第三次模拟考

合集下载

三次模拟考总结发言稿

三次模拟考总结发言稿

大家好!在这美好的时光里,我们迎来了第三次模拟考的总结发言。

首先,请允许我代表全体同学,向辛勤付出的老师们表示衷心的感谢!同时,也向在这次模拟考中取得优异成绩的同学表示热烈的祝贺!时光荏苒,转眼间我们已进入高三的关键阶段。

回顾过去的三次模拟考,我们经历了无数的欢笑与泪水,付出了艰辛的努力。

今天,就让我们共同回顾这次模拟考的点点滴滴,总结经验,查找不足,为即将到来的高考做好充分准备。

一、回顾成绩,总结经验1. 班级整体成绩稳步提升。

在这次模拟考中,我们班级的整体成绩较上一次有了明显提高,尤其是理科班。

这离不开同学们的刻苦学习,也离不开老师们辛勤的付出。

2. 同学们学习态度端正。

在模拟考期间,同学们严格遵守考试纪律,认真答题,展现了良好的学习风貌。

3. 各科成绩有所突破。

在这次模拟考中,部分同学在某一科目上取得了显著成绩,如数学、英语、物理等。

这得益于同学们在平时学习中,注重基础知识积累,善于总结归纳。

4. 教师辅导有针对性。

在模拟考期间,老师们针对同学们的薄弱环节,进行了有针对性的辅导,帮助同学们查漏补缺。

二、查找不足,明确方向1. 部分同学基础不扎实。

在模拟考中,仍有部分同学在基础知识上存在不足,导致考试成绩不理想。

这说明我们在今后的学习中,还需加强基础知识的学习。

2. 应试技巧有待提高。

部分同学在模拟考中,由于应试技巧不熟练,导致答题时间不足,影响了考试成绩。

因此,我们要在平时训练中,注重提高应试技巧。

3. 时间管理能力有待加强。

在模拟考中,部分同学由于时间管理不当,导致答题速度慢,影响了整体成绩。

我们要在今后的学习中,合理安排时间,提高学习效率。

4. 团队合作意识有待加强。

在模拟考中,部分同学过于关注个人成绩,忽视了团队合作。

我们要在今后的学习中,培养团队精神,共同进步。

三、展望未来,砥砺前行1. 提高学习效率。

我们要充分利用课余时间,加强自主学习,提高学习效率。

同时,合理安排学习计划,确保各科均衡发展。

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)

