都正确,需要对n分别附加条件.请你补充这个条件:当n满足时,∠AON POM=22°;当n满足时,∠AON+∠POM=22°.思路引领:(1)根据角的和差关系可得答案;(2)根据角平分线的定义与角的和差关系可得答案;(3)分两种情况:OM在OP的左侧和右侧时,根据角的和差关系可得结论.解:(1)当n=30°时,∠BOM=30°,∵∠POB=68°,∴∠POM=68°﹣30°=38°,∵∠MON=90°,∴∠PON=90°﹣38°=52°;(2)∵OP恰好平分∠MON,∠MON=90°,∴∠POM=45°,∵∠POB=68°,∴n=68﹣45=23;(3)当0<n<68时,如图1,∠AON﹣∠POM=22°,理由如下:∵∠POB=68°,∴∠POM=68°﹣n°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°﹣n°,∴∠AON﹣∠POM=(90°﹣n°)﹣(68°﹣n°)=22°;当68<n<90时,如图2,理由如下:∵∠POB=68°,∴∠POM=n°﹣68°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°=90°﹣n°,∴∠AON+∠POM=(90°﹣n°)+(n°﹣68°)=22°;故答案为:0<n<68,68<n<90.总结提升:本题考查了角的和差,平角的定义,角平分线的定义,熟练掌握角的和与差关系,角平分线的定义的应用,分情况讨论是解题关键.14.(2021秋•迁安市期末)如图1,把∠APB放置在量角器上,P与量角器的中心重合,射线P A、PB分别对准刻度117°和153°,将射线P A绕点P逆时针旋转90°得到射线PC.(1)∠APB=度;(2)求出∠CPB的度数;(3)小红在图1的基础上,在∠CPB内部任意做一条射线PD,并分别做出了∠CPD和∠BPD的平分线PE和PF,如图2,发现PD在∠CPB内部的不同位置,∠EPF的度数都是一个定值,请你求出这个定值.思路引领:(1)∠APB=153°﹣117°;(2)根据∠CPB=∠APB+∠APC,可得∠CPB的度数;(3)根据角平分线的定义得到∠EPD=12∠CPD,∠FPD=12∠BPD,再根据角的和差可得答案.解:(1)由图可得,∠APB=153°﹣117°=36°.故答案为:36;(2)由题意得,∠APC=90°,∴∠CPB=∠APB+∠APC=36°+90°=126°.答:∠CPB的度数是126°;(3)∵∠CPD和∠BPD的平分线是PE和PF,∴∠EPD=12∠CPD,∠FPD=12∠BPD,∴∠EPF =∠EPD +∠FPD =12∠CPD +12∠BPD =12∠CPB =63°.∴当PD 在∠CPB 内部的不同位置时,∠EPF 的度数都是一个定值是63°. 总结提升:本题考查角的计算,熟练掌握角平分线的定义和角的和差是解题关键. 15.(2022秋•硚口区期末)∠AOB 与它的补角的差正好等于∠AOB 的一半 (1)求∠AOB 的度数;(2)如图1,过点O 作射线OC ,使∠AOC =4∠BOC ,OD 是∠BOC 的平分线,求∠AOD 的度数; (3)如图2,射线OM 与OB 重合,射线ON 在∠AOB 外部,且∠MON =40°,现将∠MON 绕O 顺时针旋转n °,0<n <50,若在此过程中,OP 平分∠AOM ,OQ 平分∠BON ,试问∠AOP−∠BOQ∠POQ的值是定值吗?若是,请求出来,若不是,请说明理由.思路引领:(1)设∠AOB =x °,根据题意列方程即可得到结论;(2)①当OC 在∠AOB 的内部时,②当OC 在∠AOB 外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论. 解:(1)设∠AOB =x °,依题意得:x ﹣(180﹣x )=12x ∴x =120答:∠AOB 的度数是120°(2)①当OC 在∠AOB 的内部时,∠AOD =∠AOC +∠COD 设∠BOC =y °,则∠AOC =4y °, ∴y +4y =120,y =24,∴∠AOC =96°,∠BOC =24°, ∴OD 平分∠BOC , ∴∠COD =12∠BOC =12°, ∴∠AOD =96°+12°=108°,②当OC 在∠AOB 外部时,同理可求∠AOD =140°, ∴∠AOD 的度数为108°或140°; (3)∵∠MON 绕O 顺时针旋转n °, ∴∠AOM =(120+n )° ∵OP 平分∠AOM , ∴∠AOP =(120+n 2)°∵OQ 平分∠BON , ∴∠MOQ =∠BOQ =(40+n 2)°,∴∠POQ =120+40+n ﹣∠AOP ﹣∠NOQ , =160+n −120+n 2−40+n 2=160+n −160+2n2=80°, ∴∠AOP ﹣∠BOQ =120+n 2−40+n2=40°, ∴∠AOP−∠BOQ∠POQ=4080=12.总结提升:本题考查了角的计算,余角和补角的定义,解题时注意方程思想和分类思想的灵活运用. 16.(2019秋•莆田期末)定义:若α﹣β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图1,点O 在直线AB 上,射线OE 是∠BOC 的角平分线,若∠COE 是∠AOC 的差余角,求∠BOE 的度数;(2)如图2,点O 在直线AB 上,若∠BOC 是∠AOE 的差余角,那么∠BOC 与∠BOE 有什么数量关系; (3)如图3,点O 在直线AB 上,若∠COE 是∠AOC 的差余角,且OE 与OC 在直线AB 的同侧,∠AOC−∠BOC∠COE请你探究是否为定值?若是,请求出定值;若不是,请说明理由.思路引领:(1)根据角平分线的定义得到∠COE =∠BOE =12∠BOC ,根据题意得到∠AOC ﹣∠COE =∠AOC −12∠BOC =90°,于是得到结论;α (2)根据角的和差即可得到结论;(3)如图3,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE ,如图4,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,于是得到结论. 解:(1)∵OE 是∠BOC 的角平分线, ∴∠COE =∠BOE =12∠BOC , ∵∠COE 是∠AOC 的差余角,∴∠AOC ﹣∠COE =∠AOC −12∠BOC =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC =60°, ∴∠BOE =30°;(2)∵∠BOC 是∠AOE 的差余角,∴∠AOE ﹣∠BOC =∠AOC +∠COE ﹣∠COE ﹣∠BOE =∠AOC ﹣∠BOE =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC +∠BOE =90°;(3)答:是,理由:如图3,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =∠AOE =90°,∴∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值);如图4,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =90°, ∴∠AOC =90°+∠COE ,∵∠BOC =180°﹣∠AOC =180°﹣(90°+∠COE )=90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值),综上所述,∠AOC−∠BOC∠COE为定值.总结提升:本题考查了余角和补角,角的和差的计算,正确的理解题意是解题的关键.17.(2018秋•荔城区期末)如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)【特殊发现】如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)【类比探究】如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)【拓展延伸】如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无需证明)思路引领:(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论;.解:(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°−12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=1 2;②当60°≤∠AOC≤1203,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=1 2;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BODD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12α,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12α)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,∴α﹣β=60°,∴∠AOD=120°+β,∠BOC=60°﹣β,∵OE始终平分∠AOD,OP平分∠COB,∴∠DOE=12∠AOD=60°+12β,∠BOP=12∠BOC=30°−12β,∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+12α)﹣β﹣(30°−12β)=30°;综上所述,∠POE=30°.