游戏运营数据分析

合集下载

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过收集、整理和分析游戏相关的数据,以了解游戏的运营情况和用户行为,从而为游戏运营商提供决策依据和优化策略。

本文将详细介绍游戏运营数据分析的流程和方法,并给出一个实例来说明如何利用数据分析来改善游戏的运营效果。

二、数据收集1. 用户数据收集通过游戏内置的数据采集工具,收集用户的基本信息,如年龄、性别、地理位置等。

同时,还可以收集用户的游戏行为数据,如游戏时长、关卡通过率、付费行为等。

2. 游戏数据收集收集游戏相关的数据,如游戏下载量、注册用户数、活跃用户数、付费用户数等。

此外,还可以收集游戏内的事件数据,如玩家点击次数、道具使用情况、任务完成情况等。

三、数据整理与清洗1. 数据整理将收集到的数据进行整理,按照一定的格式进行存储和管理。

可以使用数据库或电子表格软件来进行数据整理,方便后续的分析工作。

2. 数据清洗对收集到的数据进行清洗,去除重复、错误或无效的数据。

同时,还需要处理缺失值和异常值,确保数据的准确性和完整性。

四、数据分析方法1. 描述性分析通过统计指标,如平均值、中位数、众数等,对数据进行描述性分析,了解游戏的基本情况和用户行为特征。

2. 关联性分析通过分析不同变量之间的关联关系,如用户年龄和付费行为的关系、游戏时长和关卡通过率的关系等,找出影响游戏运营的关键因素。

3. 预测性分析利用历史数据和统计模型,对未来的游戏运营情况进行预测。

可以使用回归分析、时间序列分析等方法来进行预测。

五、数据分析实例以某款手机游戏为例,通过数据分析来改善游戏的运营效果。

1. 用户行为分析通过分析用户的游戏行为数据,如游戏时长、关卡通过率、付费行为等,发现用户在某个关卡上的通过率较低,导致用户流失较多。

因此,游戏运营商可以针对该关卡进行优化,提高用户体验,减少用户流失。

2. 付费行为分析通过分析付费用户的行为数据,如付费金额、付费频次、付费方式等,发现某个付费方式的使用率较低。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过对游戏的各项数据指标进行收集、整理、分析和解读,以获取对游戏运营情况的深入了解,并为决策提供有价值的信息。

本文将详细介绍游戏运营数据分析的标准格式,包括数据收集、数据整理、数据分析和数据解读等方面的内容。

二、数据收集1. 游戏基本信息收集收集游戏的基本信息,包括游戏名称、游戏类型、游戏平台、游戏版本等。

2. 用户数据收集收集用户数据,包括注册用户数量、活跃用户数量、新增用户数量、付费用户数量、用户留存率等。

3. 游戏操作数据收集收集游戏操作数据,包括游戏时长、游戏次数、游戏难度等。

4. 游戏收入数据收集收集游戏收入数据,包括广告收入、虚拟物品销售收入、游戏充值收入等。

三、数据整理1. 数据清洗对收集到的数据进行清洗,去除重复数据、异常数据和无效数据,确保数据的准确性和完整性。

2. 数据分类将数据按照不同的维度进行分类,如按时间维度、地域维度、用户维度等,便于后续的数据分析。

3. 数据转换对需要进行计算的数据进行转换,如将游戏时长转换为小时或分钟,将收入数据转换为相应的货币单位等。

四、数据分析1. 用户行为分析通过对用户数据和游戏操作数据的分析,了解用户的行为习惯和游戏偏好,包括用户活跃时间段、游戏时长分布、游戏难度选择等。

2. 用户留存分析通过对用户留存率的分析,了解用户的流失情况,找出导致用户流失的原因,并采取相应的措施提高用户留存率。

3. 收入分析通过对游戏收入数据的分析,了解游戏的盈利情况,找出收入来源的主要渠道,优化收入结构,提高游戏的盈利能力。

4. 渠道分析通过对不同渠道的用户数据和收入数据的分析,了解不同渠道的用户质量和收入贡献,优化渠道资源配置,提高用户获取效率和收入水平。

五、数据解读1. 结果总结将数据分析的结果进行总结,明确游戏的优势和不足,找出需要改进的方面,为后续的决策提供参考依据。

2. 决策建议根据数据分析的结果,提出相应的决策建议,包括优化游戏内容、改进用户体验、提升用户留存、增加收入渠道等方面的建议。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:随着游戏行业的快速发展,游戏运营数据分析成为了游戏公司不可或缺的一部分。

通过对游戏运营数据的深入分析,游戏公司可以更好地了解玩家行为、优化游戏体验、制定营销策略以及提升盈利能力。

本文将从五个大点来阐述游戏运营数据分析的重要性和应用。

正文内容:1. 游戏用户行为分析1.1 玩家留存率分析:通过分析新用户的留存率,可以了解游戏的吸引力和用户体验,从而优化游戏内容和功能,提高留存率。

1.2 玩家付费行为分析:通过分析玩家的付费习惯和行为模式,可以制定更有针对性的营销策略,提高游戏的收入。

1.3 游戏关卡难度分析:通过分析玩家在游戏中的关卡通过率和失败率,可以调整关卡难度,提升游戏的可玩性和挑战性。

2. 游戏运营效果分析2.1 游戏收入分析:通过分析游戏的收入来源和赢利模式,可以了解游戏的盈利能力,为游戏公司提供决策依据。

2.2 游戏广告效果分析:通过分析游戏中的广告点击率和转化率,可以评估广告投放的效果,优化广告策略,提高广告收益。

2.3 游戏更新效果分析:通过分析游戏更新后的用户活跃度和留存率,可以评估更新的效果,优化更新策略,提升游戏的用户体验。

3. 游戏用户画像分析3.1 用户属性分析:通过分析玩家的性别、年龄、地域等属性,可以了解目标用户群体的特点,为游戏的定位和推广提供依据。

3.2 用户行为分析:通过分析玩家的游戏偏好、消费习惯等行为数据,可以细分用户群体,为游戏运营提供个性化的服务和推荐。

3.3 用户兴趣分析:通过分析玩家的游戏偏好、好友关系等数据,可以了解用户的兴趣爱好,为游戏内容和社交功能的开发提供指导。

4. 游戏市场竞争分析4.1 游戏市场规模分析:通过分析游戏市场的规模和增长趋势,可以了解市场的潜力和发展方向,为游戏公司的战略决策提供参考。

4.2 竞争对手分析:通过分析竞争对手的游戏品质、用户评价等数据,可以了解竞争对手的优势和劣势,为游戏公司的产品定位和营销策略提供依据。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析1. 引言游戏运营数据分析是指通过对游戏运营过程中产生的数据进行收集、整理、分析和解读,以便为游戏运营团队提供决策支持和优化策略。

