九年级数学上册《实数的运算》练习题1

合集下载

实数加减运算100题及答案初三

实数加减运算100题及答案初三

(1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(23)x^2+5x-176=0 答案:x1=-16 x2=11(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(67)x^2+24x+119=0 答案:x1=-7 x2=-17(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6。

初三实数的运算练习题

初三实数的运算练习题

初三实数的运算练习题在初三学习实数的运算过程中,练习题是帮助学生巩固知识、培养技能的重要途径。

通过练习题的答题过程,学生能够更深入地理解和掌握实数的四则运算、绝对值运算、分数运算等内容。

以下是一些关于初三实数运算的练习题,供学生进行练习。

1. 计算下列各式的结果:a) $5 + \sqrt{4}$b) $(3 + \sqrt{2})^2$c) $3 - |2 - 5|$d) $\frac{2}{3}+\frac{3}{4}$e) $\frac{1}{2} - \left(\frac{2}{3} - \frac{1}{4}\right)$2. 将下列分数化为小数形式:a) $\frac{5}{8}$b) $\frac{4}{25}$c) $\frac{7}{20}$d) $\frac{3}{11}$e) $\frac{9}{16}$3. 将下列小数化为分数形式:a) $0.75$b) $0.3\overline{7}$c) $0.6\overline{12}$d) $1.234$e) $0.142857\overline{142857}$4. 计算下列各式并给出结果的近似值(保留小数点后两位):a) $\sqrt{5} + \sqrt{3}$b) $\sqrt{5} - \sqrt{2}$c) $\sqrt{7} \times \sqrt{2}$d) $\frac{\sqrt{12}}{\sqrt{3}}$e) $\frac{\sqrt{15}}{\sqrt{8} - \sqrt{5}}$5. 利用实数运算的性质简化以下各式:a) $(3 + \sqrt{2}) - (2 + \sqrt{2})$b) $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$c) $2\sqrt{6} + 3\sqrt{6} + \sqrt{6}$d) $\sqrt{3} \times \sqrt{2} \times \sqrt{7}$e) $\sqrt{8} \div \sqrt{2}$以上是初三实数的运算练习题,请同学们按照题目要求进行计算和简化。

初三实数运算练习题及答案

初三实数运算练习题及答案

初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。

1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。

实数的运算计算题30道

实数的运算计算题30道

实数的运算计算题30道一、加法运算1. 计算:√(2)+3√(2)- 解析:因为被加数和加数都是同类二次根式(二次根式的被开方数相同),所以可以直接将系数相加。

√(2)+3√(2)=(1 + 3)√(2)=4√(2)。

2. 计算:(-2)+5- 解析:这是简单的有理数加法,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|5|>| - 2|,所以(-2)+5 = 5-2=3。

3. 计算:√(5)+(-√(5))- 解析:互为相反数的两个数相加得0,√(5)与-√(5)互为相反数,所以√(5)+(-√(5)) = 0。

二、减法运算4. 计算:5 - √(3)-(3-√(3))- 解析:先去括号,括号前是减号,去括号后括号里的各项要变号。

则原式=5-√(3)-3 +√(3),然后再合并同类项,-√(3)+√(3)=0,5 - 3=2,所以结果为2。

5. 计算:7-(-2)- 解析:减去一个数等于加上这个数的相反数,所以7-(-2)=7 + 2=9。

6. 计算:√(8)-√(2)- 解析:先将√(8)化简为2√(2),则原式=2√(2)-√(2)=(2 - 1)√(2)=√(2)。

三、乘法运算7. 计算:2√(3)×√(6)- 解析:根据二次根式乘法法则√(a)×√(b)=√(ab),则2√(3)×√(6)=2√(3×6)=2√(18),再将√(18)化简为3√(2),所以2√(18)=2×3√(2)=6√(2)。

8. 计算:(-3)×5- 解析:两数相乘,异号得负,所以(-3)×5=-15。

9. 计算:√(5)×√(5)- 解析:根据二次根式乘法法则,√(5)×√(5)=√(5×5)=√(25) = 5。

四、除法运算10. 计算:(√(12))/(√(3))- 解析:根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(b≠0),则(√(12))/(√(3))=√(frac{12){3}}=√(4)=2。

初中中考复习之实数的运算(精编含答案)

初中中考复习之实数的运算(精编含答案)