总结提升:本题考查了角的计算,角平分线的定义,分类讨论是解题的关键.第二部分 配套作业1.(2022秋•成都期末)已知点O 为数轴原点,点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作AB ,且|a +4|+(b ﹣10)2=0.(1)求线段AB 的长;(2)设点P 在数轴上对应的数为x ,当P A +PB =20时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有PM 为定值,下列结论:①v 2v 1的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论并求值.思路引领:(1)根据非负数的和为0,各项都为0即可求解; (2)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题;(3)设运动时间为t ,首先得到PM =AP ﹣AM =3−12v 2t +v 1t ,由M 、N 运动到任一时刻时,总有PM 为定值,得到PM =3,t =1时,t =2时,于是得到结论. 解:(1)∵|a +4|+(b ﹣10)2=0, ∴a =﹣4,b =10,∴AB =|a ﹣b |=14,即线段AB 14;(2)如图1,当P 在点A 左侧时.P A +PB =(﹣4﹣x )+(﹣x +10)=20,即﹣2x +6=20,解得 x =﹣7; 如图2,当点P 在点B 的右侧时,P A +PB =(x +4)+(x ﹣10)=20,即2x ﹣6=20,解得 x =13; 如图3,当点P 在点A 与B 之间时,P A +PB =x +4+10﹣x =20,不存在这样的x 的值, 综上所述,x 的值是﹣7或13;(3)①v 2v 1的值不变.如图4,设运动时间为t ,理由如下:∵PM =AP ﹣AM=12AN ﹣(OA ﹣OM ) =12(AB ﹣BN )﹣OA +OM =12(14﹣v 2t )﹣4+v 1t =3−12v 2t +v 1t ,∵M 、N 运动到任一时刻时,总有PM 为定值, 而t =0时,PM =3, t =1时,PM =3−12v 2+v 1, t =2时,PM =3﹣v 2+2v 1, ∴3﹣v 2+2v 1=3−12v 2+v 1=3, ∴v 1v 2=12,即:v 2v 1的值不变,值为2.总结提升:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.(2022秋•江岸区校级月考)已知:如图,一条直线上依次有A 、B 、C 三点. (1)若BC =60,AC =3AB ,求AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 的中点,点N 为CD 的中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 中点,点F 是BC 中点,下列结论中: ①AC+BP EF是定值;②|AC−BPEF|是定值.其中只有一个结论是正确的,请选择正确结论并求出其值.思路引领:(1)由AC=AB+BC=3AB可得;(2)分三种情况:①D在BC之间时②D在AB之间时③D在A点左侧时;(3)分三种情况讨论:①F、E在BC之间,F在E左侧②F在BC之间,E在CP之间③F、E在BC之间,F在E右侧;解:(1)∵BC=60,AC=AB+BC=3AB,∴AB=30;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN+NB=MN+DN﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB=12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴|AC−BPEF|=2.②EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.③EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.3.(2016秋•启东市校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM;(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.思路引领:(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24﹣x,PB=24﹣2x,表示出2BM﹣BP后,化简即可得出结论.(3)P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,分别表示出MN,MN+PN的长度,即可作出判断.解:(1)如图1,设出发x秒后PB=2AM,当点P在点B左边时,P A=2x,PB=24﹣2x,AM=x,由题意得,24﹣2x=2x,解得:x=6;当点P在点B右边时,P′A=2x,P′B=2x﹣24,AM=x,由题意得:2x﹣24=2x,方程无解;综上可得:出发6秒后PB=2AM.(2)∵AM=x,BM=24﹣x,PB=24﹣2x,∴2BM﹣BP=2(24﹣x)﹣(24﹣2x)=24;(3)选①;如图2,∵P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,∴①MN=PM﹣PN=x﹣(x﹣12)=12(定值);②MN+PN=12+x﹣12=x(变化).总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.4.(2022秋•高新区期中)如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.思路引领:(1)由题意表示:AP=2t,则PB=12﹣2t,根据PB=2AM列方程即可;(2)把BM=12﹣t和BP=12﹣2t代入2BM﹣BP中计算即可;(3)分别代入求MN和MA+PN的值,发现①正确;②不正确.解:(1)如图1,由题意得:AP=2t,则PB=|12﹣2t|,∵M为AP的中点,∴AM=t,由PB=2AM得:|12﹣2t|=2t,即12﹣2t=2t或2t﹣12=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=12BP=12(2t﹣12)=t﹣6,①MN=P A﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.5.(2021秋•双流区期末)如图,已知直线l上有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0,点M,N分别为AB,CD中点.(1)求线段AB,CD的长;(2)线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动.若运动6秒后,MN=4,求此时线段BC的长;(3)若BC=24,将线段CD固定不动,线段AB以每秒4个单位速度向右运动,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M′在点N′左边时,由MN+NN′=MM′+M′N′,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M′在点N′右边时,则MM′=MN+NN′+M′N′,即6×4=2+BC+4+6×1+4,解得BC=8.综上,BC=16或8;(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.6.(2021秋•洛川县校级期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图①,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)当∠COD从图①所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义得∠AOE=12∠AOC=12(110°+3t°)、∠BOF=12∠BOD=12(40°+3t°),最后根据∠AOE﹣∠BOF求解可得;解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOB=12×110°=55°,∠BOF=12∠COD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值,如图2,由题意∠BOC=3t°,则∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,∵OE平分∠AOC,OF平分∠BOD,。