本文将详细介绍游戏运营数据分析的重要性、常用的数据指标和分析方法,并结合具体案例进行说明。

2. 重要性游戏运营数据分析对于游戏公司的发展至关重要。

通过对数据的分析,可以帮助游戏公司了解玩家行为、游戏特性和市场趋势,从而优化游戏设计、改进用户体验、提升用户留存和付费率,实现游戏的可持续发展。

3. 常用数据指标3.1 用户留存率用户留存率是衡量游戏用户粘性的重要指标。

它可以通过统计某一时间段内的新增用户在后续时间内的活跃情况来计算。

高留存率意味着游戏具有较好的用户体验和吸引力。

3.2 付费率付费率是指在游戏中进行付费的用户占总用户数的比例。

通过分析付费率,可以了解游戏的盈利能力和用户付费意愿。

同时,还可以通过对不同付费用户的行为进行分析,制定个性化营销策略,提高付费率。

3.3 平均每用户收入(ARPU)ARPU是指每个用户平均产生的收入。

通过计算总收入除以总用户数,可以得到ARPU值。

ARPU是衡量游戏盈利能力的重要指标,高ARPU值意味着每个用户的付费能力较强。

3.4 用户流失率用户流失率是指在某一时间段内停止使用游戏的用户占总用户数的比例。

通过分析用户流失率,可以了解游戏的用户流失原因,进而采取相应措施提高用户留存。

4. 数据分析方法4.1 基础统计分析基础统计分析是最常用的数据分析方法之一。

通过对游戏运营数据进行整理和统计,可以得到用户数量、收入情况、用户活跃度等基本信息。

基础统计分析可以帮助游戏运营团队了解游戏的整体情况,及时发现问题并采取相应措施。

4.2 用户行为分析用户行为分析是通过对用户在游戏中的行为数据进行挖掘和分析,了解用户的游戏习惯、兴趣和需求。

通过用户行为分析,可以优化游戏内容、改进用户体验,提高用户留存和付费率。

4.3 市场竞争分析市场竞争分析是通过对游戏市场的数据进行分析,了解竞争对手的产品特点、用户群体和市场趋势。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过对游戏相关数据的采集、整理、分析和解读,以匡助游戏运营团队更好地了解游戏的用户行为、游戏内容和系统的运营状况,从而优化游戏的运营策略和提升用户体验。

本文将详细介绍游戏运营数据分析的目的、方法和应用。

二、目的游戏运营数据分析的主要目的是匡助游戏运营团队做出明智的决策,以提高游戏的盈利能力和用户留存率。

通过深入了解用户行为和游戏内容的数据,可以发现潜在的问题和机会,进而制定相应的运营策略,提升游戏的竞争力。

三、方法1. 数据采集游戏运营数据的采集是数据分析的基础。

可以通过游戏内置的数据统计工具、第三方数据分析平台或者自行开辟数据采集工具来获取游戏相关数据。

常见的数据包括用户活跃度、付费情况、游戏流失率、关卡通过率等。

2. 数据整理采集到的数据需要进行整理和清洗,以便后续的分析。

这包括数据去重、数据格式转换、异常数据处理等。

整理后的数据应该具备一致性和准确性,以确保后续分析的可靠性。

3. 数据分析数据分析是游戏运营数据分析的核心环节。

通过使用统计学和数据挖掘技术,可以对数据进行各种分析,如用户行为分析、游戏内容分析、用户留存分析等。

通过分析数据,可以找出用户的偏好、游戏的热点和问题,为游戏运营团队提供决策依据。

4. 数据可视化将分析结果以图表、报表等形式进行可视化展示,可以更直观地呈现数据分析的结果。

这有助于游戏运营团队更好地理解数据,并及时调整运营策略。

四、应用游戏运营数据分析的应用非常广泛,包括但不限于以下几个方面:1. 用户行为分析通过分析用户在游戏中的行为数据,可以了解用户的游戏习惯、游戏时间分布、游戏兴趣等。

这有助于游戏运营团队优化游戏内容,提供更符适合户需求的游戏体验。

2. 游戏内容分析通过分析游戏中的关卡通过率、游戏难度等数据,可以了解游戏内容的受欢迎程度和挑战性。

根据分析结果,可以对游戏进行优化,提升用户的游戏体验。

3. 用户留存分析用户留存是衡量游戏运营成功与否的重要指标之一。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:游戏运营数据分析是指通过对游戏运营过程中产生的各种数据进行采集、整理和分析,以获取有关游戏运营情况的信息。

这些数据包括用户行为、收入、留存率等,通过对这些数据进行深入分析,游戏运营者可以更好地了解用户需求、优化游戏体验、提高用户留存率和收入。

一、用户行为数据分析1.1 用户活跃度分析:通过统计每日、每周、每月的用户活跃度,了解用户对游戏的使用频率和时长。

可以根据活跃度数据,确定用户的使用习惯和游戏的受欢迎程度,进而调整推送策略、活动安排等,以提高用户黏性和留存率。

1.2 用户流失率分析:分析用户在游戏中的流失率,找出用户流失的原因和流失节点。

可以通过追踪用户行为数据,了解用户在游戏中的痛点和不满意之处,并及时进行优化和改进,以提高用户留存率和游戏体验。

1.3 用户付费率分析:通过分析用户的付费行为和付费金额,了解用户的消费习惯和付费意愿。

可以根据用户付费率数据,优化游戏内购系统、设计更有吸引力的虚拟商品,并针对不同用户群体制定个性化的付费策略,以提高游戏收入。

二、收入数据分析2.1 收入来源分析:通过分析游戏的收入来源,了解哪些渠道和产品贡献了主要的收入。

可以根据收入来源数据,优化渠道合作关系、调整产品定价策略,以提高收入的稳定性和增长性。

2.2 付费习惯分析:分析用户的付费习惯和付费行为,了解用户的消费偏好和消费习惯。

可以根据付费习惯数据,设计更有吸引力的付费活动、优化付费方式,以提高用户付费率和收入。

2.3 收入趋势分析:通过对收入数据的趋势分析,了解游戏收入的变化趋势和原因。

可以根据收入趋势数据,及时调整运营策略、推出新的变现方式,以应对市场变化和提高收入。

三、留存率数据分析3.1 新用户留存率分析:通过分析新用户的留存率,了解新用户的流失情况和留存质量。

可以根据新用户留存率数据,优化新手引导流程、改进游戏难度平衡,以提高新用户留存率和游戏体验。

3.2 老用户留存率分析:分析老用户的留存率,了解老用户的流失原因和留存动力。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过对游戏中产生的各类数据进行采集、整理和分析,以获取对游戏运营情况的深入了解,并根据分析结果制定相应的运营策略和决策。