中考复习之实数的运算一、选择题:1.计算:﹣2﹣5的结果是【 】A .﹣7B .﹣3C . 3D .72.与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4 3. 012⎛⎫-- ⎪⎝⎭=【 】 A .﹣2 B .2 C .1 D .﹣14.计算 23+- 的结果是【 】A .1B .1-C . 5D . 5-5.计算(2﹣3)+(﹣1)的结果是【 】A .﹣2B .0C .1D .26.(﹣2)0等于【 】A . 1B . 2C . 0D .﹣2 7. 若(a -1)2+|b -2|=0,则(a -b )2012的值是【 】 A. -1 B. 1 C. 0 D. 20128.计算-1+1的结果是【 】A.1B.0C.-1D.-29.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是【 】A .41B .40C .39D .3810.计算6÷(-3)的结果是【 】A .- 1 2B .-2C .-3D .-18 11. 13-等于【 】A .3B .31-C .-3D .31 12.若m m 1139273⨯⨯=,则m 的值为【 】 A.3 B.4 C.5 D. 613.021⎪⎭⎫ ⎝⎛--=【 】 A .-2 B .2 C .1 D .-114.计算:2-3 =【 】A .-1B .1C .-5D .515.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若】A .5B .6C .7D .816.计算2-(-3)的结果是【 】.(A )5 (B )1 (C )-1 (D )-517. 】A .±B .C .±3D .318.计算﹣1﹣2等于【 】A .1B .3C .﹣1D .﹣319.计算﹣(﹣5)等于【 】A .5B .﹣5C .15D .﹣1520.﹣(﹣2)的值是【 】A .﹣2B .2C .±2D .421. 32- 等于【 】A .6-B .6C .8-D .822.下列运算正确的是【 】A B .(﹣3)2=﹣9 C .2﹣3=8 D .20=023.计算|﹣31|﹣32的结果是【 】A .﹣31B .31C .﹣1D .124.计算:2-2=【 】.A .14 B .-14 D .425.计算12-的结果是【 】A .-3B .3C .-1D .126.计算:22=【 】A.1B. 2C. 4D.8=【 】A .3B .-3C .-2D .228.下列计算正确的是【 】A .-|-3|=-3B .30=0C .3-1=-3D . 39±=二、填空题:1.∣-3∣= .2.计算112-= .3.计算5120⋅的结果是 .4.计算11=32- .5.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 %.6.计算:∣-2∣= ,12--()= ,22-()= ,= 。

初三实数运算练习题

初三实数运算练习题

初三实数运算练习题一、加减乘除练习题1. 计算并写出结果:a) 3 + (-7)b) -4 - 9c) 5 × (-2)d) -12 ÷ 3e) (-9) × (-6)f) 24 ÷ (-8)2. 针对以下问题,写出计算过程并给出答案:a) 饭店每天的生意额为2000元,其中40%用于支付工资,还剩下多少元?b) 排球比赛中,甲队胜率为75%,乙队胜率为80%,哪个队胜率更高?c) 一个数加上它的相反数等于0,这个数是多少?d) 一个数加上它的三分之一等于20,这个数是多少?二、分数与实数的转换1. 将分数转换为小数,并写出结果(保留两位小数):a) 3/4b) 5/8c) 2/3d) 7/12e) 1/52. 将小数转换为分数,并写出结果(约简到最简形式):a) 0.75b) 0.625c) 0.333...d) -1.5e) -0.2三、混合运算练习题1. 计算并写出结果:a) 5 × (-4) + 3 ÷ (-6)b) 6 - (-1) × 3 + 2 ÷ 5c) (-2) + 4 × 3 - 5 ÷ (-1)d) 5 × (4 - 2 ÷ (-2)) + 8e) (-3) × [2 - (-4 × 3) ÷ (-2)]2. 选择适当的符号(>,<,=),将下列数进行比较:a) -7 _________ -9b) 0.3 _________ -0.3c) -8 _________ -8d) 2/3 _________ 0.6e) -2 _________ -2四、实际应用题1. 某超市原价为240元的商品打6.25折,现价是多少?2. 一辆小轿车从A地到B地的距离为220千米,从B地到C地的距离为380千米,从C地回到A地的距离为520千米,求整个行程的总距离。