七年级数学上册 6.9 用尺规作线段和角练习题

七年级数学上册 6.9 用尺规作线段和角练习题

七年级数学上册 6.9用尺规作线段和角
一、判断题
1.尺规作图是指用刻度尺和圆规作图( )
2.尺规中的尺是指没有刻度的直尺( )
3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图( )
4.最基本的尺规作图是作线段和角( )
二、填空题
1.已知线段AB,求作:线段A′B′,使A′B′=AB.
作法:(1)作射线A′C′.
(2)以点A′为圆心,以____________交A′C′于点B′,_________就是所作的线段.
2.已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:(1)作射线O′A′
(2)以点O为圆心,以_________长为半径画弧交OA于点C,交OB于点D.
(3)以点O′为圆心,以_________长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以_________长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角.
三、作图
用尺规完成下列作图.
1.已知线段a、b(a>b),利用尺规作线段c,使c=a-b.
2.已知∠、∠β(∠>∠β),求作一个角,使它等于∠-∠.
参考答案
一、1.×2.√3.×4.√
二、1.AB为半径画弧A′B′
2.任意长OC CD
三、略。

人教版七年级数学上册线段和角的精选习题

人教版七年级数学上册线段和角的精选习题

M N B AC资料由小程序:家教资料库 整理1.如图所示,AB=12厘米,25AM AB =,13BN BM =,求MN 的长.2.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。

5.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

6.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AB CB acm +=,其它条件不变,你能猜想MN 的长度吗?并说明理由。

(3)若C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。

E D C B A O7. 已知线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,若CD =3cm ,求AB 的长.8. 已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.9. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

10.如图,已知线段AB 和CD 的公共部分BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长11.如图,,,点B 、O 、D 在同一直线上,则的度数为__________12.如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ;(2) 是∠AOC 的余角; (3)∠DOC 的余角是 ; (4)∠COF 的补角是 .13.如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数14.如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.15.如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°,求∠DOE 、∠BOE 的度数.16.如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.17.把一张正方形纸条按图中那样折叠后, 若得到∠AOB /=700,则∠B /OG =______.18.如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .19.有一张地图(如图),有A 、B 、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°,在B 地的南偏东45°,你能确定C•地的位置吗?A CB EF B '20.如图,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.21.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6㎝,求线段MC 的长。

(完整)初中数学线段与角练习题

(完整)初中数学线段与角练习题

(完整)初中数学线段与角练习题初中数学线段与角练题1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。

思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。

解答:线段AC的长度为5 + 3 = 8。

2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。

思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。

解答:线段EF的长度为4 ÷ 2 = 2。

3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW的度数。

思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。

解答:角XZW的度数为37° + 83° = 120°。

4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。

思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。

解答:角ABD的度数为78° + 42° - 90° = 30°。

5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。

思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。

解答:角MOQ的度数为360° - 60° - 120° = 180°。

6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。

思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。

解答:角RPQ的补角的度数为90° - 30° = 60°。

人教版七年级上数学几何初步--线段与角的经典题(含答案)

人教版七年级上数学几何初步--线段与角的经典题(含答案)