本文将对游戏运营数据分析的方法、数据指标、分析工具以及案例进行详细介绍。

二、数据采集与整理1. 数据采集方式游戏运营数据可以通过多种方式进行采集,包括但不限于游戏内置的数据采集系统、第三方数据分析工具、用户反馈、市场调研等。

根据实际情况选择合适的数据采集方式,确保数据的准确性和完整性。

2. 数据整理与清洗在采集到原始数据后,需要进行数据整理与清洗,包括数据去重、数据格式转换、异常值处理等。

通过这一步骤,可以确保后续的数据分析工作能够基于准确、可靠的数据进行。

三、数据指标与分析方法1. 数据指标游戏运营数据分析的指标包括用户活跃度、留存率、付费率、ARPU(平均每用户收入)、用户流失率、用户转化率等。

这些指标可以从不同角度反映游戏的运营情况,匡助运营团队了解用户行为和需求。

2. 分析方法(1)趋势分析:通过对历史数据的比较和分析,了解游戏运营情况的发展趋势,判断运营策略的有效性。

(2)比较分析:将游戏运营数据与竞争对手进行比较,找出优势和劣势,为制定竞争策略提供依据。

(3)关联分析:通过分析不同指标之间的相关性,找出影响游戏运营的关键因素,为运营决策提供科学依据。

(4)预测分析:基于历史数据和趋势,通过数学模型和算法进行预测,为未来的运营决策提供参考。

四、数据分析工具1. ExcelExcel是一种常用的数据分析工具,可以进行数据的整理、筛选、计算和可视化展示。

通过使用Excel,可以对游戏运营数据进行简单的统计和分析。

2. 数据分析软件除了Excel,还有一些专业的数据分析软件,如SPSS、Python、R等,可以对大规模的游戏运营数据进行更加复杂和深入的分析。

这些工具提供了更多的数据处理和建模功能,能够满足不同分析需求。

五、案例分析以某款手机游戏为例,对其运营数据进行分析。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:随着游戏产业的不断发展,游戏运营数据分析在游戏行业中变得越来越重要。

通过对游戏运营数据的深入分析,游戏开辟者和运营团队可以更好地了解玩家行为、优化游戏体验、制定营销策略,从而提高游戏的用户留存率和盈利能力。

本文将从游戏运营数据分析的角度,探讨如何利用数据来优化游戏运营。

一、玩家行为分析1.1 玩家活跃度分析:通过统计玩家每日、每周、每月的活跃度数据,了解玩家的活跃时间段和频率,以便针对不同时间段推出相应的活动和奖励,提升玩家留存率。

1.2 玩家流失率分析:分析玩家在游戏中的流失率,找出导致玩家流失的原因,针对性地改进游戏内容和体验,提高玩家留存率。

1.3 玩家付费行为分析:通过分析玩家的付费行为,了解玩家的付费习惯和偏好,推出符合玩家需求的付费活动,提高游戏的盈利能力。

二、游戏内容优化2.1 关卡难度分析:通过分析玩家在游戏中的通关情况和失败次数,调整游戏难度,保持游戏的挑战性和趣味性。

2.2 游戏道具使用分析:分析玩家对游戏道具的使用情况,调整道具的获取途径和效果,提高玩家对游戏的参预度和满意度。

2.3 游戏更新反馈分析:通过分析玩家对游戏更新内容的反馈和评价,及时调整游戏更新策略,满足玩家需求,提升游戏品质。

三、营销策略优化3.1 推广效果分析:通过分析不同推广渠道的转化率和ROI,调整推广策略,提高用户获取成本和推广效果。

3.2 活动效果分析:分析不同类型活动的参预率和效果,优化活动内容和奖励机制,提高活动的参预度和转化率。

3.3 社交互动分析:分析玩家在社交平台上的互动行为,制定社交营销策略,提高玩家的参预度和忠诚度。

四、用户反馈分析4.1 游戏体验反馈:通过分析玩家的游戏体验反馈,及时改进游戏内容和功能,提高玩家满意度和留存率。

4.2 问题解决反馈:分析玩家在游戏中遇到的问题和反馈,及时解决问题,提升玩家对游戏的信任和忠诚度。

4.3 新功能需求反馈:通过分析玩家对游戏新功能的需求,及时推出符合玩家需求的新功能,提升游戏的吸引力和竞争力。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:游戏运营数据分析是指通过对游戏中的各项数据进行采集、整理和分析,以便游戏运营者能够更好地了解玩家行为、优化游戏体验、提升盈利能力。