初三实数运算练习题

初三实数运算练习题

初三实数运算练习题初三是关键的学习阶段,学生们需要掌握和运用各种数学运算。

实数运算是数学中一个重要的基础环节,掌握实数运算能力对初中数学学习和未来高中、大学数学学习起到至关重要的作用。

在这篇文章中,我将为大家提供一些初三实数运算练习题,希望能够帮助大家巩固和加深对实数运算的理解和运用。

一、四则运算1. 计算:(-3) × 4 + 2 × (-5)。

2. 计算:(-7) ÷ (4 - 9)。

3. 计算:(√2 + 3) × (√2 - 3)。

4. 计算:1 - 2 × 3 + 5 ÷ 2。

二、绝对值运算1. 计算:|-8|。

2. 计算:|5 - 10|。

3. 若 |a - 3| = 7,求 a 的值。

4. 若 a - 2 < 0,求 |a - 2| 的值。

三、开根号运算1. 计算:√9 + √16。

2. 计算:√(25 + 16)。

3. 计算:5 × √4。

4. 若√x = 7,求 x 的值。

四、分数运算1. 计算:(1/4) ÷ (1/2)。

2. 计算:(3/4) + (2/5)。

3. 计算:(2/3) - (1/6)。

4. 计算:(2/5) × (1/10)。

五、混合运算1. 计算:3 + √(2 - 5) ÷ (-2)。

2. 计算:(√3 + 1) × (√3 - 1)。

3. 计算:2 + 3 × (4 - 1) ÷ (5 - 2)。

4. 计算:√(9 - 4) ÷ (3 - 2) × (1 + 2)。

以上是一些初三实数运算的练习题,通过练习这些题目,希望能够帮助大家提高实数运算的能力。

实数运算不仅仅是单纯的计算,还需要理解其中的数学原理和概念。

在解题过程中,要注重运算的顺序和运算法则的运用。

另外,要注意运算过程中的负数情况、分数运算和开根号等特殊情况的处理。

实数计算题专题训练题(含答案)

实数计算题专题训练题(含答案)

专题实数计算题训练一.计算题 _ _1. |-2|-( 1+ ~) 0+ ;20PP 22. - 1 +4X(- 3) + (- 6) -(- 2)3 1 一「. 一;j-匚5. 「| 】o 26. (1) ■;;7「•"8. 「■:(精确到0.01).9 . ■- I . :■■- ■- -■■- ■■- _ _■.3 2 210. (- 2) + (- 3)H (- 4) +2] -(- 3) r-2);11|二-灵亍一斤12. - 12+ X :-213((-引* - 昭(-2)彳-听-4|+ (-1)°.214. 求G 的值:9G =121.15. 已知. ,求G P的值.16•比较大小:-2,- (要求写过程说明)217. 求G 的值:(G+10 ) =1618. . _ . — | - 4 : . . - ' - L i19. 已知m v n,求j (m [门)2 + —忌的值;20. 已知a v 0,求■+,「的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1 计算题:2|-( 1+ 匚)0+ :解答:解:原式=2 - 1+2 ,=3.20PP 2 2.计算题:-1 +4 X (- 3) + (-6) +(- 2)解答: 解:-120PP +4 X (- 3) 2+ (- 6) - (- 2),=-1+4 X 9+3,=38.3•丁- .E | -- j-匚原式=14 - 11+2=5 ;(2)原式=逅-!+V2= - 1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握 二次根式、绝对值等考点的运算. 5 .计算题: 一 •丁一 ▼匚 ,一 一]考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8-( - 8)-( - 1)=-17=「点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.打 7. 考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。