对称


单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。

2024年北京中考数学第三次模拟卷含答案解析

2024年北京中考数学第三次模拟卷含答案解析

2024年中考第三次模拟考试数学(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104 3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<16.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A.B.C.D.7.(2分)已知关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<B.k>﹣且k≠0C.k>﹣D.k<且k≠08.(2分)在Rt△ABC中,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 .10.(2分)因式分解:xy3﹣25xy= .11.(2分)分式方程的解为 .12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 y2(填“>”,“=”或“<”).13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 .14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 °.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 元.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)三.解答题(共12小题,满分68分)17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知x +y =6,xy =9,求的值.20.(6分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接DE ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC =60°,∠C =45°,DE =2,求BC 的长.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了. 不对呀,是144元.22.(5分)已知一次函数 y =(k ﹣2)x ﹣3k +12.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数 y =(k ﹣2)x ﹣3k +12 的函数值y 随x 的增大而减小,求k 的取值范围.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m )如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= ,b= ;(2)这两人中, 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 ;线段OP的取值范围是 ;②点O与线段DE (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2024年中考第三次模拟考试数学·全解全析第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看,是一行两个矩形.故选:B.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:35800=3.58×104.故选:D.3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°【分析】根据多边形的内角和公式为(n﹣2)180°列出方程,求出边数,再根据外角和定理求出这个多边形的一个外角.【解答】解:设这个多边形的边数为n,根据题意列方程:(n﹣2)180°=2340°,解得n=15,360°÷15=24°,故选:A.5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.6.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A .B .C .D .【分析】画树状图列出所有等可能结果,从中找到松鼠走出笼子的路线是“先经过A 门,再经过E 门”的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中松鼠走出笼子的路线是“先经过A 门,再经过E 门”的只有1种结果,所以松鼠走出笼子的路线是“先经过A 门,再经过E 门”的概率为,故选:D .7.(2分)已知关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,则实数k 的取值范围是( )A .k <B .k >﹣且k ≠0C .k >﹣D .k <且k ≠0【分析】根据方程有两个不相等的实数根,得到根的判别式大于0且二次项系数不为0,求出k 的范围即可.【解答】解:∵关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,∴Δ=(4k ﹣1)2﹣4k (4k ﹣3)>0且k ≠0,解得:k且k ≠0.故选:B .8.(2分)在Rt △ABC 中,AC =BC ,点D 为AB 中点,∠GDH =90°,∠GDH 绕点D 旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个【分析】连接CD,根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE =CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理AE2+BF2=EF2,因为S四边形CEDF=S△EDC+S△EDF,得出.【解答】解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,∴.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.∴∠ADE+∠EDC=90°,∵∠EDC+∠FDC=∠GDH=90°,∴∠ADE=CDF.在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,DE=DF,S△ADE=S△CDF.∵AC=BC,∴AC﹣AE=BC﹣CF,∴CE=BF.∵AC=AE+CE,∴AC=AE+BF.∵AC2+BC2=AB2,∴,∴.∵DE=DF,∠GDH=90°,∴△DEF始终为等腰直角三角形.∵CE2+CF2=EF2,∴AE2+BF2=EF2.∵S四边形CEDF=S△EDC+S△EDF,∴.∴正确的有4个.故选:D.第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 x≠3 .【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.10.(2分)因式分解:xy3﹣25xy= xy(x+5)(x﹣5) .【分析】先提公因式xy,然后根据平方差公式进行计算即可求解.【解答】解:原式=xy(y2﹣25)=xy(y+5)(y﹣5).故答案为:xy(y+5)(y﹣5).11.(2分)分式方程的解为 .【分析】去分母后化为整式方程求解,后检验即可.【解答】解:,3x=x﹣3,2x=﹣3,,经检验,是原分式方程的解.故答案为:.12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 > y2(填“>”,“=”或“<”).【分析】由k<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B 在第四象限,从而判定y1>y2.【解答】解:∵k=﹣4<0,∴双曲线在第二,四象限,∵x2<0<x1,∴B在第二象限,A在第四象限,∴y1<y2;故答案为:<.13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 6 .【分析】由平行四边形的性质得AD∥CB,AD=CB,则AE=AD=CB,可证明△EAF∽△BCF,得==,则CF=AC=6,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∵AE=AD,∴AE=CB,∵AE∥CB,∴△EAF∽△BCF,∴==,∴CF=AC=AC=×10=6,故答案为:6.14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 59或121 °.【分析】根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=118°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.【解答】解:连接OA,OB,∵PA,PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB,∴∠OAP=90°,∠OBP=90°,而∠P=62°,∴∠AOB=360°﹣90°﹣90°﹣62°=118°,当点P在劣弧AB上,则∠ACB=∠AOB=59°,当点P在优弧AB上,则∠ACB=180°﹣59°=121°.故答案为:59或121.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 98或77 元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为【解答】解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 4 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 8 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)【分析】根据题意可知,筷子的颜色共有3种,根据抽屉原理可知,先拿出3根是三种颜色,所以一次至少要拿出3+1=4(根)筷子才能保证一定有2根同色的筷子;根据题意可知,先把其中一种颜色的全部(5根)摸出,剩下的2种颜色的筷子各再摸出1根,即2根,还不能满足条件,则此时再任意拿出1根,必定会出现有2双不同色的筷子,据此解答即可.【解答】解:3+1=4(根),答:每次最少拿出4根才能保证一定有2根同色的筷子;5+2+1=8(根),答:要保证有2双不同色的筷子,每次最少拿出8根.故答案为:4,8.三.解答题(共12小题,满分68分)17.(5分)计算:.【分析】先分别按照负整数指数幂、求立方根、绝对值的化简法则及特殊角的三角函数值化简,再合并同类项及同类二次根式即可.【解答】解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)已知x+y=6,xy=9,求的值.【分析】首先化简,然后把x+y=6,xy=9代入化简后的算式计算即可.【解答】解:∵x+y=6,xy=9,∴====.20.(6分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE=2,求BC的长.【分析】(1)四边形EBGD为菱形,根据邻边相等的平行四边形是菱形即可判断;(2)过D作DM⊥BC于M,分别求出CM、BM即可;【解答】解:(1)四边形EBGD 为菱形;理由:∵EG 垂直平分BD ,∴EB =ED ,GB =GD ,∴∠EBD =∠EDB ,∵∠EBD =∠DBC ,∴∠EDF =∠GBF ,∴DE ∥BG ,同理BE ∥DG ,∴四边形BEDG 为平行四边形,又∵DE =BE ,∴四边形EBGD 为菱形;(2)如图,过D 作DM ⊥BC 于M ,由(1)知,∠DGC =∠ABC =60°,∠DBM =∠ABC =30°,DE =DG =2,∴在Rt △DMG 中,得DM =3,在Rt △DMB 中,得BM =3又∵∠C =45°,∴CM =DM =3,∴BC =3+3.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了.不对呀,是144元.【分析】设中性笔的单价是x 元,笔记本的单价是y 元,利用总价=单价×数量,可列出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设中性笔的单价是x元,笔记本的单价是y元,根据题意得:,解得:.答:中性笔的单价是2元,笔记本的单价是6元.22.(5分)已知一次函数y=(k﹣2)x﹣3k+12.(1)k为何值时,函数图象经过点(0,9)?(2)若一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求k的取值范围.【分析】(1)根据一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),列方程即可得到结论;(2)根据k﹣2<0时一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求出k的取值范围即可.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),∵(k﹣2)×0﹣3k+12=9,解得k=1,故当k=1时,函数图象经过点(0,9);(2)∵一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,∴k﹣2<0,解得k<2.故当k=1或﹣1时,一次函数y=(k﹣2)x﹣3k+12的值都是随x值的增大而减小.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= 1.68 ,b= 1.70 ;(2)这两人中, 甲 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.【分析】(1)利用众数及中位数的定义分别求得a、b的值即可;(2)根据方差的计算公式分别计算方差,再根据方差的意义判断即可;(3)看哪位运动员的成绩在1.69m以上的多即可.【解答】解:(1)∵甲的成绩中1.68出现了3次,最多,∴a=1.68,乙的中位数为b==1.70,故答案为:1.68,1.70;(2)分别计算甲、乙两人的跳高成绩的方差分别:S甲2=×[(1.71﹣1.69)2+(1.65﹣1.69)2+…+(1.67﹣1.69)2]=0.00065,S乙2=×[(1.60﹣1.69)2+(1.74﹣1.69)2+…+(1.75﹣1.69)2]=0.00255,∵S甲2<S乙2,∴甲的成绩更为稳定;故答案为:甲;(3)应该选择乙,理由如下:若1.69m才能获得冠军,那么成绩在1.69m及1.69m以上的次数乙多,所以选择乙.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.【分析】(1)根据等腰三角形的性质、平行线的性质、圆内接四边形的性质证明∠BAD=∠EAD;(2)连接AC,证明△ADB≌△ADE,得到∠ABD=∠E,根据圆周角定理得到∠ABD=∠ACD,证明△ACE∽△DAE,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】(1)证明:∵AD=ED,∴∠EAD=∠E,∵AE∥BC,∴∠E+∠BCD=180°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BAD=∠EAD;(2)解:如图,连接AC,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴∠ABD=∠E,由圆周角定理得:∠ABD=∠ACD,∴∠ACD=∠E=∠EAD,∵∠E=∠E,∴△ACE∽△DAE,∴=,即=,解得:AE=2,∴AB=AE=2.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【分析】(1)应用待定系数法即可求出函数解析式;(2)分别求出y=3时,x的值,再比较即可得到答案.【解答】解:(1)场景A:把(0,21),(10,16),代入y=﹣0.04x2+bx+c,得:,解得,∴y=﹣0.04x2﹣0.1x+21;场景B:把(0,21),(5,16),代入y=ax+c,得:,解得,∴y=﹣x+21;场景A的函数表达式为y=﹣0.04x2﹣0.1x+21,场景B的函数表达式为y=﹣x+21;(2)当y=3时,场景A中,3=﹣0.04x2﹣0.1x+21,解得:x1=20,x2=﹣22.5(舍去),场景B中,3=﹣x+21,解得x=18,∵20>18,∴化学试剂在场景A下发挥作用的时间更长.26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.【分析】(1)将a=2代入二次函数,再将二次函数化为顶点式即可得到答案;(2)由题意可得(﹣1,y0)为抛物线顶点,从而得到抛物线的对称轴为x=﹣1,从而计算出a的值,再将A(m,n),B(2﹣m,p)代入如抛物线的解析式得到n+p=2(m﹣1)2﹣8,即可得到答案.【解答】解:(1)∵a=2,∴抛物线的解析式为y=x2−4x+5,∵y=x2−4x+5=(x−2)2+1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,1);(2)∵抛物线过点(−1,y n),且对于抛物线上任意一点(x1,y1)都有y1≥y0,∴(−1,y0)为抛物线的顶点,∴抛物线的对称轴为直线x=﹣1,∴=−1.∴a=﹣4,∴该抛物线的解析式为y=x2+2x−7,∵A(m,n),B(2﹣m,p)是抛物线上不同的两点,∴n=m2+2m−7,p=(2−m)2+2(2−m)−7.∴n+p=m2+2m﹣7+(2﹣m)2+2(2﹣m)﹣7=2(m﹣1)2﹣8,又∵m≠2﹣m,∴m≠1,∴n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 AE=CF ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.【分析】(1)如图所示,连接AD,根据等腰三角形的性质可证△AED≌△CFD(SAS),由此即可求解;(2)由(1)中△AED≌△CFD(SAS),再根据△DEF为等腰直角三角形,由此即可求解;(3)点C、E、F三点共线,分类讨论,根据(2),(3)中的结论即可求解.【解答】解:(1)AE=CF,理由如下,如图所示,连接AD,∵△ABC为等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∵点D为BC中点,∴AD⊥BC,∴∠ACD=∠DAC=45°,∴AD=CD,∵△DEF为等腰直角三角形,∠EDF=90°,∴DE=DF,∠EDA+∠ADF=∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴AE=CF,故答案为:AE=CF;(2)证明:如图2所示,连接AD,由(1)可知,△AED≌△CFD(SAS),∴∠EAD=∠FCD,AE=CF,∴CE=CF+EF=AE+EF,∴CE﹣AE=CE﹣CF=EF,∵△DEF是等腰直角三角形,即DE=DF,∴EF2=DE2+DF2=2DE2,∴EF=DE=DF,∴CE﹣AE=DE;(3)解:AB=,AE=,C、E、N三点共线,①由(2)可知,CE﹣AE=DE,由(1)可知,∠EAD=∠FCD,∵∠ACD=∠ACE+∠FCD=45°,∠DCF+∠FCA+∠DAC=90°,∴∠EAD+∠FCA+∠DAC=90°,∴∠AEC=90°,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE﹣CF=,∴DE=FE=;②如图所示,由(1)可知,△ADE≌△CDN,AE=CF=,∠DAE=∠DCF,∴∠DAE+∠EAC+∠ACD=∠DCF+∠EAC+∠ACD=90°,∴△AEC是直角三角形,∴CE===,∴EF=CF﹣CE=(不符合题意舍去);③如图,∵△DEF是等腰直角三角形,∴∠F=∠DEF=45°,同法可证△ADE≌△CDF,∴∠AED=∠F=45°,∴∠AED+∠DEF=45°+45°=90°,即△ACM是直角三角形,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE+CF=,∵EF=DE,∴DE==;综上所述,DE的长为或.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 2 ;线段OP的取值范围是  ;②点O与线段DE 是 (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.【分析】(1)①根据垂线段最短以及已知条件,确定OP,DP的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k相等计算设FG的解析式为:y=﹣x+b,得G(0,b),F(b,0),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K 都满足限距关系,构建不等式求解即可.【解答】解:(1)①如图1中,∵点C(,0),E(0,1),∴OE=1,OC=,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是,Rt△OPC中,OP=OC=,即OP的最小值是;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=,∴=,∴DP=,∴当P与E重合时,DP的值最大,DP的最大值是2,线段DP的最小值为,最大值为2;线段OP的取值范围是;故答案为:,2,;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;故答案为:是;(2)∵点C(,0),E(0,1),∴设直线CE的解析式为:y=kx+m,∴,解得,∴直线CE的解析式为:y=﹣x+1,∵FG∥EC,∴设FG的解析式为:y=﹣x+b,∴G(0,b),F(b,0),∴OG=b,OF=b,当0<b<时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1﹣b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1﹣b),解得b≥,∴b的取值范围为≤b<;当1≤b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为b﹣1,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴b+1≥2(b﹣1),而b+1≥2(b﹣1)总成立,∴b>6时,线段FG与⊙O满足限距关系,综上所述,点G的纵坐标的取值范围是:b≥2;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r﹣6,最大值为2r+6,∵⊙H和⊙K都满足限距关系,∴2r+6≥2(2r﹣6),解得r≤9,故r的取值范围为0<r≤9.2024年中考第三次模拟考试数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678B DC A CD B D第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.x≠3.10.xy(y+5)(y﹣5).11..12.<.13.6.14.59或121.15.98或77.16.4,8.三.解答题(共12小题,满分68分)17.(5分)解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)解:∵x+y=6,xy=9,∴====.20.(6分)解:(1)四边形EBGD为菱形;理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,∴DE∥BG,同理BE∥DG,∴四边形BEDG为平行四边形,又∵DE=BE,∴四边形EBGD为菱形;。

2024中考物理三模试卷物理(江苏南通卷)