本文将从五个方面详细阐述游戏运营数据分析的重要性和方法。

一、用户行为分析1.1 玩家活跃度分析:通过统计玩家的登录次数、在线时长等数据,了解玩家对游戏的兴趣程度和参预度。

1.2 玩家流失率分析:分析玩家的流失率,找出导致玩家流失的原因,以便采取相应措施提高留存率。

1.3 玩家付费行为分析:研究玩家的付费行为模式,包括付费金额、付费频率等,以便优化游戏的付费策略。

二、游戏内容分析2.1 关卡难度分析:通过分析玩家在各个关卡中的通过率和失败率,调整游戏的难度,提升游戏的可玩性。

2.2 游戏道具使用分析:分析玩家对游戏道具的使用情况,了解哪些道具更受欢迎,以便进行相应的道具设计和推广。

2.3 游戏任务完成率分析:统计玩家完成游戏任务的情况,了解任务的难易程度,以便调整任务设计和奖励机制。

三、社交互动分析3.1 好友互动分析:分析玩家之间的好友互动情况,了解玩家对社交功能的需求,以便优化社交系统。

3.2 社交分享分析:统计玩家的社交分享行为,了解哪些内容更容易引起其他玩家的关注,以便优化游戏的社交推广策略。

3.3 社交活动参预分析:分析玩家参预社交活动的情况,了解活动的吸引力和参预度,以便设计更具吸引力的社交活动。

四、营销策略分析4.1 广告效果分析:通过分析不同广告渠道的点击率和转化率,了解广告的效果,以便优化广告投放策略。

4.2 促销活动分析:统计促销活动的参预度和转化率,了解活动的吸引力和效果,以便设计更具吸引力的促销策略。

4.3 用户反馈分析:分析玩家的反馈意见和建议,了解玩家对游戏的满意度和需求,以便改进游戏的营销策略。

五、盈利能力分析5.1 游戏收入分析:统计游戏的收入来源和收入比例,了解不同付费方式的盈利能力,以便优化游戏的收费策略。

5.2 用户付费习惯分析:分析玩家的付费习惯,了解玩家的付费偏好和消费能力,以便制定个性化的付费推荐策略。

游戏运营数据分析报告

游戏运营数据分析报告

游戏运营数据分析报告1. 引言本文旨在对一款游戏的运营数据进行分析,从而帮助游戏运营团队更好地理解游戏的运营状况和玩家行为,以便制定相应的策略和决策。

2. 数据采集与预处理在进行数据分析之前,首先需要收集游戏运营数据。

通常,游戏运营数据包括注册用户数、活跃用户数、付费用户数、游戏时长、留存率等指标。

这些数据可以通过游戏服务器、数据分析工具或第三方统计平台等渠道获取。

在收集到原始数据后,还需要进行数据预处理。

这包括数据清洗、缺失值处理、异常值检测和数据转换等步骤,以确保分析所使用的数据准确可靠。

3. 数据分析方法3.1 描述性统计分析描述性统计分析是对数据集进行整体描述的方法。

通过计算数据的均值、中位数、标准差等统计量,我们可以获得对游戏运营数据的整体印象。

此外,绘制直方图、箱线图等可视化图表也有助于更好地理解数据的分布情况。

3.2 比较分析比较分析主要用于不同时间段、不同渠道或不同用户群体之间的数据对比。

通过比较不同指标在不同条件下的差异,我们可以获得一些有意义的结论。

例如,我们可以比较不同渠道的用户留存率,以确定哪些渠道对用户留存具有更大的影响。

3.3 关联分析关联分析用于发现不同变量之间的关联关系。

通过挖掘数据中的相关性,我们可以找到一些有助于游戏运营的关键因素。

例如,我们可以分析用户游戏时长与付费金额之间的关系,以确定游戏时长对用户付费意愿的影响程度。

3.4 预测分析预测分析是基于历史数据对未来趋势进行预测的方法。

通过构建合适的模型,我们可以预测未来的用户增长、收入情况等。

这有助于游戏运营团队制定合理的发展策略和预算计划。

4. 数据分析结果与建议在完成数据分析后,我们可以得出一些关于游戏运营的结论,并提出相应的建议。

例如,通过描述性统计分析,我们发现游戏的注册用户数在过去三个月内呈现逐渐增长的趋势,但活跃用户数却在下降。

因此,我们建议加强用户留存策略,如增加新手引导、优化游戏体验等,以提高活跃用户数。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、背景介绍随着互联网的快速发展,游戏行业蓬勃发展,各类游戏层出不穷。

为了更好地了解游戏运营情况,提升游戏用户体验,游戏运营数据分析变得至关重要。

本文旨在通过对游戏运营数据进行详细分析,为游戏运营决策提供科学依据。

二、数据来源游戏运营数据主要来源于游戏服务器的日志记录、用户行为数据和游戏内购买数据等。

这些数据将通过数据分析工具进行处理和分析,以获取有价值的信息。

三、数据分析内容1. 用户数据分析- 用户增长分析:通过统计每日、每周、每月的新增用户数量,分析用户增长趋势,了解游戏的用户吸引力。

- 用户留存分析:计算用户的次日、三日、七日留存率,了解用户的粘性,判断游戏的用户黏性。

- 用户流失分析:分析用户流失的原因,如游戏难度、游戏体验等,为改进游戏提供参考。

- 用户付费分析:统计付费用户的数量、付费金额、付费频次等,分析用户的付费习惯,为游戏的商业模式优化提供依据。

2. 游戏数据分析- 游戏时长分析:统计用户的游戏时长,了解用户对游戏的投入程度,为游戏的内容设计提供参考。

- 游戏关卡分析:分析用户在游戏关卡中的通过率、失败率等,为游戏难度和平衡性的调整提供依据。

- 游戏道具分析:统计用户对游戏道具的使用情况,了解道具的受欢迎程度,为道具的设计和销售提供参考。

- 游戏活动分析:分析游戏中的各类活动的参预度和效果,为活动策划提供优化建议。

3. 营收数据分析- 游戏收入分析:统计游戏的总收入、平均收入等,了解游戏的盈利情况。

- 付费转化率分析:计算游戏的付费转化率,即付费用户占总用户的比例,为提升游戏盈利能力提供参考。

- 付费用户分析:分析不同付费用户群体的特点和行为,为用户分类和个性化推荐提供依据。

- 广告收入分析:统计游戏的广告收入情况,分析广告的投放效果,为广告策略优化提供参考。

四、数据分析工具常用的游戏运营数据分析工具包括Google Analytics、Unity Analytics、Mixpanel等。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析首先,在进行游戏运营数据分析时,需要收集的数据包括但不限于以下几个方面:1.用户活跃情况:例如每天、每周、每月的活跃用户数、新注册用户数等。

通过分析用户的活跃情况,可以了解用户对游戏的兴趣及参与度。

2.用户留存率:留存率是指用户在一段时间内持续使用游戏的比例。

了解留存率可以帮助运营人员判断游戏的用户粘性,从而采取相应措施来提升留存率。

3.用户付费情况:包括付费用户数、付费金额、付费习惯等。

这些数据可以帮助游戏开发者了解用户的消费行为和习惯,制定出更合理的付费策略来提升游戏盈利能力。

4.游戏虚拟货币流通情况:游戏内的虚拟货币流通情况可以从侧面反映游戏的经济机制是否合理,用户是否能够通过游戏内的活动和任务获得足够的虚拟货币,从而增加用户的黏性和参与度。

5.游戏内各项指标的变化趋势:包括用户活跃度、留存率、用户付费情况等。

通过比较不同时期的数据变化,可以发现潜在的问题和提升空间,并制定出相应的改进措施。

其次,对于以上收集到的游戏运营数据,需要进行适当的分析和应用:1.用户行为分析:通过对用户行为数据的分析,可以了解用户在游戏中的偏好、喜好和行为模式,从而为运营团队提供依据,进行精细化运营。