几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。

七年级数学人教版(上册)综合专题与线段、角有关的综合题

七年级数学人教版(上册)综合专题与线段、角有关的综合题

(2)如图 2,将图 1 中的三角板绕点 O 以每秒 10°的速度沿逆时 针方向旋转一周.在旋转的过程中,若第 t 秒时,三条射线 OA,OC, OM 构成的角中有相等的角,求 t 的值.
解:(2)分五种情况讨论:
①当∠AOC=∠COM=60°时,旋转角∠BOM=180°-2 ∠AOC=60°,
则 10t=60,解得 t=6.
所以 AB=-1+2t-(-8-t)=3t+7, BC=3+3t-(-1+2t)=t+4. 若 AB=2BC,则 3t+7=2(t+4),解得 t=1.
②若 mBC-AB 的值不随 t 的变化而变化,求 m 的值. 解:(2)②由①知 AB=3t+7,BC=t+4, 所以 mBC-AB=m(t+4)-(3t+7)=(m-3)t+4m-7. 因为 mBC-AB 的值不随 t 的变化而变化, 所以 m-3=0. 所以 m=3.
解:(2)OD 平分∠AOC.理由: 因为∠MON=90°, 所以∠DOM=180°-∠MON=180°-90°=90°. 所以∠DOC+∠MOC=∠MOB+∠BON=90°.
因为 OM 平分∠BOC, 所以∠MOC=∠MOB. 所以∠DOC=∠BON. 因为∠BON=∠AOD, 所以∠DOC=∠AOD. 所以 OD 平分∠AOC.
①当 t 为何值时,点 P 与点 Q 相遇?
解:当运动时间为 t 秒时,点 P 表示的数为 3t-4,点 Q 表示的 数为-2t+20.
①当点 P 与点 Q 相遇时,则 3t-4=-2t+20,
24 解得 t= 5 .
24 所以当 t= 5 时,点 P 与点 Q 相遇.
②当 t 为何值时,点 P 与点 Q 间的距离为 9 个单位长度? 解:②当点 P 与点 Q 的距离为 9 个单位长度时,则 -2t+20-(3t-4)=9 或 3t-4-(-2t+20)=9,

七年级数学上册-思想方法:线段与角计算中的思想方法压轴题四种模型全攻略(原卷版)

七年级数学上册-思想方法:线段与角计算中的思想方法压轴题四种模型全攻略(原卷版)

专题14思想方法专题:线段与角计算中的思想方法压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一分类讨论思想在线段的计算中的应用】 (1)【考点二分类讨论思想在角的计算中的应用】 (2)【考点三整体思想及从特殊到一般的思想解决线段和差问题】 (2)【考点四整体思想及从特殊到一般的思想解决角和差问题】 (3)【过关检测】 (5)【典型例题】【考点一分类讨论思想在线段的计算中的应用】【变式训练】A B C D3.(2023秋·江西吉安·七年级校考期末)在同一直线上有,,,则AD的长为.【考点二分类讨论思想在角的计算中的应用】【变式训练】【考点三整体思想及从特殊到一般的思想解决线段和差问题】例题:(2022秋·河南南阳·七年级统考期末)(1)如图,已知线段AB ,点C 是线段AB 上一点,点M 、N 分别是线段AC ,BC 的中点.①若4AC BC ==,则线段MN 的长度是_________;②若AC a =,BC b =,求线段MN 的长度(结果用含a 、b 的代数式表示);(2)在(1)中,把点C 是线段AB 上一点改为:点C 是直线AB 上一点,AC a =,BC b =.其它条件不变,则线段MN 的长度是___________(结果用含a 、b 的代数式表示)【变式训练】(2)设AB a=,C是线段AB上任意一点(不与点①如图2,当M,N分别是AC,BC的中点时,②如图3,若M,N分别是AC,BC的三等分点,即【考点四整体思想及从特殊到一般的思想解决角和差问题】∠的内部,OM平分例题:(2023秋·全国·七年级课堂例题)已知:如图,OC在AOB()∠︒∠<,平分BOCAOB AOB ON180∠.(1)当9060AOC BOC ∠=∠=︒︒,时,MON ∠=___________︒;(2)当8060AOC BOC ∠︒∠=︒=,时,MON ∠=___________︒;(3)当8050AOC BOC ∠︒∠=︒=,时,MON ∠=___________︒;(4)猜想:不论AOC ∠和BOC ∠的度数是多少,MON ∠的度数总等于________的度数的一半.【变式训练】(1)如图1,若40AOM ∠=︒,求CON ∠的度数;(2)在图1中,若AOM α∠=,直接写出CON ∠的度数(用含(3)将图1中的直角三角板OMN 绕顶点O 顺时针旋转至图数.【过关检测】一、单选题河北廊坊·七年级统考期末)已知线段AB 的中点,则线段MB的长度为()B.11cm C.5cm 六年级单元测试)已知30AOB∠=︒,ODB.35D.35∠山西大同·七年级统考期末)在AOB 二、填空题(1)如图1,若57AOC ∠=︒,则BOC ∠=(2)如图2,若120AOB ∠=︒,OC ,OD 是∠①则COD ∠=;②若以点O 为中心,将顺时针旋转n ︒(三、解答题(1)求线段AD 的长度.。