2024中考物理三模试卷物理(江苏南通卷)

2024年中考第三次模拟考试(南通卷)物理(考试时间:70分钟试卷满分:90分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅰ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共10小题,每小题2分,共20分。

每小题给出的选项中只有一个选项符合题意)1.我们生活在一个充满声音的世界中,下列有关声音的说法正确的是()A.学校门口的噪声显示器,是在声源处减弱噪音的B.渔船上的声呐利用超声波探测鱼群,是以声波的形式传递信息的C.“隔墙有耳”和“闻声辨人”,都是利用声音的音色不同D.我们常说声音“低声细语”和“清脆悦耳”,都是指声音的响度2.小华在使用电冰箱时发现了许多与物态变化有关的现象,他的判断正确的是()A.夏天打开冰箱门时能看见“白气”,这是冰箱外的水蒸气放热液化的现象B.湿手伸进冷冻室取冰棒时感觉到粘手,这是水蒸气凝华的现象C.发现冷冻室的内壁有一层霜,这是水凝固成冰的现象D.从冷藏室拿出的汽水,过段时间后瓶外壁出现小水珠,这是熔化现象3.各色光在真空中的波长如图所示,植物中叶绿素a会吸收波长在430nm~662nm之间的光。

下列表述正确的是()A.叶绿素a只吸收绿光B.这些色光不是电磁波C.真空中,红光比蓝光的波长更长D.波长在400nm~430nm之间的光可以用来验钞4.1911年,卢瑟福在α粒子散射实验的基础上,提出了原子的核式结构模型。

按照这一模型原子的结构与如图所示各物体的结构最接近的是()A.西红柿B.西瓜C.面包D.太阳系5.如图所示为某次比赛中足球的运动轨迹,关于其能量转化下列说法正确的是()A.足球上升过程中,重力势能转化为动能B.足球下落过程中,动能转化为重力势能C.足球上升过程中,动能减小但机械能增大D.足球下落过程中,动能增大但机械能减小6.物理来源于生活,又应用于生活,关于生活中“吸引”现象说法错误的是()A.磁铁吸引铁钉——磁铁具有磁性B.压紧的铅柱互相吸引——分子间存在引力C.梳过头的塑料梳子吸引纸屑——摩擦起电D.两张纸相互“吸引”——流速越大,压强越大7.下列四幅图对应的说法正确的是()A.图(甲)中的某同学沿杆匀速向上爬升时,该同学受到的摩擦力方向竖直向上B.图(乙)中筷子提米在空中静止时,筷子所受的摩擦力方向竖直向上C.图(丙)中在力F 拉动B 使其速度逐渐变大过程中,弹簧测力计示数也逐渐变大D.图(丁)中的人站在电梯上随电梯一起匀速上升,该人受到水平向右的摩擦力8.如图所示电路,电源电压不变,开关S处于闭合状态,当开关S1由断开到闭合时,以下说法正确的是()A.电压表示数不变B.电流表示数变小C.在相同时间内,电路消耗的电能变小D.电压表与电流表的示数比值不变9.如图所示为小区里的高层电梯工作示意图,轿厢重4500N,重为500N的小明乘坐电梯从1楼匀速上升到21楼用时60s,每层楼高3m,F=3000N,忽略绳重与摩擦。

2024年北京中考化学第三次模拟卷含答案解析

2024年北京中考化学第三次模拟卷含答案解析

2024年中考第三次模拟考试(北京卷)化学(考试时间:70分钟试卷满分:70分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:C-12 N-14 O-16 Cl-35.5 K-39 Mn-55第一部分本部分共25题,每题1分,共25分。

在每题列出的四个选项中,选出最符合题目要求的一项。

1.衣食住行离不开各种材料,下列生活物品主要由合成材料制成的是A.纯棉短袖B.塑料碗筷C.水泥栏杆D.不锈钢刀2.下列说法正确的是A.铁是地壳中含量最多的金属元素B.铁制品在潮湿的空气中容易生锈C.金属都具有银白色金属光泽D.铝制品在空气中耐腐蚀是因为铝不活泼3.常温下,我们身边一些物质的近似pH范围如下:物质苹果汁西瓜汁牛奶鸡蛋清炉具清洁剂pH 2.9 5.8 6.47.612.5下列说法正确的是A.苹果汁的酸性最小B.牛奶放置一段时间后变酸,pH变大C.胃酸过多的患者可适量喝点鸡蛋清D.炉具清洁剂的碱性比鸡蛋清弱4.2022年世界环境日的主题为“只有一个地球”,聚焦可持续生活,致力于实现与自然和谐共生。

下列做法不符合该理念的是A.深埋处理废旧电池B.垃圾分类投放,资源回收利用C.大力推广新能源汽车D.开发利用新能源,减少化石燃料使用5.“加铁酱油”“高锌奶粉”“富硒茶叶”中,“铁、锌、硒”指的是A.物质B.元素C.金属D.原子6.下列说法中错误的是A.在树木上涂刷含有硫黄粉等的石灰浆,可防止冻伤树木,并防止害虫生卵B.熟石灰可用于处理碱性废水C.磷肥可以促进作物生长,还可增强作物的抗寒、抗旱能力D.服用含氢氧化铝的药物可以治疗胃酸过多症7.分类是研究物质的科学方法。

2024届广西桂林、来宾高三下学期第三次联合模拟考试(三模)物理试卷

2024届广西桂林、来宾高三下学期第三次联合模拟考试(三模)物理试卷

2024届广西桂林、来宾高三下学期第三次联合模拟考试(三模)物理试卷一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题某新能源汽车开启最新技术的“隐私声盾”功能后,司机将无法听到后排乘客说话的内容。

“隐私声盾”系统能采集后排乘客的声音信号,并通过司机头枕音箱发出自适应的抵消声波,将对话声音抵消,从而屏蔽90%以上的后排对话信息,提高驾驶员的专注度,同时保护后排乘客的隐私。

下列说法正确的是( )A.“隐私声盾”技术运用了多普勒效应B.抵消声波与后排说话声波的频率相同C.抵消声波比后排说话声波的传播速度快D.抵消声波与后排说话声波的相位差为零第(2)题如图所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,Q离开P时的动能为。

现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P时的动能为,和的比值为( )A.B.C.D.第(3)题图甲所示的医用智能机器人在某医院大厅巡视,图乙是该机器人在某段时间内做直线运动的的位移—时间图像,20~30s的图线为曲线,其余为直线。

则机器人在( )A.0~10s内做匀加速直线运动B.0~20s内平均速度大小为零C.0~30s内的位移大小为5m D.5s末的速度与15s末的速度相同第(4)题质点从高空被竖直向上抛出,以向上为正,t时间内平均速度为-v(v>0),重力加速度为g,不计空气阻力,则上抛的初速度为( )A.B.C.D.第(5)题如图,喷泉可以美化景观,现有一喷泉从地面圆形喷口竖直向上喷出,若喷泉高度约为1.8m,喷口横截面积为,已知水的密度为,不计空气阻力,重力加速度g大小取,则该喷口每秒喷水质量大约为()A .300kgB .30kgC .3kgD .30g第(6)题在人类认识自然的历程中,科学的物理思想与方法对物理学的发展起到了重要作用,下列关于物理思想和方法的说法中不正确的是( )A .质点、光滑斜面这两个模型的建立是运用了理想化模型的方法B .当D t 非常小时,就可以表示物体在某时刻的瞬时速度,这是运用了极限法C .在推导匀变速直线运动位移公式时,先把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这是运用了微元法D .卡文迪许测量引力常量G 数值的过程中,运用了类比推理法第(7)题M 、N 两点处固定有点电荷,在两电荷连线上M 点左侧附近有一电荷,电荷能处于平衡状态的是( )A .B .C .D .第(8)题由a 和b 两种频率的光组成的光束,经玻璃三棱镜折射后的光路如图所示。

2024中考历史三模试卷历史(广东卷)

2024中考历史三模试卷历史(广东卷)

2024年中考第三次模拟考试(广东省卷)历史·全解全析(本试卷满分100分,考试时间80分钟。

)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共30小题,每小题2分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.我国是远古人类起源的重要地区,已发现的1万多处新石器时代遗存分布在黄河流域、长江流域、珠江流域、辽河流域和北方草原文化区。

由此可知,中华文明起源的重要特点是()A.时间早B.多元一体C.独特性D.一元化2.周武王时的“利簋”记牧野之战;周成王或康王时的“何尊”记述营建东都成周的史事;周共王时的“史墙盘”记周开国以来的史事。

关于上述材料说法正确的是()A.青铜冶铸工艺不断发展繁荣B.周朝时青铜器宗教色彩浓厚C.青铜器的数量众多功能丰富D.实物史料利于研究相关史事3.“华夏民族大一统的国家伟业到了汉武帝时代,完成了从地理空间到精神空间的整合与凝聚。

”汉武帝针对“地理空间”的“整合与凝聚”()A.实行三省六部制B.建立郡县制C.实施“推恩令”D.设置节度使4.自西汉中期以来,汉代铜镜的样式趋向于统一,几乎在各地区同时出现,但东汉中后期的“神兽镜”和“画像镜”却首先在长江流域兴起。