例如,通过分析用户在游戏中的行为路径,可以找出用户参与度低的环节,并针对性地改进,提升用户体验和参与度。

2.用户流失分析:通过对留存率和流失用户的数据分析,可以找出用户流失的原因和规律,并针对性地制定措施来提升用户留存率。

例如,通过分析用户首次登陆后的第一次游戏体验,了解是否存在引导用户的问题,如果有,可以改进新手引导的方式和内容。

3.用户付费行为分析:通过对用户付费行为的数据分析可以了解用户的消费能力、付费习惯和付费偏好,从而制定出更有效的付费活动和策略来提高用户的付费率和付费金额。

4.游戏经济机制分析:通过对游戏内的虚拟货币流通情况的分析,可以了解游戏的经济机制是否合理和平衡,用户能否通过游戏内的活动和任务获得足够的虚拟货币,从而精细调整游戏经济机制,提升用户的参与度和付费能力。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过对游戏运营过程中产生的各类数据进行采集、整理、分析和挖掘,以便更好地了解游戏的运营情况、用户行为和市场趋势,为游戏运营决策提供科学依据。

本文将详细介绍游戏运营数据分析的标准格式,包括数据采集、数据整理、数据分析和数据挖掘等方面的内容。

二、数据采集1. 游戏基本信息采集在游戏运营数据分析的初期阶段,需要采集游戏的基本信息,包括游戏名称、游戏类型、游戏版本、游戏平台、游戏上线时间等。

这些信息可以匡助我们更好地理解游戏的特点和背景。

2. 用户行为数据采集通过游戏内置的数据追踪工具或者第三方数据分析平台,采集用户在游戏中的各类行为数据,如用户登录次数、游戏时长、游戏关卡通过率、付费行为等。

这些数据可以匡助我们了解用户的活跃度、留存率、付费习惯等。

3. 游戏市场数据采集采集游戏市场的相关数据,包括竞品游戏的上线时间、用户评价、市场份额等。

这些数据可以匡助我们分析游戏在市场中的竞争力和潜力。

三、数据整理1. 数据清洗对采集到的原始数据进行清洗,去除重复数据、缺失数据和异常数据,确保数据的准确性和完整性。

2. 数据转换将原始数据转换为可分析的格式,如将时间数据转换为日期格式,将文本数据转换为数值型数据等。

3. 数据归类将不同类型的数据进行归类,如将用户行为数据按照不同的行为类型进行分类,将市场数据按照不同的竞品进行分类等。

四、数据分析1. 用户活跃度分析通过分析用户登录次数、游戏时长等数据,了解用户的活跃度情况。

可以计算每日、每周、每月的活跃用户数,分析用户活跃度的变化趋势。

2. 用户留存率分析通过分析用户的留存情况,了解用户的粘性和忠诚度。

可以计算不同时间段的留存率,比较不同用户群体的留存情况,找出留存率较低的问题和改进措施。

3. 付费习惯分析通过分析用户的付费行为数据,了解用户的付费习惯和付费能力。

可以计算付费用户占比、付费金额分布、付费周期等指标,为游戏的付费策略和推广活动提供依据。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析1. 引言游戏运营数据分析是指通过收集、整理和分析游戏相关数据,以获取有关游戏运营情况的洞察和见解。

这些数据可以包括用户行为、游戏收入、用户留存率、付费转化率等方面的数据。

通过深入分析这些数据,游戏运营者可以了解游戏的运营状况,为游戏的改进和优化提供依据,从而提高游戏的用户体验和盈利能力。

2. 数据收集游戏运营数据的收集是数据分析的基础。

为了获取准确的数据,游戏运营者可以通过以下途径进行数据收集:2.1 游戏内部数据收集:通过游戏内部的数据采集工具,收集用户行为数据、游戏收入数据等。

这些数据可以包括用户登录次数、游戏时长、付费金额、付费次数等。

2.2 外部数据收集:通过与第三方数据提供商合作或使用数据采集工具,收集与游戏相关的外部数据。

这些数据可以包括市场数据、竞品数据、用户调研数据等。

3. 数据整理与清洗在进行数据分析之前,需要对收集到的数据进行整理和清洗,以确保数据的准确性和完整性。

数据整理与清洗的步骤包括:3.1 数据清洗:对收集到的数据进行筛选和过滤,去除重复数据、异常数据和缺失数据,确保数据的质量。

3.2 数据整理:对清洗后的数据进行归类、整合和转换,以便后续的数据分析。

4. 数据分析方法游戏运营数据分析可以采用多种方法和技术,以获取有关游戏运营情况的见解。

以下是常用的数据分析方法:4.1 描述性分析:通过统计和描述数据的基本特征,如平均值、中位数、标准差等,以了解游戏的整体情况。

4.2 比较分析:通过比较不同时间段、不同用户群体或不同游戏版本的数据,分析其差异和变化趋势,以确定游戏的优势和改进空间。

4.3 关联分析:通过分析不同变量之间的相关性,如用户行为与游戏收入之间的关系,以发现潜在的关联规律。

4.4 预测分析:通过建立模型和算法,对未来的游戏运营情况进行预测和模拟,以指导游戏运营策略的制定。

5. 数据分析指标在游戏运营数据分析中,常用的指标可以帮助评估游戏的运营状况和效果。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:游戏运营数据分析是指通过对游戏中产生的各类数据进行收集、整理和分析,以获取对游戏运营状况、玩家行为和市场趋势的深入理解。