七年级数学上册专题训练 线段或角的计算

七年级数学上册专题训练  线段或角的计算

专题训练 线段或角的计算一、线段的和或差的计算1.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长度为( )A.2 cmB.3 cmC.4 cmD.6 cm 2.平坦的草地上有A ,B ,C 三个球,A 球距B 球3 m ,A 球距C 球1 m ,则B 球与C 球相距( )A.4 mB.3 mC.2 mD.无法确定3.如图已知线段AD =16 cm ,线段AC =BD =10 cm ,E ,F 分别是AB ,CD 的中点,则EF 长为 cm .4.如图,C ,D 是线段AB 上的两点,已知BC =14AB ,AD =13AB ,AB =12 cm ,则DC = cm.5.过点P 作直线l 的垂线PO ,垂足为O ,连接PA ,PB ;比较线段PO ,PA ,PB 的长短,并按从小到大的顺序排列 .6.如图,已知线段AB =6 cm ,延长AB 至点C ,使BC =13AB ,若点D 为线段AC 的中点,求线段BD 的长.7.已知线段AB =6 cm ,在直线AB 上画点C ,使BC =4 cm ,若M ,N 分别是AB ,BC 的中点.(1)求点M ,N 之间的距离;(2)若AB =a cm ,BC =b cm ,其他条件不变,此时M ,N 间的距离是多少? (3)分析(1)(2)的解答过程,从中你发现了什么规律?二、角的和或差的计算8.已知∠α=75°,则∠α的补角的度数是( )A.15°B.25°C.105°D.125° 9.上午10:00时,钟表上分针与时针所夹角的度数为( )A.45°B.60°C.75°D.90° 10.一个角的余角比它的补角的12少20°,则这个角为( )A.30°B.40°C.60°D.75°11.如图,已知∠AOC =90°,∠COB =50°,OD 平分∠AOB ,则∠COD 的度数为______.第11题图 第12题图12.如图,∠AOB =160°,OC 平分∠AOB ,OD 为∠BOC 内任一射线,OE 平分∠BOD ,且∠BOE =30°,则∠COD = .13.如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度.14.如图,OC 为∠AOB 的内部任一条射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线.若∠AOB =80°,求∠DOE 的度数.15.如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2.如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?16.如图,已知小明家(A )在商场(O )的南偏东60°方向,小华家(B )在商场的东北方向.(1)若王亮家(C)在商场的北偏西19°20′的方向,试问:∠AOB和∠AOC的度数分别是多少?(2)若∠BOC=67°20′,试说明王亮家(C)在商场的什么方向上?17.把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?18.将一张长方形纸片按如图所示方式折叠,若∠AEM′=120°,则∠BCN′的度数为多少?。

七年级数学上册第4章线段角单元测试卷试题

七年级数学上册第4章线段角单元测试卷试题

冀教版梁山中学2021年七年级数学上册第4章?线段角?单元测试卷一、选择题〔一共10小题,每一小题3分,满分是30分〕1、以下说法中正确的选项是〔〕A、两点之间的所有连线中,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类2、以下说法正确的选项是〔〕A、过一点P只能作一条直线B、直线AB和直线BA表示同一条直线C、射线AB和射线BA表示同一条射线D、射线a比直线b短3、AB=10cm,在AB的延长线上取一点C,使AC=16cm,那么线段AB的中点与AC的中点的间隔为〔〕A、5cmB、4cmC、3cmD、2cm4、按以下线段长度,可以确定点A、B、C不在同一条直线上的是〔〕A、AB=8cm,BC=19cm,AC=27cmB、AB=10cm,BC=9cm,AC=18cmC、AB=11cm,BC=21cm,AC=10cmD、AB=30cm,BC=12cm,AC=18cm5、以下图形中,无端点的是〔〕A、角平分线B、线段C、射线D、直线6、以下给出的四个语句中,结论正确的有〔〕①假如线段AB=BC,那么B是线段AC的中点;②线段和射线都可看作直线上的一局部;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示.A、1个B、2个C、3个D、4个7、钟表在5点半时,它的时针和分针所成的锐角是〔〕A、15°B、70°C、75°D、90°8、钟表上12时15分钟时,时针与分针的夹角为〔〕A、90°B、82.5°C、67.5°D、60°9、∠A=40°,那么∠A的补角等于〔〕A、50°B、90°C、140°D、180°10、以下说法中正确的选项是〔〕A、8时45分,时针与分针的夹角是30°B、6时30分,时针与分针重合C、3时30分,时针与分针的夹角是90°D、3时整,时针与分针的夹角是90°二、填空题〔一共8小题,每一小题3分,满分是24分〕11、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子,原因是;当用两个钉子把木条钉在墙上时,木条就被固定住其根据是.12、如图,用“>〞、“<〞或者“=〞连接以下各式,并说明理由.AB+BC AC,AC+BCAB,BC AB+AC,理由是.13、两根细木条,一根长80厘米,另一根长130厘米,将它们其中的一端重合,放在同一条直线上,此时两根细木条的中点间的间隔是.14、0.5周角= 平角= 直角= 度.15、〔1〕57.32°=度分秒.〔2〕27°14′24″=度.16、假如∠BOA=82°,∠BOC=36°,那么∠AOC的度数是.17、如图中,∠AOB=180°,∠AOC=90°,∠DOE=90°,那么图中相等的角有对,分别为;两个角的和为90°的角有对;两个角的和为180°的角有对.18、一个锐角的余角的补角与这个锐角的差是角.三、解答题〔一共5小题,满分是46分〕19、如图,在同一个平面内有四个点A、B、C、D①画射线CD ②画直线AD ③连接AB④直线BD与直线AC相交于点O.20、如下图,点C是AB上任意一点,D、E分别是AC、CB的中点,假设AB=16,求DE的长.21、如图,用量角器量出图中∠1,∠2,∠3的度数,猜一猜它们之间有何关系?22、如下图,∠AOC比∠BOC小30°,∠AOD=∠BOD,求∠DOC的度数.23、如图,直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.答案及分析:一、选择题〔一共10小题,每一小题3分,满分是30分〕1、以下说法中正确的选项是〔〕A、两点之间的所有连线中,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类考点:直线、射线、线段;角的概念。