根据出土的许多铜镜的铭文可知,当时洛阳的制镜技术是最有名的,但会稽郡(今浙江绍兴)的技师也可与洛阳的技师相比。

这表明()A.江南手工业生产技术发展B.经济重心呈现南移的趋势C.手工业生产区域分工显著D.南北方经济文化交流频繁5.据史料记载,唐太宗征讨辽东时,掳得少数民族百姓一万四千口,按例当分赏将士,“上愍(同‘悯’)其父子夫妇离散,命有司平其直(值),悉以钱布赎为民”。

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。

2023-2024学年山东省青岛市高三(第三次)模拟考试物理试卷+答案解析

2023-2024学年山东省青岛市高三(第三次)模拟考试物理试卷+答案解析

2023-2024学年山东省青岛市高三(第三次)模拟考试物理试卷一、单选题:本大题共8小题,共32分。

1.“玉兔二号”月球车于2022年7月5日后开始休眠。

月球夜晚温度低至零下,为避免低温损坏仪器,月球车携带的放射性元素钚会不断衰变,释放能量为仪器保温。

通过以下反应得到:,,下列说法正确的是A.,X为电子B.是重核裂变C.的比结合能比的大D.衰变前的质量等于衰变后X和的质量之和2.如图为某品牌卡车的气囊减震装置,当路面不平时,车体会突然下沉挤压气囊,该过程中关于气囊内的气体,下列说法正确的是()A.外界对气体做的功小于气体内能的增加B.气体温度升高,每个分子的动能都增大C.气体分子对气囊单位面积的平均撞击力增大D.气体压强增大的唯一原因是因为气体分子运动变得剧烈3.如图,绝缘竖直圆环上均匀分布着正电荷,Ox轴为圆环轴线,光滑细杆位于圆环轴线上,杆上套有带正电小球。

时将小球从圆环右侧P点由静止释放,则小球运动的速度v随时间t变化关系图像及x轴上电势与坐标x的关系图像可能正确的是()A. B. C. D.4.天宫空间站是我国独立建设的空间站系统。

空间站沿图中椭圆轨道逆时针运行,图表是空间站现阶段的运行参数。

已知M、N是椭圆轨道短轴的两个端点,月球的公转周期为27天。

下列说法正确的是国籍中国轨道参数长度55m近心点高度350km加压空间体积远心点高度450km空载质量110吨轨道倾角载人上限6轨道周期A.空间站与地心连线和月球与地心连线在相等时间内扫过的面积相等B.空间站从M点运行到N点的最短时间小于45分钟C.月球绕地球运行的轨道半长轴约为空间站绕地球运行轨道半长轴的18倍D.空间站在远心点的速度一定大于5.中国古代建筑设计精妙,其中门闩就凝结了劳动人民的智慧。

如图是一种门闩的原理图,在水平槽内向右推动木块A,可使木块B沿竖直槽向上运动,从而启动门闩。

A、B间的接触面与水平方向成角,木块B质量为m,A、B间的动摩擦因数为,最大静摩擦力等于滑动摩擦力。

陕西省西安高新第一中学2024-2025学年高三上学期第三次模考英语试题

陕西省西安高新第一中学2024-2025学年高三上学期第三次模考英语试题

西安高新一中高2025届第三次模拟考试英语试题学校:___________姓名:___________班级:___________考号:___________第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What do we know about Tom?A. He's just finished a piano lesson.B. He loves playing the guitar.C. He plays drums in a band.2. Where are the speakers probably?A. At a café.B. At a university.C. At an animal shelter.3. How can the man's recipe be described?A. It's a reward.B. It's a success.C. It's a problem.4. What do the speakers have in common?A. They are both big readers.B. They are both in the library.C. They both have just finished a book.5. What is the woman's duty in the event?A. To make food.B. To play in the band.C. To give directions.第二节(共15 小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

山西省阳泉市2024届高三下学期第三次模拟测试语文含答案

山西省阳泉市2024届高三下学期第三次模拟测试语文含答案

机密★启用前2024年阳泉市高三年级第三次模拟测试试题语文注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上。

2.全部答案在答题卡上完成,答在本试题上无效。

3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案用0.5mm黑色笔迹签字笔写在答题卡上。

4.考试时间150分钟。

考试结束后,将答题卡交回。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:无论是冬奥会开幕式深度应用8K+5G转播、数字孪生、智能机器人、辅助驾驶、虚拟数字人等新技术展示出中国式浪漫与奥运情怀,还是央视春晚大量运用AI、XR等新技术持续推动“思想+艺术+技术”融合创新,都深刻体现出,科技正在全方位赋能文化生产与传播,创造出更具吸引力、更有沉浸感、更富影响力的文化盛宴,带来“跨屏时代”高度沉浸的“全感官体验”。

“文化+科技”深度融合正在全面打通文化创作、消费、传播等环节,这不仅丰富了文化艺术作品的内容与形式,还促进了文化产业的高质量发展,加速培育文化领域的新质生产力。

“文化+科技”加速提升文化原创力,搭建中华文明传播新场景。

中华优秀传统文化的故事性元素与AR、VR等人工智能技术的交互融通,使得影视与互联网视听节目的原创力得到极大提升,打造了传媒艺术既古典又现代的审美新形态。

如河南卫视“中国节日”系列节目,持续探索新技术与中华传统文化紧密结合的感染力和艺术性。

又如大型文化纪录片《中国》第三季使用“绘画+CG”突破时空的壁垒,凸显中华文明的悠久历史与民族精神,形成数智时代的“审美新热点”。

诸多优秀创意型、科技型的文化精品,借助全媒体矩阵持续“跨圈”传播、跨文化传播,为中外观众提供了理解中华美学精神、认知文化内涵、共享审美品位的全新文化场景,为中国形象的积极传播搭建了更为全面、丰富的平台。

2024中考历史三模试卷历史(河北卷)

2024中考历史三模试卷历史(河北卷)

2024年中考第三次模拟考试(河北卷)历史(本试卷满分60分,考试时间60分钟。

)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共11小题,1-9每题2分,10-11每题3分,共24分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.《南京条约》规定,清政府在制定新的关税则例时应秉以“公平”原则,制定权和公布权完全属于清政府;但中美《望厦条约》提出,中国变更税例,须与美国商定。

此即中国近代史上“协定关税”之由来。

据此可知,协定关税使中国()A.自然经济开始解体B.领土完整遭到了破坏C.民主共和思潮兴起D.民族危机进一步加深2.下表为福州船政局成船统计数据(部分)。

据此可知,福州船政局()A.表明民用工业的崛起B.推动了军事工业发展C.抵制了外国资本入侵D.促进了新式教育兴起3.陈独秀说:“中共一大时党的要求‘无产阶级专政’悬在半空,到中共二大时就脚踏实地了,找到了中国实际的联系并决定了党要走的道路。

”陈独秀所说的“脚踏实地”指的是中共二大()A.确定了党的中心工作B.确立了党对军队的领导C.制定了党的最低纲领D.决定建立革命统一战线4.1937年1月3日,《纽约时报》评论:“证明了中国的团结是建立在巩固的基础上的……中国向日本证明了‘分裂再击溃’的计划并不是一条可以轻易征服中国的道路。

”这段话描述的是()A.重庆和谈实现民主建国B.西安事变得到和平解决C.解放战争取得全国胜利D.抗日民族统一战线建立5.下图是创作于20世纪50年代的宣传画《生产队的新拖拉机》,图中文字是“城里人正努力,为咱农民造机器”等文字。

该作品反映出()A.农村开始走上生产合作化道路B.农业机械化已在农村得到普及C.农业生产方式将发生巨大变化D.农村掀起社会主义改造的高潮6.15世纪,欧洲学者、政治家甚至普通民众都流行写自传,这一时期自传作品的数量比之前近千年所写自传的总和还要多。

2024届浙江省温州市高三下学期适应性考试第三次模拟物理试题

2024届浙江省温州市高三下学期适应性考试第三次模拟物理试题

2024届浙江省温州市高三下学期适应性考试第三次模拟物理试题一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示为一种获得高能粒子的装置原理图,环形管内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形管的宽度非常小),质量为m、电荷量为q的带正电粒子可在环中做半径为R的圆周运动。

A、B为两块中心开有小孔且小孔距离很近的平行极板,原来电势均为零,每当带电粒子经过A板刚进入A、B之间时,A板电势升高到+U,B板电势仍保持为零,粒子在两板间的电场中得到加速,每当粒子离开B板时,A板电势又降为零,粒子在电场中一次一次地加速使得动能不断增大,而在环形区域内,通过调节磁感应强度大小可使粒子运行半径R不变。