准确的数据分析能够为游戏运营者提供有力的决策依据,帮助优化游戏内容、提升用户体验、增加用户粘性和盈利能力。

本文将从五个方面介绍游戏运营数据分析的重要性和方法。

一、用户行为分析1.1 游戏留存率分析:通过统计新用户注册后的留存情况,了解游戏的用户粘性。

可以分析不同时间段、不同渠道用户的留存情况,找出用户流失的原因,并采取相应措施提高留存率。

1.2 用户活跃度分析:通过统计用户的登录频率、在线时长等数据,了解用户的活跃度。

可以分析用户的活跃时间段、活跃地区等信息,为游戏内容更新、活动策划提供参考。

1.3 用户付费行为分析:通过统计付费用户的付费金额、付费频次等数据,了解用户的消费习惯和价值。

可以分析不同用户群体的付费特点,制定个性化的付费策略,提高游戏的盈利能力。

二、游戏内容分析2.1 关卡难度分析:通过统计用户在不同关卡的通过率和挑战次数,了解关卡的难度是否适中。

可以根据数据调整关卡难度,提供更好的游戏体验。

2.2 道具使用分析:通过统计用户对不同道具的使用情况,了解道具的实用性和受欢迎程度。

可以根据数据调整道具的属性和获取方式,提高道具的使用率。

2.3 社交互动分析:通过统计用户在游戏中的社交互动行为,了解用户对社交功能的需求。

可以根据数据增加社交互动的方式和内容,提升用户的参与度和活跃度。

三、市场竞争分析3.1 用户来源分析:通过统计不同渠道用户的注册和留存情况,了解不同渠道的用户质量和效果。

可以根据数据调整渠道投放策略,提高用户获取效率。

3.2 竞品对比分析:通过对竞品游戏的数据进行对比,了解竞品的用户规模、用户行为和盈利模式。

可以根据数据找出竞争优势和不足,制定相应的竞争策略。

3.3 市场趋势分析:通过对市场数据的收集和分析,了解游戏市场的发展趋势和用户需求变化。

游戏运营-游戏数据分析

游戏运营-游戏数据分析
2010年3月
游戏运营 --数据分析
*
目录
重点运营环节介绍分析 市场推广 游戏活动 数据分析 商务合作 客户服务 销售渠道 技术运维
点击此处添加正文,请言简意赅的阐述观点。
网络游戏运营概述
点击此处添加正文,请言简意赅的阐述观点。
核心数据
二、重点运营环节-数据分析
核心数据 同时在线人数 最高在线PCU(Peak Concurrent User) 平均在线ACU(Average Concurrent User) 人均消费ARPU(Average Rate Per Unit) 活跃用户AU(网游通常按照UV计算) 登录用户UV 付费账号PU、活跃付费账号APA、充值与消耗金额 实时监控(按天统计分析)、精确到每小时 收入 充值金额 消耗金额、消耗ARPU、用于上市公司财务统计 实时监控、按天分析
主要工作:
二、重点运营环节-销售渠道
主要工作: 保证用户能方便快捷地进行充值,目前主流充值方式包括: 网上银行卡(易宝网银、快钱) 实物卡(盛大卡、征途卡、QQ卡、完美卡等) 声讯(固定电话、手机充值) 支付宝等(支付宝、财付通) 短信(手机短信) 卡密(神州行) 网吧直充等(网上销售平台) 控制渠道,进行一定的推广工作 用户推广平台、当前很多具有规模的公司都有 推广平台(对网站主、对推广员、对推广商)
二、重点运营环节-数据分析
*
ACU、PCU按天分析图
二、重点运营环节-数据分析
某游戏流失率重要节点分布
游戏玩家角色各等级流失率趋势分布图
2
某产品进入游戏后、前10级流失总比例在60%-80%
1
二、重点运营环节-数据分析
二、重点运营环节-数据分析
*
ACU、PCU实时分析图

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、引言游戏运营数据分析是指通过采集、整理和分析游戏运营过程中产生的各类数据,以揭示游戏的运营状况、用户行为、市场趋势等信息,为游戏运营决策提供科学依据。

本文将详细介绍游戏运营数据分析的标准格式,包括数据采集、数据整理和数据分析三个方面。

二、数据采集1. 数据来源游戏运营数据的来源包括游戏内部数据和外部数据。

游戏内部数据主要包括用户行为数据、游戏服务器数据、游戏日志数据等,可以通过游戏内部监测系统进行采集。

外部数据包括市场数据、竞品数据、用户调研数据等,可以通过第三方数据提供商获取。

2. 数据指标游戏运营数据的指标包括用户活跃度、付费率、留存率、流失率、ARPU(平均每用户收入)、ROI(投资回报率)等。

根据游戏的特点和运营目标,可以选择适合的指标进行数据采集。

3. 数据采集工具常用的数据采集工具包括Google Analytics、百度统计、友盟统计等。

根据游戏的平台和需求,选择合适的数据采集工具进行数据采集。

三、数据整理1. 数据清洗在数据整理过程中,需要对采集到的原始数据进行清洗,包括去除重复数据、填充缺失数据、纠正异常数据等,以确保数据的准确性和完整性。

2. 数据转换将原始数据进行转换,以便更好地进行后续的数据分析。

常见的数据转换包括数据格式转换、数据字段提取、数据合并等。

3. 数据存储将整理后的数据存储到数据库或者数据仓库中,以方便后续的数据分析和查询。

常用的数据存储方式包括关系型数据库和非关系型数据库。

四、数据分析1. 数据可视化通过数据可视化工具,将整理后的数据进行图表展示,以直观地呈现游戏运营的情况。

常用的数据可视化工具包括Tableau、Power BI等。

2. 用户行为分析通过对用户行为数据的分析,了解用户在游戏中的行为习惯和偏好,包括游戏时长、关卡通过率、付费行为等。

根据用户行为分析结果,可以优化游戏内容和功能,提升用户体验。

3. 市场趋势分析通过对市场数据和竞品数据的分析,了解游戏市场的趋势和竞争情况,包括用户规模、用户增长率、竞品特点等。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析引言概述:游戏运营数据分析是指通过采集、整理和分析游戏运营数据,以获取有关游戏用户行为、游戏性能和市场趋势等方面的信息,从而匡助游戏运营商做出更明智的决策。

本文将从五个方面详细阐述游戏运营数据分析的重要性和应用。

一、用户行为分析1.1 游戏用户留存率分析通过分析游戏用户的留存率,可以了解用户对游戏的喜好程度和游戏的吸引力。

留存率高的游戏通常具有良好的用户体验和粘性,而留存率低的游戏可能需要优化游戏内容或者改进用户交互方式。

1.2 用户付费行为分析通过分析用户的付费行为,可以了解用户的消费习惯和支付偏好,从而优化游戏的付费策略和推广活动。

例如,可以根据用户的付费行为,推出个性化的优惠活动,提高用户的付费转化率。

1.3 用户流失原因分析通过分析用户流失的原因,可以找出游戏存在的问题,并及时进行改进。

比如,通过用户反馈和行为数据分析,发现游戏存在卡顿或者崩溃问题,可以优化游戏性能,提升用户体验,减少用户流失。

二、游戏性能分析2.1 游戏加载时间分析通过分析游戏的加载时间,可以评估游戏的性能表现。

加载时间过长可能导致用户流失,因此可以通过优化游戏资源加载方式和减少加载时间,提升游戏性能和用户体验。

2.2 游戏崩溃率分析通过分析游戏的崩溃率,可以了解游戏的稳定性和可靠性。

崩溃率高的游戏可能存在程序错误或者内存泄漏等问题,需要及时修复,以提高游戏的稳定性。

2.3 游戏网络延迟分析通过分析游戏的网络延迟情况,可以评估游戏的网络性能。

网络延迟过高可能导致游戏卡顿和不流畅,因此可以通过优化网络架构和提供更稳定的服务器,改善游戏的网络性能。

三、市场趋势分析3.1 游戏市场竞争分析通过分析游戏市场的竞争情况,可以了解游戏的市场定位和竞争优势。

比如,可以通过研究竞争对手的游戏特点和用户反馈,找到游戏的差异化竞争点,以吸引更多用户。

3.2 游戏用户群体分析通过分析游戏的用户群体特征,可以了解目标用户的需求和喜好。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析游戏运营数据分析是指通过对游戏内各项数据进行收集、整理和分析,以获取对游戏运营情况的深入了解和洞察。