人教版七年级上册 线段和角的计算题 练习

人教版七年级上册    线段和角的计算题 练习

人教版七年级上册线段和角的计算题一、线段的计算1.如图所示,AB=12厘米,25AM AB=,13BN BM=,求MN的长.2.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。

3.如图,AB=20cm,C是AB上一点,且AC=12cm,D是AC的中点,E是BC的中点,求线段DE的长.M N BAC4.如图,AB=8cm,O为线段AB上的任意一点,C为AO的中点,D为OB的中点,你能求出线段CD的长吗?并说明理由。

5.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。

6.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点。

(1)求线段MN的长;(2)若C为线段AB上任一点,满足,其它条件不变,你能猜想MN的长度吗?并说明理由。

(3)若C在线段AB的延长线上,且满足,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。

AB CB acm+=AC CB bcm-=7、如图,C是线段AB上一点,AC=5cm,点P从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P 比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.二、角的计算1、如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数2、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.EDCBA O3、如图,∠AOC=80°,OB是∠AOC的平分线,OD是∠COE的平分线.(1)求∠BOC的度数;(2)若∠DOE=30°,求∠BOE的度数.4、已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.①若∠AOC=60°,求∠DOE的度数;②若∠AOC=α,直接写出∠DOE的度数(含α的式子表示);(2)将图1中的∠DOC绕点O顺时针旋转至图2的位置,试探究∠DOE和∠AOC的度数之间的关系,写出你的结论,并说明理由.5、如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.6、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.7、已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.。

七年级数学上册期末复习线段和角计算专项练习

七年级数学上册期末复习线段和角计算专项练习

七年级数学上册期末复习线段和角计算专项练习1.已知点C是线段AB上一点,AC=6 cm,BC=4 cm,若M.N分别是线段AC、BC的中点,求线段MN的长.2.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.3.如图,已知∠BOC = 2∠AOB,OD平分∠AOC,∠BOD = 14°,求∠AOB的度数..如图,线段,,角项点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方..如图,和都是直角.如图,如果,求的度数;找出图中相等的锐角,并说明相等的理由;在图中,利用三角板画一个与相等的10.如图,直线AB,CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=65°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数11.如图,点是线段上一点,点分别是线段的中点.(1)若,则;(2)若,求线段的长.12.如图,C为线段AB的中点,D在线段CB上,AD=11,BD=3.(1)求CD的长;(2)若点E是线段AD的中点,求CE的长.13.如图,C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点.(1)若AC=4,BC=6,求CF的长.(2)若AB=16CF,求的值.14.(1)如图1,已知射线OA,OB,OC,OD,∠AOD=∠BOC=α.①若α=38°,∠COD=30°,求∠BOD、∠AOC的度数;②若∠COD=25°,请找出图中与∠BOD相等的角,并通过计算说明理由;(2)如图2,∠MPN是钝角,请利用三角尺画特殊角的功能,在图2中画一个与∠MPN相等的角.(标出图中特殊角的度数,并写出与∠MPN相等的角)15.如图,已知线段AB上有两点C,D且AC:CD:DB=2:3:4,点E、F分别为AC,DB的中点,EF=3.6cm.求AB的长.。

完整)七年级数学上册-线段和角精选练习题

完整)七年级数学上册-线段和角精选练习题

完整)七年级数学上册-线段和角精选练习题线段和角练题1.下图展示了一个几何体的展开图,该几何体是什么?A。

圆柱B。

圆锥C。

圆台D。

四棱柱2.如果在线段AD上有两点B和C,则图中共有几条线段?A。

三条B。

四条C。

五条D。

六条3.下列哪些语句是正确的?①不带“-”号的数都是正数。

②如果a是正数,那么-a一定是负数。

③射线AB和射线BA是同一条射线。

④直线MN和直线NM是同一条直线。

A。

1个B。

2个C。

3个D。

4个4.如图,某同学用剪刀沿着一条直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小。

能够正确解释这一现象的数学知识是什么?A。

两点之间,直线最短B。

两点确定一条直线C。

两点之间,线段最短D。

经过一点有无数条直线5.如果数轴上点A和B分别表示数2和-2,则点A和B 之间的距离可以表示为什么?A。

2+(-2)B。

2-(-2)C。

(-2)+2D。

(-2)-26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长度是多少?A。

2.5cmB。

3cmC。

4.5cmD。

6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是多少?A。

6cmB。

10cmC。

6cm或10cmD。

4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是多少?A。

1cmB。

1.5cmC。

2cmD。

4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有哪些?① AP=BP;② BP=AB;③ AB=2AP;④ AP+PB=AB。