已知极板间距远小于R,则下列说法正确的是( )A.环形区域内匀强磁场的磁场方向垂直于纸面向里B.粒子从A板小孔处由静止开始在电场力作用下加速,绕行N圈后回到A板时获得的总动能为2NqUC.粒子在绕行的整个过程中,A板电势变化的周期不变D.粒子绕行第N圈时,环形区域内匀强磁场的磁感应强度为第(2)题水面下方某处有一个点光源,从水面上看水面有光亮的圆形区域的面积为。

若将水换成另外一种液体,其他条件不变,从液面上看液面有光亮的圆形区域的面积为。

已知水与该种液体对点光源发出的光线的折射率分别为、,则的值为(  )A.B.C.D.第(3)题历史上第一次利用加速器实现的核反应,是利用加速后动能为的质子轰击静止的核,生成两个动能均为的核,已知光速为c,则此核反应中的质量亏损为()A.B.C.D.第(4)题如图所示,质量为m、电阻为R、边长为l的单匝正方形导线框abcd从某一高度处自由下落,匀速穿过一磁感应强度为B的匀强磁场,磁场方向垂直纸面向里.不计空气阻力,重力加速度为g。

下列说法正确的是( )A.磁场区域的宽度小于lB.线框进入磁场时的速度大小为C.线框穿过磁场过程中产生的焦耳热为D.线框进入和穿出磁场过程中通过导线横截面的电荷量均为第(5)题如图所示,一定质量的理想气体从状态a开始,先经等压变化到达状态b,再经等容变化到达状态c。

2024中考历史三模试卷历史(广东广州卷)

2024中考历史三模试卷历史(广东广州卷)

2024年中考第三次模拟考试(广东广州卷)历史·全解全析(本试卷满分90分,考试时间60分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共25小题,每小题2分,共50分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.2023年度全国十大考古新发现揭晓,河南永城王庄遗址入围,该遗址主要是大汶口中期文化遗存,填补了自大汶口文化发现以来大部分是晚期遗存的空白。

该遗址的发现说明()A.中华文明起源具有多样性B.考古发现丰富史学研究C.古代手工制造业领先世界D.中国考古成就领先世界2.1874年,英国探险家在新疆和田意外地收集到两枚汉代新疆地区的“汉佉二体钱”和田马钱(见摹写图)其钱面上马的形象源自大夏(今阿富汗一带),马图外围有一圈佉卢文(古印度文字),背面图案中间为一符号“兀”(解作汉文篆字“元”)该钱币的发现,可以印证汉代()题2图A.陆上丝绸之路的开通B.篆体字在西域的流行C.中央政府统一了货币D.儒家文化圈已经形成3.如下表展现了粤语形成与发展的历史过程,促使西晋时期粤语发展的原因是()题3表A.广东地理位置优越B.人口南迁促进文化交融C.经济重心移向南方D.分裂割据局面已经结束4.斯塔夫里阿诺斯认为:“大运河满足了将已成为全国经济中心的长江流域同仍是政治中心的北方连接起来的迫切需求。

”材料反映大运河的开通()A.实现了经济重心的南移B.耗费了大量的人力和财力C.加强了南北地区的交流D.满足唐朝稳固统治的需求5.胡旋舞是来自西域游牧民族的一种舞蹈。

如图是龙门石窟中唐代洞窟石壁上跳胡旋舞的女子。

该图可用于研究唐朝的()题5图龙门石窟万佛洞北壁胡旋舞舞者形象A.社会风气B.坊市制度C.边疆管辖D.民族政策6.宋初,南方地区不少茶农、桑农果农等不再是为自身的直接消费而生产,而是把产品投入市场,转换成货币,再购入粮食、布帛等生活必需品。

2024年海南省海口市中考数学第三次模拟测试(含答案)

2024年海南省海口市中考数学第三次模拟测试(含答案)