中考数学复习《实数的运算》专题练习含试卷分析

中考数学复习《实数的运算》专题练习含试卷分析

2.实数的运算一、选择题1. ( ·自贡)计算31-+的结果是( )A.―2B.―4C. 4D.2 2. (·柳州)计算0(2)+-的结果是( )A.―2B. 2C. 0D.―20 3. (·武汉)温度由―4℃上升7℃后是( )A. 3℃B.―3℃C. 11℃D.―11℃ 4. ( ·呼和浩特)计算3(2)---的结果是( )A.―1B.1C. 5D.―5 5. (·淄博)计算1122--的结果是( ) A.0 B.1 C.―1 D.146. (·台州)比―1小2的数是( )A. 3B. 1C.―2D.―37. (·临安)我市的最高气温为39℃,最低气温为零下7 ℃,则计算我市温差列式正确的是( ) A. (39)(7)+-- B. (39)(7)+++ C. (39)(7)++- D. (39)(7)+-+8. (·新疆)某市某天的最高气温为2℃,最低气温为―8℃,则该市当天的最高气温比最低气温高( )A. 10℃B. 6℃C.―6℃D.―l0℃ 9. ( ·咸宁)咸宁冬季里某一天的气温为―3℃~2℃.则这一天的温差是( ) A. 1℃ B.―1℃ C. 5 ℃ D.―5 ℃ 10. ( ·台湾)已知321()141516a =--,321()141516b =--,321141516c =--,下列结论正确的是( )A. a c =,b c =B. a c =,b c ≠C. a c ≠,b c =D. a c ≠,b c ≠ 11. ( 207 8·吉林)计算(1)(2)-⨯-的结果是( )A. 2B. 1C.―2D.―3 12. (·遂宁)计算2(5)-⨯-的结果是( )A.―7B. 7C.―10D. 10 13. (·大庆)已知两个有理数a ,b .如果0ab <且0a b +>,那么( ) A. 0a >,0b > B. 0a <,0b >C. a ,b 同号D. a ,b 异号,且正数的绝对值较大 14. ( ·天津)计算2(3)-的结果是( )A. 5B.―5C. 9D.―9 15. (·宜昌)计算24(2)5+-⨯的结果是( )A.―16B.16C. 20D. 2416. (·北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A. 4a >B. 0c b ->C. 0ac >D. 0a c +> 17. (·台湾)已知43.110a -=⨯,85.210b -=⨯,那么a b -的值()A.比1大B.介于0,1之间C.介于―1,0之间D.比―1小18. (·包头)计算3-的结果是( )A.―1B.―5C. 1D. 519.(·宁夏)计算12-( ) A.1 B.12C.0D.―120.(·邵阳)( )A. 1.5B. 1.6C. 1.7D. 1.8 21. (·铜仁)9的平方根是( )A. 3B.―3C. 3和―3D. 81 22. (·恩施州)64的立方根为( )A. 8B.―8C. 4D.―423. (·南京( ) A.32 B. 32- C. 32± D. 811624.(·安顺的算术平方根是( )A. B.C. 2±D. 225. (·杭州)下列计算正确的是( )A. 2=B. 2=±C.2= D.2=±26. (·聊城)下列实数中的无理数是( )A.B.C.D. 22727. (·台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61 000元.若活动期间此款微波炉总共卖出50台,则其总销售额为( )A. 305 0000元B. 321 000元C. 329 000元D. 342 000元28. (·张家界)观察下列算式: 122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…,则1234522222++++20182++…的末位数字是( )A. 8B. 6C. 4D. 0 二、填空题29. (·德州)计算:23-+= .30.(·南充)某地某天的最高气温是6℃,最低气温是―4℃,则该地当天的温差为 ℃. 31. (·常州)计算:31--= . 32. (·玉林)计算:6(35)--= .33. (·吉林)= . 34. (2018·上海)―8的立方根是 .35. (2018·河南)计算:5-= . 36. (2018·重庆)计算:012-+= . 37. (2018·重庆)计算:02(3)π-+-= .38. (2018·莱芜)计算:0(3)2cos 60π-+︒= .39. (2018·海南)计算:21322--⨯= .40. (2018·台州)计算:2(1)(3)--⨯-= .41.(2018·恩施州)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.42. (2018·湘潭)阅读材料:若b a N =,则log a b N =,称b 为以a 为底N 的对数,例如328=,则322log 8log 23==.根据材料填空: 3log 9= .43. (2018·北京)某公园划船项目收费标准如下表:某班18名同学一起去该公园划船.若每人划船的时间均为1小时,则租船的总费用最低为 元. 三、解答题44. (2018·湖州)计算: 211(6)()23-⨯-.45. (2018·白银)计算: 2018112sin 30(1)()2-︒+--.46. (2018·荆州)计算: 112()tan 452--+︒.47. (2018·黄冈)计算: 112()tan 452--+︒.48. (2018·曲靖)计算: 011(2)( 3.14)()3π---+--.49. (2018·新疆)计算: 112sin 45()23--︒+-.50. (2018·娄底)计算: 021( 3.14)()4cos303π--+-+︒.51. (2018·湘西州)按照如图所示的操作步骤,若输入x 的值为2,求输出的值.52. (2018·铜仁)计算:111111261220309900++++++….53. (2018·怀化)根据下面的材料,解答问题.等比数列求和概念:对于一列数1a ,2a ,3a ,…,n a ,…(n 为正整数).若从第二个数开始,每一个数与前一个数的比为一定值,即1kk a q a -=(常数),则这一列数1a ,2a ,3a ,…,n a ,…成等比数列,这一常数q 叫做该数列的公比. 例:求等比数1,3,23,33,…,1003的和. 解:令2310013333S =+++++…, 则23100101333333S =+++++…,因此101331S S -=-,∴101312S -=,即1012310031133332-+++++=….仿照例题,求等比数列1,5,25,35,…,20185的和.参考答案一、1. A 2. A 3. A 4. A 5. A 6. D 7. A 8. A 9. C10. B 11. A 12. D 13. D 14. C 15. D 16. B 17. B18. B 19. C 20. C 21. C 22. C 23. A 24. B 25. A26. C 27. C 28. B二、填空题29. 130. 1031. 232. 8 33. 434. 2-35. 236. 2 37. 338. 239. 540. 341. 183842. 243. 380三、解答题44. 645. 046. 347. 1-48. 349. 550. 1051. 252.99 10053.2019 514-。