通过对游戏运营数据的分析,可以帮助游戏运营团队做出更明智的决策,优化游戏玩法和功能,提升用户体验,提高游戏的盈利能力。

一、用户数据分析1. 用户留存率分析通过统计用户的留存情况,可以了解用户的忠诚度和游戏吸引力。

可以分析不同时间段的留存率,找出用户流失的原因,并采取相应的措施提高留存率。

2. 用户活跃度分析通过分析用户的活跃度,可以了解用户对游戏的兴趣程度和参与度。

可以统计每日、每周、每月的活跃用户数,分析用户活跃时间段和活跃地区,为游戏的运营策略提供依据。

3. 用户付费率分析通过统计用户的付费情况,可以了解游戏的盈利能力和用户的消费习惯。

可以分析不同用户群体的付费率,找出付费用户的特征和行为习惯,为游戏的商业模式和营销策略提供参考。

二、游戏内容分析1. 关卡难度分析通过分析用户在游戏关卡中的通关情况,可以了解关卡的难度是否合理,是否需要进行调整。

可以统计不同关卡的通关率和失败率,找出用户普遍遇到的问题,并提供相应的解决方案。

2. 游戏道具分析通过统计用户对游戏道具的使用情况,可以了解道具的受欢迎程度和使用频率。

可以分析不同道具的购买率和使用率,找出用户对道具的需求和偏好,为游戏的道具设计和销售策略提供指导。

3. 游戏活动分析通过统计用户参与游戏活动的情况,可以了解活动的吸引力和效果。

可以分析不同活动的参与人数和参与率,找出用户对活动的反馈和建议,为游戏的活动策划和运营提供改进方向。

三、市场竞争分析1. 游戏市场份额分析通过对游戏市场的竞争对手进行分析,可以了解游戏在市场中的地位和竞争力。

可以统计不同游戏的下载量和收入情况,找出游戏的优势和劣势,为游戏的市场定位和推广策略提供依据。

2. 游戏评价分析通过分析用户对游戏的评价和反馈,可以了解游戏的口碑和用户满意度。

可以统计用户给出的评分和评论,找出游戏的优点和不足,为游戏的改进和优化提供参考。

游戏运营数据分析

游戏运营数据分析

游戏运营数据分析一、背景介绍随着移动互联网的快速发展,游戏行业迅猛发展,成为一种受众广泛的娱乐方式。

为了更好地了解游戏的运营情况,提升用户体验,优化游戏内容和功能,进行游戏运营数据分析变得至关重要。

本文将详细介绍游戏运营数据分析的标准格式,包括数据来源、数据分析方法、数据分析结果等。

二、数据来源1. 用户数据:包括注册用户数量、活跃用户数量、用户留存率等信息。

2. 收入数据:包括游戏内购买的虚拟货币数量、收入金额等信息。

3. 游戏数据:包括游戏时长、游戏关卡通过率、游戏道具使用情况等信息。

4. 市场数据:包括竞品分析、用户调研等信息。

三、数据分析方法1. 描述性分析:对数据进行统计描述,包括平均值、中位数、标准差等,从而了解数据的分布情况。

2. 关联性分析:通过相关系数分析等方法,探索不同变量之间的关系,如用户活跃度与收入之间的关系。

3. 分类分析:将用户分为不同的群体,比如新用户、老用户、高消费用户等,从而对不同群体进行针对性的分析和运营策略制定。

4. 时间序列分析:对数据按时间顺序进行分析,了解游戏运营趋势和变化规律。

四、数据分析结果1. 用户数据分析结果:通过分析注册用户数量和活跃用户数量,可以了解用户增长趋势和用户留存情况。

同时,可以通过用户流失率等指标,找出用户流失的原因,并制定相应的用户留存策略。

2. 收入数据分析结果:通过分析收入数据,可以了解游戏的盈利情况。

比如,可以分析不同用户群体的付费习惯,从而制定不同的付费策略,提高游戏收入。

3. 游戏数据分析结果:通过分析游戏时长、关卡通过率等指标,可以了解用户对游戏内容的喜好和游戏难度。

根据分析结果,可以进行游戏内容的优化和关卡难度的调整,提升用户体验。

4. 市场数据分析结果:通过竞品分析和用户调研,可以了解市场竞争情况和用户需求。

根据分析结果,可以制定相应的市场推广策略,吸引更多用户。

五、总结游戏运营数据分析是提升游戏运营效果的重要手段,通过对用户数据、收入数据、游戏数据和市场数据的分析,可以了解用户需求,优化游戏内容和功能,提升用户体验,实现游戏的可持续发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任何一款游戏运营,都是以UED、数据分析为导向,如何开发、运营好一款成功的全球社交游戏,是每个社交游戏产品经理头等大事。

用数据说话,是一个简单明快的操作方式,但社交游戏的数据如何分类?海内外关注点有何区别?相信作为每个社交游戏产品经理是非常关心的话题,那么我们就从基础知识入手,逐步梳理出符合运营需求的核心数据环节,抛弃冗长复杂的多类数据,为自己的成功打下扎实的基础。

付费率=付费用户÷活跃用户x100
活跃率=登陆人次÷平均在线人数
ARPU值=收入÷付费用户
用户流失率=游戏当前活跃用户规模÷历史注册总量
同时在线峰值=24小时内同时在线最高达到人数
平均在线=24小时每小时同时在线相加总和÷24小时
中国大陆运营游戏平均同时在线用户=ACU 【有称ACCU】
采用道具收费模式游戏活跃付费用户=APC
活跃付费账户=APA
付费用户平均贡献收入=ARPU
当日登录账号数=UV
用户平均在线时长=TS
最高同时在线人数=PCU 【有称PCCU】
同时在线人数=CCU
付费人数一般是在线人数2~4倍。