2024年海南省海口市中考数学第三次模拟测试一、单选题(本大题共12小题,每题3分,共36分)1.(3分)实数﹣3的绝对值是( )A.﹣3B.3C.D.±32.(3分)下列运算正确的是( )A.a+a=a2B.a2•a3=a5C.(ab)2=ab2D.(a2)3=a53.(3分)当m=﹣1时,代数式m+3的值是( )A.﹣1B.0C.1D.24.(3分)《热辣滚烫》是一部励志电影,讲述了一个女人在绝望中努力奋斗,最终实现自我突破的故事,故事启示我们“命运只负责洗牌,出牌的永远是自己,一切都来得及”,截止2月底,电影全国票房累计约3300000000元.数据3300000000用科学记数法表示为( )A.33×108B.3.3×108C.3.3×109D.3.3×10105.(3分)分式方程的解是( )A.x=﹣1B.x=1C.x=15D.x=86.(3分)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的左视图是( )A.B.C.D.7.(3分)若反比例函数y=的图象在一、三象限,则m的值可以是( )A.1B.2C.3D.48.(3分)某男子排球队20名队员的身高如下表:则此男子排球队20名队员的身高的众数和中位数分别是( )身高(cm)180186188192208人数(个)46532A.186cm,186cm B.186cm,187cmC.208cm,188cm D.188cm,187cm9.(3分)将一副三角板如图摆放,斜边DF∥AB,AC与DE相交于点O,∠A=60°,∠D=45°,则∠AOD的度数等于( )A.135°B.120°C.115°D.105°10.(3分)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线交BC于点D,CD=3.以点D为圆心,DB的长为半径作弧,交AB于点B,M,分别以点B,M为圆心,大于的长为半径作弧,两弧相交于点N,作直线DN交AB于点E,保留作图痕迹,则BD的长为( )A.B.3C.D.611.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为( )A.15°B.20°C.25°D.30°12.(3分)如图,矩形ABCD中,AB=12,BC=5,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )A.B.7C.8D.二、填空题(本大题共4小题,每题3分,共12分)13.(3分)分解因式:2x﹣4x2= .14.(3分)正十边形的每个内角等于 度.15.(3分)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA ,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为 cm.16.(3分)如图,正方形ABCD中,AB=6,点E在CD边上,且CE=2DE.将△ADE沿AE对折至△AFE ,延长EF交边BC于点G,连结AG、CF.则∠EAG= ,S△FGC= .三、解答题(本大题共6小题,共72分)17.(12分)(1)计算:;(2)解不等式组:.18.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的A、B两种书籍.若购买2本A种书籍和3本B种书籍需用160元;若购买6本A种书籍与购买7本B种书籍的费用相同.求每本A种书籍和每本B种书籍的价格各为多少元.19.(10分)2023年兔年春晚以“欣欣向荣的新时代中国,日新月异的更美好生活”为主题,荟袭歌舞、荟萃、相声、小品、武术、杂技、少儿等多种类型节目,在开心,奋进拼搏的氛围中,陪伴全球华人开开心心过大年.为了解学生最喜欢的节目,某校从“歌舞、相声、小品、其他”四种类型的节目对学生进行了一次抽样调查,每个学生只选择以上四种节目类型中的一种,现将调查的结果绘制成了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)抽取的总人数是 ,并补全条形统计图;(2)估计该校3000名学生中,喜欢小品节目类型的人数;(3)若老师从九年级(1)班学生喜欢歌舞类型的2名男生和2名女生中随机抽取2名学生,将他们确定为班级节目表演重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.20.(10分)三亚南山海上观音圣像是世界上最高的观音像,某数学实践小组利用所学的数学知识测量观音圣像的高度AB,如图,该数学实践小组在点C处测得观音圣像顶端A的仰角为45°,然后沿斜坡CD 行走40m到点D处,在点D处测得观音圣像顶端A的仰角为32°,已知∠ACD=105°.(点A,B,C,D在同一平面内)(1)过点D作DE⊥BC交BC的延长线于点E,则∠DCE= °;(2)填空:DE= m,CE= m;(结果精确到1m,参考数据:≈1.4,≈1.7)(3)求三亚南山海上观音圣像的高度AB.(结果精确到1m,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)21.(15分)如图,在平行四边形ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E、F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,连接CF,求证:△AEC≌△DFC;(2)如图2,M是BC边上一点,连接AM、MF,MF与CE相交于点N.①若AE=,求AG的长;②在满足①的条件下,若AM⊥BC,求证:MN=FN;(3)如图3,连接GF,H是GF上一点,连接EH.若∠EHG=∠EFG+∠CEF,且GH=GF,求EF 的长.22.(15分)如图,已知抛物线y=x2+bx+c(b,c是常数)与x轴交于A(1,0),B(﹣3,0)两点,顶点为C,点P为线段AB上的动点(不与A、B重合),过P作PQ∥BC交抛物线于点Q,交AC于点D.(1)求该抛物线的表达式;(2)求△CPD面积的最大值;(3)连接CQ,当CQ⊥PQ时,求点Q的坐标;(4)点P在运动过程中,是否存在以A、O、D为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、单选题(本大题共12小题,每题3分,共36分)1.(3分)实数﹣3的绝对值是( )A.﹣3B.3C.D.±3【解答】解:|﹣3|=3,故选:B.2.(3分)下列运算正确的是( )A.a+a=a2B.a2•a3=a5C.(ab)2=ab2D.(a2)3=a5【解答】解:A、a+a=2a,故此选项错误;B、a2•a3=a5,故此选项正确;C、(ab)2=a2b2,故此选项错误;D、(a2)3=a6,故此选项错误;故选:B.3.(3分)当m=﹣1时,代数式m+3的值是( )A.﹣1B.0C.1D.2【解答】解:将m=﹣1代入m+3=﹣1+3=2.故选:D.4.(3分)《热辣滚烫》是一部励志电影,讲述了一个女人在绝望中努力奋斗,最终实现自我突破的故事,故事启示我们“命运只负责洗牌,出牌的永远是自己,一切都来得及”,截止2月底,电影全国票房累计约3300000000元.数据3300000000用科学记数法表示为( )A.33×108B.3.3×108C.3.3×109D.3.3×1010【解答】解:数据3300000000用科学记数法表示为3.3×109,故选:C.5.(3分)分式方程的解是( )A.x=﹣1B.x=1C.x=15D.x=8【解答】解:方程两边都乘x﹣8,得x﹣8=7,解得:x=15,检验:当x=15时,x﹣8≠0,所以x=15是分式方程的解,即分式方程的解是x=15.故选:C.6.(3分)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的左视图是( )A.B.C.D.【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形.故选:D.7.(3分)若反比例函数y=的图象在一、三象限,则m的值可以是( )A.1B.2C.3D.4【解答】解:∵反比例函数的图象在一、三象限,∴2﹣m>0,解得:m<2.结合选项可知,只有1符合题意.故选:A.8.(3分)某男子排球队20名队员的身高如下表:则此男子排球队20名队员的身高的众数和中位数分别是( )身高(cm)180186188192208人数(个)46532A.186cm,186cm B.186cm,187cmC.208cm,188cm D.188cm,187cm【解答】解:身高为186cm的队员数最多为6人,众数为6;中位数是第10、11位队员的身高的平均数,即(186+188)÷2=187cm.故选:B.9.(3分)将一副三角板如图摆放,斜边DF∥AB,AC与DE相交于点O,∠A=60°,∠D=45°,则∠AOD的度数等于( )A.135°B.120°C.115°D.105°【解答】解:过O点作OH∥AB,∵DF∥AB,∴DF∥AB∥OH,∴∠D=∠DOH,∠A=∠AOH,∴∠AOD=∠DOH+∠AOH=∠D+∠A=60°+45°=105°,故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线交BC于点D,CD=3.以点D为圆心,DB的长为半径作弧,交AB于点B,M,分别以点B,M为圆心,大于的长为半径作弧,两弧相交于点N,作直线DN交AB于点E,保留作图痕迹,则BD的长为( )A.B.3C.D.6【解答】解:∵CA=CB,∠C=90°,∴∠A=∠ABC=45°,∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DE=DC=3,∵∠DEB=90°,∴∠EDB=∠EBD=45°,∴DE=EB=3,∴BD=3.故选:A.11.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为( )A.15°B.20°C.25°D.30°【解答】解:连接OA,如图,∵AB切⊙O于点A,∴OA⊥AB,∴∠OAB=90°,∵∠B=50°,∴∠AOB=90°﹣50°=40°,∴∠ADC=∠AOB=20°,∵AD∥OB,∴∠OCD=∠ADC=20°.故选:B.12.(3分)如图,矩形ABCD中,AB=12,BC=5,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )A.B.7C.8D.【解答】解:连接EF交AC于点O,如图所示,∵四边形ABCD是矩形,∴∠ABC=90°,DC∥AB,∴∠FCO=∠EAO,∵AB=12,BC=5,∴AC===13,∵四边形EGFH是菱形,∴EF⊥GH,OF=OE,∴∠AOE=∠COF=90°,∴△COF≌△AOE(AAS),∴OC=OA=,∵∠AOE=90°,∠ABC=90°,∴∠AOE=∠ABC,又∵∠OAE=∠BAC,∴△AOE∽△ABC,∴,即,解得AE=,故选:D.二、填空题(本大题共4小题,每题3分,共12分)13.(3分)分解因式:2x﹣4x2= 2x(1﹣2x) .【解答】解:2x﹣4x2=2x(1﹣2x).故答案为:2x(1﹣2x).14.(3分)正十边形的每个内角等于 144 度.【解答】解:(10﹣2)×180÷10=8×180÷10=1440÷10=144(度)∴正十边形的每个内角等于144度.故答案为:144.15.(3分)如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA ,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为 30 cm.【解答】解:∵点P关于OA、OB的对称点分别为C、D,∴MC=PC,ND=PD,∴MN=CM+CD+ND=PC+CD+PD=30cm.故答案为:30.16.(3分)如图,正方形ABCD中,AB=6,点E在CD边上,且CE=2DE.将△ADE沿AE对折至△AFE ,延长EF交边BC于点G,连结AG、CF.则∠EAG= 45° ,S△FGC= .【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CE=2DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∵△ADE沿AE折叠得到△AFE,∴△DAE≌△FAE.∴∠DAE=∠FAE.∵△ABG≌△AFG,∴∠BAG=∠FAG.∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=×90°=45°.∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2,∴(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=GF=CG=3,∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴==,∵S△GCE=×3×4=6,∴S△CFG=×6=,故答案为:45°;.三、解答题(本大题共6小题,共72分)17.(12分)(1)计算:;(2)解不等式组:.【解答】解:(1)原式===4;(2)解不等式组:,解不等式①,得:x≤4,解不等式②,得:,∴原不等式组的解集是.18.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的A、B两种书籍.若购买2本A种书籍和3本B种书籍需用160元;若购买6本A种书籍与购买7本B种书籍的费用相同.求每本A种书籍和每本B种书籍的价格各为多少元.【解答】解:设每本A种书籍的价格为x元,每本B种书籍的价格为y元,根据题意得:,解得:.答:每本A种书籍的价格为35元,每本B种书籍的价格为30元.19.(10分)2023年兔年春晚以“欣欣向荣的新时代中国,日新月异的更美好生活”为主题,荟袭歌舞、荟萃、相声、小品、武术、杂技、少儿等多种类型节目,在开心,奋进拼搏的氛围中,陪伴全球华人开开心心过大年.为了解学生最喜欢的节目,某校从“歌舞、相声、小品、其他”四种类型的节目对学生进行了一次抽样调查,每个学生只选择以上四种节目类型中的一种,现将调查的结果绘制成了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)抽取的总人数是 100 ,并补全条形统计图;(2)估计该校3000名学生中,喜欢小品节目类型的人数;(3)若老师从九年级(1)班学生喜欢歌舞类型的2名男生和2名女生中随机抽取2名学生,将他们确定为班级节目表演重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.【解答】解:(1)由题意可知抽取的总人数是=40÷40%=100(人),所以小品的人数=100×(1﹣10%﹣40%﹣20%)=30(人),补全条形图如图所示:(2)∵该校3000名学生中,∴喜欢小品节目类型的人数有3000×30%=900名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,所以抽取的两人恰好是一名男生和一名女生概率=.20.(10分)三亚南山海上观音圣像是世界上最高的观音像,某数学实践小组利用所学的数学知识测量观音圣像的高度AB,如图,该数学实践小组在点C处测得观音圣像顶端A的仰角为45°,然后沿斜坡CD 行走40m到点D处,在点D处测得观音圣像顶端A的仰角为32°,已知∠ACD=105°.(点A,B,C,D在同一平面内)(1)过点D作DE⊥BC交BC的延长线于点E,则∠DCE= 30 °;(2)填空:DE= 20 m,CE= 34 m;(结果精确到1m,参考数据:≈1.4,≈1.7)(3)求三亚南山海上观音圣像的高度AB.(结果精确到1m,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【解答】解:(1)由题意得:∠ACB=45°,∵∠ACD=105°,∴∠DCE=180°﹣∠ACB﹣∠ACD=30°,故答案为:30;(2)∵DE⊥CE,∴∠DCE=90°,在Rt△DCE中,∠DCE=30°,CD=40m,∴DE=CD=20(m),CE=DE=20≈34(m),故答案为:20;34;(3)过点D作DF⊥AB于点F,由题意得:BF=DE=20m,DF=BE,设AB=x m,在Rt△ABC中,∠ACB=45°,∴BC==x(m),∴AF=AB﹣BF=(x﹣20)m,DF=BE=BC+CE=(x+34)m,在Rt△ADF中,∠ADF=32°,∴AF=DF•tan32°≈0.62(x+34)m,∴x﹣20=0.62(x+34),解得:x≈108,∴AB=108m,答:三亚南山海上观音圣像的高度AB约为108m.21.(15分)如图,在平行四边形ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E、F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,连接CF,求证:△AEC≌△DFC;(2)如图2,M是BC边上一点,连接AM、MF,MF与CE相交于点N.①若AE=,求AG的长;②在满足①的条件下,若AM⊥BC,求证:MN=FN;(3)如图3,连接GF,H是GF上一点,连接EH.若∠EHG=∠EFG+∠CEF,且GH=GF,求EF 的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵AB=AC,∴AC=CD,∴∠CAE=∠D,∵AE=DF,∴△AEC≌△DFC(SAS);(2)①解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,DC=AB=5,AD=BC=6,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∵AE=,∴DE=,∴AG=5×,∴AG=;②证明:∵AB=AC,AM⊥BC,∴BM=CM=3,∵AE=,AE=DF,∴DF=,∴EF=AD﹣AE﹣DF=3,∵AD∥BC,∴∠EFN=∠CMN,∵∠ENF=∠CNM,EF=CM,∴△ENF≌△CNM(AAS),∴MN=FN;(3)解:连接CF,∵AB=AC,AB=DC,∴AC=DC,∴∠CAD=∠CDA,∵AE=DF,∴△AEC≌△DFC(SAS),∴CE=CF,∴∠CFE=∠CEF,∵∠EHG=∠EFG+∠CEF,∴∠EHG=∠EFG+∠CFE=∠CFG,∴EH∥CF,∴=,∵GH=GF,∴=,∵AB∥CD,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∴=,∴DE=2AE,设AE=x,则DE=2x,∵AD=6,∴x+2x=6,∴x=2,即AE=2,∴DF=2,∴EF=AD﹣AE﹣DF=2.22.(15分)如图,已知抛物线y=x2+bx+c(b,c是常数)与x轴交于A(1,0),B(﹣3,0)两点,顶点为C,点P为线段AB上的动点(不与A、B重合),过P作PQ∥BC交抛物线于点Q,交AC于点D.(1)求该抛物线的表达式;(2)求△CPD面积的最大值;(3)连接CQ,当CQ⊥PQ时,求点Q的坐标;(4)点P在运动过程中,是否存在以A、O、D为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,∴,解得:,∴该抛物线的表达式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点C(﹣1,﹣4).∵A(1,0),B(﹣3,0),∴OA=1,OB=3.过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图,则CE=4,OE=1,∴AE=OA+OE=2.设P(t,0),则AP=1﹣t,AB=OA+OB=4,∵PQ∥BC,∴△APD∽△ABC,∴.∵CE⊥x轴,DF⊥x轴,∴CE∥DF,∴△ADF∽△ACE,∴,∴∴DF=1﹣t.∴S△CPD=S△ACP﹣S△ADP=AP•CE﹣AP•DF=(1﹣t)×4﹣(1﹣t)2=﹣﹣t+=﹣+2,∵﹣<0,∴当t=﹣1时,△CPD面积的最大值为2;(3)设直线BC的解析式为y=kx+n,∴,解得:,∴直线BC的解析式为y=﹣2x﹣6,∵CQ⊥PQ,PQ∥BC,∴CQ⊥BC.∴设直线CQ的解析式为y=x+m,∴﹣+m=﹣4,∴m=﹣,∴直线CQ的解析式为y=x﹣.∴,解得:或.∴Q(﹣,﹣);(4)点P在运动过程中,存在以A、O、D为顶点的三角形是等腰三角形,理由:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图,AC===2.①当AD=AO=1时,∵PQ∥BC,∴△ADP∽△ACB,∴,∴,∴P(1﹣,0);②当AD=DO时,∵DF⊥x轴,∴FO=FA=.∴D的横坐标为.设直线AC的解析式为y=ax+d,∴,解得:,∴直线AC的解析式为y=2x﹣2.当x=时,y=﹣1,∴D(,﹣1).由(3)知:直线BC的解析式为y=﹣2x﹣6,∵PQ∥BC,∴设直线PQ的解析式为y=﹣2x+e,∴﹣2×+e=﹣1,∴e=0,∴直线PQ的解析式为y=﹣2x,∴P(0,0);③当AO=DO=1时,则∠OAD=∠ODA,由题意:CE垂直平分AB,∴CB=CA,∴∠CAB=∠CBA,∴∠OAD=∠ODA=∠CAB=∠CBA,∴△OAD∽△CBA,∴,∴AD=.∵CE⊥x轴,DF⊥x轴,∴CE∥DF,∴△AFD∽△AEC,∴,∴.∴AF=,∴OF=1﹣AF=.∴D的横坐标为.当x=时,y=2×﹣2=﹣.∴D(,﹣).设直线PQ的解析式为y=﹣2x+f,∴﹣2×+f=﹣.∴f=.∴直线PQ的解析式为y=﹣2x+,令y=0,则﹣2x+=0,∴x=.∴P(,0).综上,点P在运动过程中,存在以A、O、D为顶点的三角形是等腰三角形,点P的坐标为(1﹣,0)或(0,0)或(,0).。