【汇总】初中数学专项练习《实数》100道计算题包含答案

【汇总】初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、计算:| -2|+2cos45°- + .2、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.3、已知且与互为相反数,求的平方根.4、如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.5、一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.6、如图:已知点A、B表示两个实数﹣、,请在数轴上描出它们大致的位置,用字母标示出来;O为原点,求出O、A两点间的距离.求出A、B两点间的距离.7、填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数8、已知2a-1的平方根是±3,b-1的立方根是2,求a-b的值.9、求下列各式中的x值.(1)25x2﹣196=0(2)(2x﹣1)3=8.10、若|x|=7,y2=9,且x>y,求x+y值11、在数轴上表示下列各数,并用“<”连接起来。

, , , , , 。

12、把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3. ,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.13、计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.14、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根15、一个正数x的平方根是3a﹣4和1﹣6a,求x的值.16、求下列式中的x的值:3(2x+1)2=27.17、解下列方程:(1)(x+5)2+16=80(2)﹣2(7﹣x)3=250.18、已知25x2﹣144=0,且x是正数,求代数式的值.19、规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.20、若5a+1和a﹣19是数m的平方根,求m的值.21、已知的平方根是,的立方根是2,是的整数部分,求的值..22、若5a+1和a﹣19是数m的平方根.求a和m的值.23、已知2a-7的平方根是±5,2a+b-1的算术平方根是4,求- +b的值.24、把下列各数填在相应的集合内:100,﹣0.82,﹣30 ,3.14,﹣2,0,﹣2011,﹣3.1 ,,﹣,2.010010001…,正分数集合:{ …}整数集合:{ …}负有理数集合:{ …}非正整数集合;{ …}无理数集合:{ …}.25、+3﹣5.26、已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.27、求下列各式中x的值.(1)9x2﹣4=0(2)(1﹣2x)3=﹣1.28、(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.29、计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.30、计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.31、已知和互为相反数,且x-y+4的平方根是它本身,求x、y 的值.32、在数轴上表示下列各数:0,﹣2.5,3 ,﹣2,+5,1 ,并用“<”号连接。

初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、已知x,y都是有理数,且满足方程:2x﹣y=6y+ ﹣20,求x与y 的值.2、求下列各式中x的值:(1)(x﹣1)2=9(2)(x﹣1)3=8.3、把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:3 ,﹣2.5,|﹣2|,0,,(﹣1)2.4、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.5、计算:..6、任意找一个非零数,利用计算器对它不断进行开立方计算,你发现了什么?7、已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.8、计算:.9、已知a+3的立方根是2,3a+b﹣1的平方根是±6,则a+2b的算术平方根是多少?10、座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为,其中T表示周期(单位:秒),h表示摆长(单位:米),g=10米/秒.假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?(已知≈2.236,π取3)11、交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16 ,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数.在某次交通事故中,测得d=6m,f=1.5,求肇事汽车的车速.12、求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.13、计算:()﹣1+(+1)2﹣.14、计算:.15、某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)16、已知实数、、在数轴上的对应点为、、,如图所示:化简:.17、计算:﹣12011++()﹣1﹣2cos60°.18、对于任意数a,一定等于a吗?请举例说明.19、已知正数x的两个不同的平方根分别是a+3和2a﹣15,且=4.求x﹣2y+2的值.20、已知a+7的立方根是2,一个正数b的平方根分别是5x﹣2和4﹣6x,求3b+4a的平方根.21、解方程或方程组:(1)(1﹣2x)2﹣36=0(2)2(x﹣1)3=﹣.22、把下列各数填在相应的大括号里:,﹣2,﹣,3.020020002…,0,,﹣(﹣3),0.333正数集合:{ …}分数集合:{ …}有理数集合:{ …}无理数集合:{ …}.23、小丽想在一块面积为640cm2的正方形纸片中,沿着边的方向裁出一块面积为420cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?请简要说明理由.24、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人能得到的玩具不足3件,求小朋友的人数及玩具数.25、求式中x的值:3(x﹣1)2+1=28.26、已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根。