A。

1个B。

2个C。

3个D。

4个10.如图所示,某工厂有三个住宅区,A、B、C各区分别住有职工30人、15人、10人,且这三点在一条大道上(A、B、C三点在同一直线上)。

已知AB=300米,BC=600米。

为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点。

七年级线段和角综合练习

七年级线段和角综合练习

七年级线段和角综合练习1.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.2.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0.(1)点A表示的数为;点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离为;乙小球到原点的距离为;当t=3时,甲小球到原点的距离为;乙小球到原点的距离为;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.3.如图所示,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN=.(用m,n 表示)(3)利用发现的结论解决下列问题:数轴上表示x和2的两点P和Q之间的距离是3,则x=.4.如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d﹣2a=14(1)那么a=,b=;(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数;(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持AB=AC.当点C运动到﹣6时,点A对应的数是多少?5.如图数轴上三点A,B,C对应的数分别为﹣6,2,x.请回答问题:(1)若点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是;(2)若点C到点A、点B的距离相等,那么x对应的值是;(3)若点C到点A、点B的距离之和是10,那么x对应的值是;(4)如果点A以每秒4个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,点C 从原点以每秒1个单位长度的速度向左运动,且三点同时出发.设运动时间为t秒,请问t为何值时点C 到点A、点B的距离相等?6.已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.(1)请写出与AB两点距离相等的M点对应的数;(2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?7.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表.(1)根据题意,填写下列表格;时间(秒)057A点位置19﹣1B点位置1727(2)A、B两点能否相遇,如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距9个单位长度?如果能,求相距9个单位长度的时刻;如不能,请说明理由.8.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B 点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.9.在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=m,且使关于x的方程mx+4=2(x+m)有无数个解.(1)求线段AB的长;(2)试说明线段MN的长与点P在线段AB上的位置无关;(3)若点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P 从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.11.已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.(1)若A、B的位置如图所示,试化简:|a|﹣|b|+|a+b|+|a﹣b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所有线段长度的和;(3)如图,M为AB中点,N为OA中点,且MN=2AB﹣15,a=﹣3,若点P为数轴上一点,且PA= AB,试求点P所对应的数为多少?12.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.13.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.14.如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.求:(1)当0°<∠AOC<90°时,求∠FOB+∠DOC的度数;(2)若∠DOC=3∠COF,求∠AOC的度数.15.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).16.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图1,∠AOC与∠DOE的数量关系为,∠COF和∠DOE的数量关系为;(2)若将∠COE绕点O旋转至图2的位置,OF仍然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图3的位置,射线OF仍然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由.17.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.18.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)求∠MON的大小,并说明理由;(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM:∠BON=7:11,如图3所示,求x的值.19.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE 有怎样的数量关系?并说明理由.20.已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD.(1)如图1,当射线OB与OC重合时,求∠MON的大小;(2)在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小;(3)在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=.21.如图①点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°)(1)将如图①中的三角板绕O点旋转一定角度得到如图②,使边OM恰好平分∠BOC,问ON是否平分∠AOC?请说明理由.(2)将如图①中的三角板绕O点旋转一定角度得到如图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系,请说明理由.22.已知,如图1,∠AOC=∠BOD=80°.设∠AOC和∠BOD的公共角∠BOC度数是m°(0<m<80).(1)用含m的代数式表示:∠COD的度数是°,∠AOD的度数是°.(2)若∠AOD=4∠BOC,求m的值.(3)如图2,当OM、ON分别是∠AOD、∠COD的角平分线时,∠MON的度数是否变化?若不变,求出∠MON的度数;若变化,请说明理由.(4)若射线OP以每秒10°的速度从OA位置绕点O逆时针运动,同时,射线OQ以每秒5°的速度从OC 位置绕点O顺时针运动,当OP在∠AOB内,OQ在∠BOC内时,如图3,在任何某一时刻,总有∠POB=2∠QOB,求m的值.23.(1)已知:如图1,点O为直线AB上任意一点,射线OC为任意一条射线.OD、OE分别平分∠AOC和∠BOC,则∠DOE=;(2)已知:如图2,点O为直线AB上任意一点,射线OC为任意一条射线,其中∠COD=∠AOC,∠COE=∠BOC,求∠DOE得度数;(3)如图3,点O为直线AB上任意一点,OD是∠AOC的平分线,OE在∠BOC内,∠COE=∠BOC,∠DOE=72°,求∠BOE的度数.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C、E、F在直线AB的同侧时(如图1所示)①若∠COF=28°,则∠BOE=°②若∠COF=α°,则∠BOE=°.(2)当点C与点E、F在直线AB的两旁(如图2所示)时,(1)中②是否仍然成立?请给出你的结论并说明理由.25.如图,已知∠AOB=120°,射线OA绕点O以每秒钟6°的速度逆时针旋转到OP,设射线OA旋转OP所用时间为t秒(t<30).(1)如图1,直接写出∠BOP=°(用含t的式子表示);(2)若OM平分∠AOP,ON平分∠BOP.①当OA旋转到如图1所示OP处,请完成作图并求∠MON的度数;②当OA旋转到如图2所示OP处,若2∠BOM=3∠BON,求t的值.。