2023届江西省九江市高三下学期第三次模拟统一考试理综全真演练物理试题(基础必刷)

2023届江西省九江市高三下学期第三次模拟统一考试理综全真演练物理试题(基础必刷)

2023届江西省九江市高三下学期第三次模拟统一考试理综全真演练物理试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,真空中有三个点电荷分别固定于直角三角形中的A、C、N三点处,C、N两点的点电荷的电荷量均为+q,A点的点电荷的电荷量Q未知,已知∠C=90°,∠B=30°,AC=a,N为AB的中点,MN垂直于AB,M点的电场强度为0,静电力常量为k。

下列说法错误的是()A.A点的点电荷的电荷量为B.B点的电场强度大小为C.C、N两点的点电荷受到的静电力不相同D.将N点的点电荷移到B点后,N点的电势高于M点的电势第(2)题已知氘核、氚核核聚变反应为,下列说法正确的是( )A.该轻核聚变核反应方程中X为B.一张A4纸就能挡住由X粒子构成的射线C.放射性元素的半衰期与该元素原子所处的化学状态、外部条件有直接关系D.结合能越大,原子核中核子结合得越牢固,原子核越稳定第(3)题在天文观测中,科学家向某行星发射了两颗卫星。

若卫星甲和乙在同一平面内以相反方向绕行星作匀速圆周运动,甲卫星每隔周期总是和乙卫星相遇,则甲、乙两卫星的轨道半径之比为( )A.1:4B.1:2C.2:1D.4:1第(4)题如图所示,两平行导轨均由相互垂直的两段构成,导轨间距为L,两段导轨所在平面内只存在与该部分导轨所在平面垂直的匀强磁场,磁感应强度大小分别为(方向未知),左侧导轨倾角为,右侧导轨倾角为,两长度均为L且质量相等的导体棒垂直放置在左、右两侧导轨上,当导轨下端接一电源时两导体棒均静止,已知导体棒的电阻之比为1∶2,,忽略导轨及电源的内阻,不计一切摩擦。

则下列说法正确的是( )A.两磁场方向均垂直所在导轨平面向上B.C.导体棒所受安培力大小相等D.导体棒对导轨的压力大小之比为3∶4第(5)题如图所示,真空中同一平面内固定两点电荷+2Q和-Q,以点电荷+2Q为圆心的圆上有a、b、c、d四点,其中b点为两点电荷连线与圆的交点,a、c两点关于连线对称,ad为圆的直径,且d距-Q较远。

人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷

人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷

人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷选择题(每题只有一个正确选项,每小题3分,满分36分)1.下列四个有理数中,最小的是()A.﹣(﹣4)B.|﹣2|C.0D.﹣32.70000000用科学记数法表示为()A.7×107B.70×107C.0.70×108D.7×1083.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃4.某中学开学后购买了一批篮球,随机检测了4个,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最不接近标准的球是()A.B.C.D.5.下列各式进行的变形中,不正确的是()A.若3a=2b,则3a+2=2b+2B.若3a=2b,则9a=4bC.若3a=2b,则3a﹣5=2b﹣5D.若3a=2b,则6.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣17.下列去括号正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣4y)=﹣2x+4yC.+(﹣m+2)=﹣m+2D.x﹣(y﹣1)=x﹣y﹣18.点M在数轴上距原点6个单位长度,将M向右移动2个单位长度至N点,点N表示的数是()A.8B.﹣4C.﹣8或4D.8或﹣49.当x=1时,代数式ax5+bx3+cx+1值为2024,则当x=﹣1时,代数式ax5+bx3+cx+1值为()A.﹣2022B.﹣2021C.2024D.﹣202410.苯是一种石油化工基本原料,其产量和生产的技术水平是一个国家石油化工发展水平的标志之一,如图,小明用9根相同的木棒搭建的第1个图形就是类似于苯的结构简式,他继续用相同的木棒搭建与苯有关联的各个图形,按此规律,用含n的式子表示搭建第n (n为正整数)个图形所需木棒的根数()A.10n+1B.8n+1C.6n+1D.4n+1二、填空题(6小题,每题3分,共18分)11.比较大小:﹣﹣.12.若2a m b与是同类项,则m+n=.13.已知(m﹣1)x|m|﹣1=0,是关于x的一元一次方程,那么m=.14.若代数式x2﹣3kxy+y2﹣9xy+9不含xy项,则k的值为.15.若代数式4x﹣5与3x﹣9的值互为相反数,则x的值为.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出五张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.第II卷人教版2024—2025学年七年级上册秋季数学第三次月考模拟考试试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:(1)(﹣20)+(+3)﹣(+7)﹣(﹣5);(2).18.解方程.(1)x+7=3﹣3x;(2).19.先化简,再求值:3(m2﹣2mn﹣n2)﹣(3m2﹣2mn﹣3n2),其中,n=﹣4.20.已知关于x的方程(m+2)x|m|﹣1+8n=0是一元一次方程.(1)求m的值;(2)若该方程的解与关于x的方程的解相同,求n的值.21.若A=x2﹣3x+6,B=5x2﹣x﹣6.(1)请计算:A﹣2B;(2)求当x=﹣2时,A﹣2B的值.22.已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.23.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B 零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?24.我们规定,若关于x的一元一次方程ax=b(a≠0)的解为x=a﹣b,则称该方程为“有趣方程”.例如,2x=的解为x=,而2﹣,则该方程2x=就是“有趣方程”.请根据上述规定解答下列问题:(1)若关于x的一元一次方程﹣2x=c是“有趣方程”,则c=.(2)若关于x的一元一次方程3x=a﹣ab(a≠0)是“有趣方程”,且它的解为x=a,求a、b的值.(3)若关于x的一元一次方程x=3m﹣mn和关于y的一元一次方程﹣3y=mn﹣2n都是“有趣方程”,求代数式2(mn﹣3n)+(27m﹣6mn)﹣3的值.25.已知:关于x,y的多项式﹣24xy3﹣xy+2nxy3+nx2y2+3mx2y2﹣y不含四次项.数轴上A、B两点对应的数分别是m、n.(1)点A表示的数为;点B表示的数为;(2)如图1,线段CD在线段AB上,且CD=4,点M为线段AD的中点,若AM=BD,求点C表示的数;(3)如图2,在(2)的条件下,线段CD沿着数轴以每秒2个单位长度的速度向右运动,同时点Q从B点出发,以每秒4个单位长度的速度向左运动,是否存在时间t,使AM﹣DC=BC,若存在,求出C点表示的数;若不存在,说明理由.。