活跃用户(玩家):是指通过你的推广代码注册,不属于小号或作弊情况、正常进行游戏一个月以上未被官方删除的用户视为活跃用户。

您推广的两个用户目前还没有通过至少1个月的审查时间,您可以在您的推广纪录中查看您推广用户的注册时间。

且这两个用户需要满足上述对活跃玩家的定义才能称为活跃玩家!
活跃付费账户=APA。

每个活跃付费用户平均贡献收入=ARPU。

【活跃天数计算定义】
活跃天指用户当天登陆游戏一定时间、认定用户当天为活跃、活跃天数加1天。

当天0:00-23:59登陆游戏时间2小时以上用户当天为活跃天、活跃天数累积1天。

当天0:00-23:59登陆游戏时间0.5小时至2小时、活跃天数累积0.5天。

当天0:00-23:59登陆游戏时间0.5小时以下、不为其累积活跃天数。

每日:
---------用户数量描述
在线人数:(取的当日某个时刻最高在线,一般发生在9:30左右)
新进入用户数量:(单日登录的新用户数量)
当日登录用户数量:
每日登录/在线:
---------盈利状况描述
每日消耗构成:(根据金额和数量做构成的饼状图)
每日消耗金额:
每日消费用户数量:
每日充值金额:
每日充值用户数量:
每日充值途径:
---------产品受关注程度描述
官网首页访问量:
客户端安装量:(根据安装完成弹出的页面)
客户端下载量:
客户端下载点击量:
安装率:下载安装/下载量
---------游戏系统描述
每日金钱增量、消耗和净增值:
等级分布:
忠诚用户等级分布:
特征物品市场价格(如联众游戏豆):
每周:
---------用户群体描述
活跃用户数量:当周登录过游戏的用户数量
忠诚用户数量:本周登陆3次以上(当天重复登陆算1次),最高角色等级超过15级,在线时长超过14小时的帐号
流失用户数量:上周登录但本周没有登录的用户数量
流失率:流失用户/上周活跃数量
忠诚流失率:上周忠诚用户当周没有登录用户的数量/上周忠诚用户数量
忠诚度:忠诚用户数量/活跃用户数量*修正值(新进人数的变化比例)
转化率:上周登录的用户在本周转化为忠诚用户的比例
---------盈利变化描述
ARPU值(周):当周充值总额/当周付费用户数量;当周充值总额/当周平均最高在线
付费用户:该周有过付费行为的玩家数量
新增付费用户数量:本周新增的付费用户
付费率:该周付费用户数量/该周登录用户
付费用户流失数量:上周付费用户本周未登录数量
付费流失率:上周付费用户本周未登录的比例
注册转付费:某一天注册的用户在一周后付费的用户数量及比例
每月:
ARPU值:该月充值总额/当月付费用户数量;当月充值总额/当月平均最高在线
付费用户:该月有过付费行为的玩家数量
新增付费用户数量:
付费用户流失数量:
付费流失率:
活跃用户数量:该月登录过的用户;
针对道具:
每日购买量:
每日使用量:
转卖数量:购买然后在手里出售给其他玩家的数量
转卖价格:
流通速度:转卖总次数/参与转卖的道具数量
购买者等级分布:
使用者等级分布:
产品分析为游戏包装、盈利设计提供非常必要的支持,也是指导日常运营的重要参考。

是运营工作中的核心内容之一。

但和其他行业一样,即便做了非常多的数据分析和其他信息收集,我们往往依然很难获得足够的信息来得到一个非常清晰的结论,经验和直觉在决策中还是扮演重要的地位。

产品分析分为:
一、从信息收集渠道上来看:
(一)数据分析(通过数据库或后台查询的数据)
1.例行数据分析(每日、每周、每半月、每月,每季度……)
2.项目数据分析(非例行/重复,如开区效果评估,游戏修改评估等)
项目数据调查一般遵循这样的过程:
1.确定调查分析目的(证实、探索、预测)
2.达到这个调查分析目的你需要哪些结论来支撑
3.获得原始数据后如何分析(分析模型)
4.如何获取原始数据
(二)客服问题反馈(流程)
(三)自身游戏体验
(四)玩家直接交流(游戏交互、日常沟通、QQ群、小型见面会等)
二、从内容上来看:(例行的)
(一)产品现状描述:通过参数来反应目前游戏系统和运维平台的情况
1.游戏世界描述(高峰/均在线,金钱监控,等级分布,特征怪物/物品/道具价格等)
2.运维平台及其它(下载量、下载完成率、注册量、硬件使用率、客服相关数据等)(二)玩家游戏行为分析:物理特征+外部行为+游戏行为+群体描述
1.用户物理特征(性别、年龄等)
2.外部行为特征(登陆频率、时长、时间段等)
3.游戏行为特征(流失等级及变化)
4.群体行为描述(峰值、活跃用户/忠诚用户及相关比例、新进用户、活跃度、忠诚度、流
失率、转化率等)
(三)玩家消费行为分析:修正盈利设计,捕捉用户需求,新增道具设计
1.付费用户描述(付费用户数量、ARPU、付费用户游戏行为分析等)
2.盈利描述(盈利状况、消耗构成及变化趋势等)
3.道具分析(使用范围、使用深度、使用/放弃原因等)
4.付费意愿分析
(1)消费偏好分析(换金/个性/增强(经验、装备、技能)/方便互动/其它)
(2)消费与游戏设置的联系(道具对应等级、玩家习惯行为(如某种技能)、游戏任务、场景的开放等)
5.付费行为分析
(1)单位玩家道具数量情况分析(拥有量、拥有的道具之间的联系)
(2)付费等级分布(首次购买等级、当前购买道具的等级分布)
(3)付费数额分布(首次付费数额、续费数额)
(4)付费用户分类(根据一段时间内的付费额)
(5)续费行为分析(未流失的玩家中,中止消费、消费转移的分析)
(6)重点用户的跟踪
【名词解释和计算方式】
平均同时在线用户= ACU
游戏活跃付费用户= APC
活跃付费账户= APA
付费用户平均贡献收入= ARPU
当日登录账号数= UV
用户平均在线时长= TS
最高同时在线人数= PCU
累积注册用户= AccRu
收入/ 付费用户= ARPU
游戏当前活跃用户规模/ 历史注册总量= 用户流失率
付费用户/ 活跃用户* 100 = 付费率
登陆人次/ 平均在线人数= 活跃率
24小时内同时在线最高达到人数= 同时在线峰值(PCU)
24小时每小时同时在线相加总和/ 24小时=平均在线(ACU)
【活跃天数计算定义】
活跃天指用户当天登陆游戏一定时间、认定用户当天为活跃、活跃天数加1天
当天0:00-23:59登陆游戏时间2小时以上用户当天为活跃天、活跃天数累积1天
当天0:00-23:59登陆游戏时间0.5小时至2小时、活跃天数累积0.5天
当天0:00-23:59登陆游戏时间0.5小时以下、不为其累积活跃天数。

相关文档
最新文档