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

专题6.5 实数的运算专项训练(50道)参考答案与试题解析3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.3−√4.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√27【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2. 7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π. 8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7. 10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π.【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2. 13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案. 【解答】解:原式=√3−√2−12−√2+12 =√3−2√2. 15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π. 16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23=﹣1−74+14=−52. 17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021. 【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2. 19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643 =﹣3﹣16−14+14=﹣19. 20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42 =﹣0.1−√23+10﹣2 =7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7; (2)原式=﹣2−√925+√5−2+4=﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2.【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2. 23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2 =−12+√3. 24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021. 【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|; (2)√−273−√0−√14+√0.1253+√1−63643.【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114.30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案. 【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算:(1)√−273+√(−3)2+√−13;(2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2=5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题. (1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13. 【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7) =−√6−√7;(2)原式=4√2+3−23+√2−1 =5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2 =2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2;②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49, ∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2.【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1=−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√3√3)+|2−√5|. (2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√31√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5).(2)√4+√225−√400.(3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14 =512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1; (3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213; (3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13)=﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4;(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。

实数的运算练习题

实数的运算练习题

实数的运算练习题实数是数学中最基本的数集之一,对于学习数学的人来说,熟练掌握实数的运算是非常重要的。

本文将给出一些实数的运算练习题,帮助读者巩固对实数运算的理解和应用。

知识点回顾在开始练习题之前,我们先回顾一下实数运算的基本知识点:1.加法:实数的加法满足交换律、结合律和存在单位元的性质。

例如,对于任意实数a和b,有a + b = b + a。

2.减法:实数的减法可以视为加法的逆运算。

例如,对于任意实数a和b,有a - b = a + (-b)。

3.乘法:实数的乘法满足交换律、结合律和存在单位元的性质。

例如,对于任意实数a和b,有a * b = b * a。

4.除法:实数的除法可以视为乘法的逆运算。

例如,对于任意实数a和b(其中b≠0),有a / b = a * (1/b)。

5.幂运算:实数的幂运算是指将实数自身进行多次乘法运算。

例如,对于任意实数a和正整数n,有a^n = a * a * … * a (n个a相乘)。

练习题题目1将下列实数写成最简形式:1.$\\frac{5}{10}$2.$0.9 + \\frac{2}{3}$3.$0.3 \\times 0.4$4.$\\frac{2}{5} - \\frac{3}{4}$5.$(-4) \\times (-3)$题目2计算下列表达式的值:1.$3 + (-5) \\times 2$2.$-2 \\times (-3) - 4 \\div 2$3.$(1 + \\frac{1}{2}) \\times (2 - \\frac{1}{3})$4.$2^3 \\times 2^{-2}$5.$0.25 \\div 0.5$题目3判断下列命题是否成立:1.对于任意实数a和b,有a + b = b + a。

2.对于任意实数a和b,有a - b = b - a。

3.对于任意实数a和b,有$a \\times b = b \\times a$。

4.对于任意实数a,a + 0 = a。

中考九年级数学:实数的运算 练习题

中考九年级数学:实数的运算 练习题

实数的运算(1)A .组11x x>0)、24y x +1x y +、0,0)x y ≥≥.是二次根式的是___________________________________________.2、当x _____是二次根式,当x ____11x +在实数范围内有意义?B 组1.2、若x =,其中x 的整数部分是a ,小数部分是b ,则2(1a ab ++的值为 。

3、化简下列各题:(1)3ab (24、若132-,求12+-x x 的值5、若[]x 表示不超过x 的最大整数(如2[]3,[2]33π=-=-等),求 ...+++的值。

家庭作业姓名: 一.选择题 1.下列式子中,是二次根式的是 ( )A .-7B .37C .xD .x2. 下列说法中,正确的是 ( )A .带根号的式子一定是二次根式B .代数式x 2+1一定是二次根式C .代数式x +y 一定是二次根式D .二次根式的值必是无理数二.填空题3.下列式子,哪些是二次根式,哪些不是二次根式?2、33、1x 、x (x >0)、-12、0、a 2+5、-5、1x +y、x +y (x ≥0,y ≥0)、xy . 二次根式:__________________________________________________________________。