2023-2024学年山东省实验中学高三(第三次)模拟考试物理试卷+答案解析

2023-2024学年山东省实验中学高三(第三次)模拟考试物理试卷+答案解析

2023-2024学年山东省实验中学高三(第三次)模拟考试物理试卷一、单选题:本大题共8小题,共32分。

1.下列说法正确的是()A.液体分子的无规则热运动称为布朗运动B.物体对外界做功,其内能一定减少C.物体温度升高,其分子热运动的平均动能增大D.在太空实验室里,水滴的形状是一个完美的球形,这是表面张力作用使其表面具有扩张趋势而引起的结果2.纸质手提袋具有绿色环保、性能优良、循环利用等特点被广泛使用。

当用图甲纸质手提袋提重力为G的苹果处于静止时,其简化示意图如图乙。

设两绳带在同一竖直平面且不计纸质手提袋的重力,不计纸质手提袋的形变,则()A.绳带中的张力大小一定为B.若增加绳带长度,则绳带中的张力将变大C.若只减小两绳扣间距,则绳带中的张力将变小D.手提袋底部对苹果的支持力与苹果的重力是一对相互作用力3.“日心说”以太阳为参考系,金星和地球运动的轨迹可以视为共面的同心圆;“地心说”以地球为参考系,金星的运动轨迹实线和太阳的运动轨迹虚线如图所示。

观测得每隔年金星离地球最近一次,则下列判断正确的是()A.在8年内太阳、地球、金星有5次在一条直线上B.在8年内太阳、地球、金星有10次在一条直线上C.地球和金星绕太阳公转的周期之比为D.地球和金星绕太阳公转的周期之比为4.如图,面积、电阻不计的单匝矩形线圈,在磁感应强度的匀强磁场中旋转,构成交流发电机。

其产生的交变电流通过匝数比的理想变压器,再经充电电路给电池充电。

若要求变压器输出电压的有效值达到12V才能给电池充电,下列判断正确的是A.图示位置流过发电机线圈的电流最大B.转速变慢时变压器输出电压不变但频率变小C.交流发电机转速达到才能给电池充电D.交流发电机转速达到才能给电池充电5.如图所示为某种电梯结构的简化示意图。

某次在做电梯性能测试实验时,电梯轿厢内无乘客,电动机不工作,测得轿厢A从静止开始下降25m用时5s。

已知轿厢A质量为600kg,忽略滑轮摩擦和空气阻力,重力加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年度九年级数学
第三次模拟考
、单选题(每题3分,共30分)
1.实数—2019的绝对值是()
A. -2019
B. 2019
C.-—— 2019 2 . 2019年3月4日,中股份權公司发布关于电影《流浪地球》票房进展公
D. .. 2019
告称:
截至3月3日24时,在中国大陆地区上映27天累计票房收入约为人 民4 540 00 00 00 元.数据454 000 000 0用科学记数法表示应为( A. 45.4 X 10R
B ::
C 4.54 X 10in
D 丨八:i'l :,
3. A. 下列所述图形中,既是轴对称图形又是中心对称图形的是 等腰三角形 B •平行四边形 C •正五边形 ) D.矩形
4. A. F
列计算正确的是( ) B - 1
- C + J _ 由「 D
5. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边 上.若/ 1 = 25°,则/ 2的度数是( ) A. 25° B . 30° C . 35° D. 60°
6. 数据0, -1, -2 , 2 ,1,2,这组数据的中位数是( D. 0 A. -2
7. 不等式组 A. B. 2 x + 4> 1 卞一*莖"的解集在数轴上表示为() B
. "<^2-10 1T? 3 C. 0.5 C.
8. 0 12 5 对于函数y =- 2x+1, F
列结论正确的是( A. C. 它的图象必经过点(- 1
当x 一时,y > 0 2
1, 3) B .它的图象经过第一、二、三象限 D . y 值随x 值的增大而增大 9. 如图,AB 是O O 的直径,BC 是O 0的弦,/ AO G 80°,
则/C 的度数为(

A . 20°
B . 30°
C . 40° D. 50°
10 •如图,是一种古代计时器-- 漏壶”的示意图,在壶内盛一定量的水,水从壶下的
小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用X表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()
12 .如果分式一3在实数范围内有意义,则x的取值范围是
X—1
13 •若关于x的一元二次方程为ax2+bx+5 = 0(0)的解是x= 1,则2014 - a-b的值
14 .若一个多边形的内角和等于1080°,则这个多边形的边数是
15 •利用标杆CD测量建筑物的高度的示意图如图所示,若标杆
18、先化简再求值:x2-1 1 1
1 r 11),其中x = 1 x
2 x 2 3
二、填空题(每题
11 .分解因式:3a 4分,共24分)
2-3=
米. (第15题)
16 •如图,在△ABC中,/ C=90 , CB=CA=4 , / A的平分线交
分别是AC和AD上的动点,贝U CQ+PQ的最小值是 ___________ (第16 题)
BC于点D,若点P、Q
三、解答题:(本大题3小题,每小题6分,共18分)
17、计算:(J3-10+ -T8 -4cos45°CD的高为1.5米,测得
DE=2
米,
C
19、如图,AA BC的周长为20,其中AB=8 ,
(1 )用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D,连接EB ;(保留作图痕迹,不要求写画法)
(2)在(1)作出AB的垂直平分线DE后,求△ CBE的周长.
四、解答题:(本大题3小题,每小题7分,共21分)
20、为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C
跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了4名喜欢“跑步”的学生,其中有2名女生,2名男生,现从这4名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
21、已知平行四边形ABC[中, CE平分/ BCD且交AD于点E, AF// CE且交BC 于点F.
(1) 求证:△ ABF^A CDE
22、俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校计划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元;
(2)学校准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610 元,那么这所学校最多购买多少个乙种品牌的足球?
23. 如图,在平面直角坐标系中,一次函数'-八■" ' ■- ■■-的图像与反比例函
1
数y二—的图像交于第一,三象限内的A,B两点,与y轴交于点C.点M在x轴负
半轴上'四边形OCM是平行四边形,点A的坐标为1,n.
(1) 写出点B,C的坐标,并求一次函数的表达式;
(2) 连接AO求厶AOB勺面积;
(3) 直接写出关于x的不等式mx:::—-1的解集
24、如图,AD是的直径,BA=BC BD交AC于点E,点F在DB的延长线上, 且/ BAF玄C.
(1)求证:AF是的切线;
(2)求证:△ AB0A DBA .
(3)若BD=8 BE=6 求AB的长. A
25、已知•,,•,斜边0B=4将•绕点0顺时针
旋转600,如图1,连接BC
(1)填空:/ OBC=_0;
(2)如图1,连接AC,作OP!AC,垂足为P,求0P的长度;
(3)如图2,点M N同时从点0出发,在△ 0CB4上运动,M沿路径匀
速运动,N沿:一心一儿路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位秒,点N的运动速度为1单位秒,设运动时间为x秒,HU.的面积为y,求当x为何值时y取得最大值?最大值为多少?
o
图1备用
圍。

相关文档
最新文档