七年级上册数学线段与角必做好题附答案详解

七年级上册数学线段与角必做好题附答案详解

七年级上册数学线段与角必做好题附答案详解一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?2.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).9.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说理由.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外),理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠=∠,(ⅱ)∠+∠=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC=度.②如果,求∠EOF的度数.23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=,∠BOD=;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?七年级上册数学线段与角必做好题附答案详解参考答案与试题解析一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?【解答】解:(1)AB上有3个点时,线段总数共有3=条;AB上有4个点时,线段总数共有6=条;AB上有5个点时,线段总数共有10=条;…AB上有n个点时,线段总数共有:,故当线段AB上有6个点时,线段总数共有=15条;(2)当线段AB上有n个点时,线段总数共有:;(3)当n=100时,线段总数共有=4950条.2.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n+1=,故答案为:.5.阅读:在直线上有n个不同的点,则此图中共有多少条线段?通过分析、画图尝试得如下表格:图形直线上点的个数共有线段的条数两者关系210+1==1330+1+2==3460+1+2+3==6…………n问题:(1)把表格补充完整;(2)根据上述得到的信息解决下列问题:①某学校七年级共有20个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?②乘火车从A站出发,沿途经过10个车站方可到达B站,那么在A,B两站之间需要安排多少种不同的车票?【解答】解:(1)图形直线上点的个数共有线段的条数两者关系210+1==1 330+1+2==3460+1+2+3==6…………n 0+1+2+3+…+(n﹣1)==;(2)①把每一个班级看作一个点,则=190(场);②由题意可得:一共12个车站看作12个点,线段条数为=66(条),因为车票有起点和终点站之分,所以车票要2×66=132(种).6.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.7.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.【解答】解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)根据(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).8.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.9.(1)在∠AOB内部画1条射线OC,则图1中有3个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有6个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°(3分)∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°(8分)∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)故答案为75°.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=60°.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.【解答】解:(1)∵∠AOB=120°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°+30°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=75°﹣15°=60°,(2)当∠AOB=120°,∠BOC=β°时,∴∠MON=∠MOC﹣∠NOC=(120+β)°﹣°=60°;(3)由(1)(2)可知:∴∠MON=∠MOC﹣∠NOC=(α+β)°﹣β°=α°.∠MON的度数始终等于∠AOB角度的一半.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.【解答】解:∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵∠BOC=4∠AOD,∴∠BOC=2∠AOC,∵∠BOC+∠AOC=180°,∴3∠AOC=180°,∴∠AOC=60°,∴∠COD=∠AOC=30°,∠BOC=2∠AOC=120°∴∠BOD=150°,∵OE平分∠BOD,∴∠EOD=∠BOE=75°,∴∠COE=∠DOE﹣∠COD=75°﹣30°=45°.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.【解答】解:(1)∵∠AOB=90°,∠BOC=40°∴∠AOC=∠AOB+∠BOC=90°+40°=130°.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×130°=65°,∠COD=∠BOC=×40°=20°.∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;(2)∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=α+β.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β),∠COD=∠BOC=β.∴∠DOE=∠COE﹣∠COD=(α+β)﹣β=α+β﹣β=α;(3)∠DOE的大小与∠BOC的大小无关,即∠DOE=∠AOB.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.【解答】解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.【解答】解:设这个角为x°,根据题意得:90﹣x=(180﹣x)﹣20,解得:x=40.故这个角的度数为40°.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),则(90°﹣x+180°﹣x)﹣×180°=1,x=67°.答:这个角为67°20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠AOC=∠BOD,(ⅱ)∠AOD+∠COB=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?【解答】解:(1)(ⅰ)∠AOC=∠BOD,理由是:∵∠AOB=∠DOC=90°,∴∠AOB+∠COB=∠DOC+∠COB,∴∠AOC=∠DOB,故答案为:AOC,BOD.(ⅱ)∠BOC+∠AOD=180°,理由是:∵∠AOB=∠DOC=90°,∴∠BOC+∠AOD=360°﹣90°﹣90°=180°,故答案为:AOD,COB.(2)两个结论仍然成立,理由如下:(ⅰ)∵∠AOC+∠BOC=∠AOB=90°,∠BOD+∠BOC=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD.(ⅱ)∵∠BOC+∠AOD=∠BOC+∠AOC+∠COD=∠AOB+∠COD,又∵∠AOB=∠COD=90°,∴∠BOC+∠AOD=180°.22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠AOC、∠EOF、∠BOD(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠COE=∠BOF;③∠AOD=∠COB.(3)①如果∠AOD=140°.那么根据对顶角相等,可得∠BOC=140度.②如果,求∠EOF的度数.【解答】解:(1)根据图形可得:∠AOC、∠EOF、∠BOD都是∠AOF的余角;(2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE;(3)①对顶角相等,∠BOC=∠AOD=140°.②∠EOF=X°,则∠AOD=5x°,由∠EOF+∠DOE=90°,∠DOE+∠BOD=90°,∴∠BOD=∠EOF=x°,又∠AOD+∠BOD=180°,所以x+5x=180,解得x=30,∠EOF=30°23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.【解答】解:(1)∠AOE=∠DOC;∵∠AOC=∠BOD=90°,∴∠DOC=∠AOB,∵OE是∠AOB的平分线,∴∠AOE=∠AOB=∠DOC;(2)由(1)得,∠DOC=∠AOB=2∠AOE,∵∠AOC=90°,∠COE=75°,∴∠AOE=90°﹣75°=15°,∴∠DOC=2∠AOE=30°,∴∠AOD=∠AOC+DOC=90°+30°=120°.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=50°,∠BOD=40°;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.【解答】解:(1)∵∠COE与∠EOD互余,∠COE=40°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠AOE=100°,∴∠BOD=∠AOB﹣∠AOD=40°,故答案为:50°;40°;(2)∵∠COE=α,且∠COE与∠EOD互余,∴∠EOD=90°﹣α,∵OE平分∠AOD∴∠AOD=2(900﹣α),∴β+2(900﹣α)=1400解得,β=2α﹣40°.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?【解答】解:(1)∠α+∠β=180°﹣∠ACB =180°﹣90°=90°;(2)∵∠β=32°,由(1)可得:∠α=90°﹣∠β=58°,则∠α的补角=180°﹣∠α=122°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段和角精选练习题一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个 B.2个 C.3个 D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个 B.2个 C.3个 D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A. B. C. D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120° D.135°21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE ()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于度.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个 B.2个 C.3个 D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A. B. C. D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD 的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115° D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120° D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE 的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE ()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到6个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC 可求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE,∠AOC的余角是∠BOC;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。

相关文档
最新文档