不是二次根式:______________________________________________________________。

三.解答题4.a 取何值时,下列二次根式有意义.(1)a +1 (2)1-10a (3)x -1+1-x5.把下列二次根式化成最简二次根式:(1)32 (2)40 (3)5.1 (4)346.已知a 、b 为实数,且5a -+2102a -=b +4,求a 、b 的值.7.先化简,再求值:,其中5x =8. 先化简、再求值:33)225(423-=---÷--a a a a a ,其中.。

2021年九年级数学中考复习:实数及其运算练习卷(word版含答案解析)

2021年九年级数学中考复习:实数及其运算练习卷(word版含答案解析)

,是正数,故选 B.
13.【答案】A【解析】本题考查了正数和负数,解决本题的关键是理解正负数的意义.根据相反意义的量
可以用正负数来表示,高于海平面 200 米记为
米,那么低于海平面 300 米应记为
米.
【解答】解:如果高于海平面 200 米记为
米,那么低于海平面 300 米应记为
米.故选:A.
14.【答案】C【解析】设未知数,根据数轴上两点之间的距离等于这两点所表示的数的差的绝对值,列方
数都小于 0; 正数大于一切负数; 两个负数,绝对值大的其值反而小.
6.【答案】A【解析】有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用 最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.
【解答】解:
.故选:A.
7.【答案】D【解析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得
程求解即可.数形结合是常用的方法.解:设这个数为 x,由题意得,


,解得, 或
.故选:C.
10 / 17
15【. 答案】C【解析】由数轴知
,再根据有理数的加法法则和乘法法则计算可得.解
题的关键是掌握数轴上右边的数总是大于左边的数及有理数的加法法则和乘法法则.由数轴知
,则 A 选项错误.
B.
,此选项错误;C. ,此选项正确;D.
应是
,这个数据用科学记数法表示是________.
三、解答题
42. 计算:

5 / 17
43. 计算: 44. 计算: 45. 计算: 46. 计算: 47. 计算:
. .
; .
6 / 17

初中数学实数运算练习题

初中数学实数运算练习题

初中数学实数运算练习题一、选择题(每题2分,共10分)1. 下列实数中,哪个是无理数?A. 0.5B. πC. √4D. 0.33333...2. 计算下列实数的乘积,结果为负数的是?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-1/3)3. 以下哪个选项表示的是实数的绝对值?A. |-5|B. -(-5)C. -5D. -|-5|4. 计算下列实数的和,结果为正数的是?A. (-1) + 2B. 3 + (-4)C. 0 + (-5)D. (-3) + 15. 哪个实数的平方等于9?A. 3B. -3C. 3或-3D. 以上都不是二、填空题(每题3分,共15分)1. 计算实数的除法:(-8) ÷ (-2) = ______2. 计算实数的减法:5 - (-3) = ______3. 计算实数的加法:(-7) + 4 = ______4. 计算实数的乘法:(-2) × 3 = ______5. 计算实数的平方根:√9 = ______三、计算题(每题5分,共20分)1. 计算实数的混合运算:(-3) × 2 + 4 ÷ (-2) - √162. 计算实数的混合运算:(-5) × (-3) - 2² + √43. 计算实数的混合运算:7 - (-2) × 3 + √(-4)²4. 计算实数的混合运算:(-1) × (-6) ÷ 3 + 5 - √(-9)²四、解答题(每题10分,共20分)1. 已知一个实数x满足方程x² - 4x + 4 = 0,请求解x的值。

2. 已知一个实数y满足方程2y + 3 = 7,请求解y的值,并计算y²的值。

请同学们仔细审题,认真作答,注意实数运算的规则和顺序。

初三总复习实数练习题

初三总复习实数练习题

初三总复习实数练习题计算题一:1. 计算:$\sqrt{25}$.解答:$\sqrt{25}=5$.2. 计算:$|8|$.解答:$|8|=8$.3. 计算:$\left|\frac{3}{4}\right|$.解答:$\left|\frac{3}{4}\right|=\frac{3}{4}$.4. 计算:$(-2)^3$.解答:$(-2)^3=-8$.5. 计算:$\sqrt{144}$.解答:$\sqrt{144}=12$.计算题二:1. 计算:$(\frac{3}{4})^2$.解答:$(\frac{3}{4})^2=\frac{9}{16}$.2. 计算:$\frac{5^2}{2^2}$.解答:$\frac{5^2}{2^2}=\frac{25}{4}$.3. 计算:$(\frac{2}{3})^3$.解答:$(\frac{2}{3})^3=\frac{8}{27}$.4. 计算:$(\frac{2}{5})^4$.解答:$(\frac{2}{5})^4=\frac{16}{625}$.5. 计算:$(\sqrt{2}+\sqrt{3})^2$.解答:$(\sqrt{2}+\sqrt{3})^2=2+2\sqrt{6}+3=5+2\sqrt{6}$.计算题三:1. 计算:$3-\sqrt{7-4}$.解答:$7-4=3$,所以$3-\sqrt{7-4}=3-\sqrt{3}$.2. 计算:$\frac{4}{\sqrt{2}}-\frac{2}{\sqrt{8}}$.解答:$\frac{4}{\sqrt{2}}-\frac{2}{\sqrt{8}}=2\sqrt{2}-\frac{2}{2}\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$.3. 计算:$2\sqrt{3}-(\sqrt{2}+\sqrt{5})$.解答:$2\sqrt{3}-(\sqrt{2}+\sqrt{5})=2\sqrt{3}-\sqrt{2}-\sqrt{5}$.4. 计算:$(\sqrt{2}+\sqrt{3})^2-(\sqrt{3}-\sqrt{2})^2$.解答:$(\sqrt{2}+\sqrt{3})^2=(2+2\sqrt{6}+3)=5+2\sqrt{6}$.$(\sqrt{3}-\sqrt{2})^2=(3-2\sqrt{6}+2)=5-2\sqrt{6}$.所以$(\sqrt{2}+\sqrt{3})^2-(\sqrt{3}-\sqrt{2})^2=5+2\sqrt{6}-(5-2\sqrt{6})=4\sqrt{6}$.5. 计算:$(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{3}})(\sqrt{2}-\frac{\sqrt{3}}{2})$.解答:$(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{3}})(\sqrt{2}-\frac{\sqrt{3}}{2})=\frac{1}{\sqrt{2}}\sqrt{2}+\frac{1}{\sqrt{2}}(-\frac{\sqrt{3}}{2})+\frac{2}{\sqrt{3}}\sqrt{2}-\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{2}$.$=1-\frac{\sqrt{3}}{2}+\frac{2\sqrt{2}}{\sqrt{3}}-1=\frac{2\sqrt{2}}{\sqrt{3}}-\frac{\sqrt{3}}{2}$.综合练习题一:1. 已知实数$a=-\frac{5}{2}$,求$3a+(a+1)-(2a-1)$的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 实数的运算
一、选择题
1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )
A .﹣7℃
B .7℃
C .﹣1℃
D .1℃
2.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数, 不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接
近标准克数的是( )A .+2 B .-3 C .+3 D .+4
3. 下列计算不正确的是( ) A.31222-+=- B.21139
⎛⎫-= ⎪⎝⎭ C.33-=
=4.在下列实数中,无理数是( )
A .13
B .π C
D .227
5.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( )
A .15号
B .16号
C .17号
D .18号
6.()2
3-运算的结果是( ) A .-6 B .6 C .-9 D .9
7.(2009年武汉)

A .3-
B .3或3-
C .9
D .3
8.估计30的值 ( )
A .在3到4之间
B .在4到5之间
C .在5到6之间
D .在6到7之间
9. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为 圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 ( )
(A )2.5 (B )2 2 (C ) 3 (D ) 5
二、填空题:
10. 计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭
=_______. 11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..
符合上述条件的点P 的坐标:
12.如图,在数轴上表示到原点的距离为3个单位的点有
13.计算:23-+= ;(2)(3)-⨯-= . 14.
若()2240a c --=,则=+-c b a .
15.
在函数y =x 的取值范围是____________.
三、计算:
(1)0(1)π-⋅sin 60°+321(2)()4-⋅
(2)01
13(()3---
(3)9212)1(1
03+⎪⎭⎫ ⎝⎛-+--
(4)130
1()(2)3(92-+-+--
(5)101453(2007π)2-⎛⎫+⨯- ⎪⎝⎭
(6)1
22(4)3-⎛⎫-- ⎪⎝⎭
(7)1
012)4cos30|3-⎛⎫++- ⎪⎝⎭°
(8)
()(
)2
2011013132π-⎛⎫-+-⨯- ⎪⎝⎭
四、解答题
(1)观察下面的变形规律:
第12题图
211
⨯ =1-1
2; 321
⨯=1
2-31;431
⨯=31-41
;……
解答下面的问题:
(1)若n 为正整数,请你猜想)1(1
+n n = ;
(2)证明你猜想的结论;
(3)求和:211⨯+321⨯+431⨯+…+201020091
⨯ .。

相关文档
最新文档