SX-7-026第六章实数单元测试

合集下载

七年级初一数学 第六章 实数单元测试附解析

七年级初一数学 第六章 实数单元测试附解析

七年级初一数学 第六章 实数单元测试附解析一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=3 2.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a << 3.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >04.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 5.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③6.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( ) ①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个 8.4的平方根是( )A .±16B .2C .﹣2D .±2 9.估计25+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间1016 ) A .4 B .4- C .4±D .2± 二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____.12.若实数a 、b 满足240a b +-=,则a b=_____.13.一个正数的平方根是21x -和2x -,则x 的值为_______.14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.313312+333123++33331234+++333312326++++=__________.16.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________.19.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。

七年级初一数学第二学期第六章 实数单元测试题

七年级初一数学第二学期第六章 实数单元测试题

七年级初一数学第二学期第六章实数单元测试题一、选择题1.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或12.圆的面积增加为原来的m倍,则它的半径是原来的()A.m倍B.2m倍C.m倍D.2m倍3.25的算术平方根是()A.5±B.5C.52±D.54.下列计算正确的是()A.21155⎛⎫-=⎪⎝⎭B.()239-=C.42=±D.()515-=-5.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7 6.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0 7.下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A.4个B.3个C.2个D.1个8.下列说法中不正确的是( )A.2-是2的平方根B22的平方根C.22D.229.下列说法:①±3都是27的立方根;②116的算术平方根是±1438-216的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个10.下列各数中,介于6和7之间的数是( )A43B50C58D339二、填空题11.若已知()2120a b -++=,则a b c -+=_____. 12.若x +1是125的立方根,则x 的平方根是_________.13.与0.5_____0.5.(填“>”、“=”、“<”) 14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.=__________.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.17.49的平方根是________,算术平方根是______,-8的立方根是_____.18.已知2(21)0a ++=,则22004a b +=________.19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示) 22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.23.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32,即2<<3,7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)5a37的整数部分为b,求a+b5的值;24.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.你会求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a-+=-,()()23111a a a a-++=-,()()324111a a a a a-+++=-,(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是.(3)求52014+52013+52012+…+52+5+1的值.26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】 A. ==0-0=0,故A 选项正确,不符合题意;B. ===,=,所以,故B 选项正确,不符合题意;C.=,= ,当k=3时,==0,==1,此时,故C 选项错误,符合题意;D.设n 为正整数, 当k=4n 时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴m,m故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】25,∴55255故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.4.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.5.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.6.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.8.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.9.A解析:A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误;2是正确的;4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.10.A解析:A 【分析】求出每个根式的范围,再判断即可. 【详解】解:A 、67,故本选项正确;B 、78,故本选项错误;C 、78,故本选项错误;D 、34,故本选项错误; 故选:A . 【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题 11.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.12.±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根 ∴x+1=,解得:x=4 ∴x 的平方根是±2 故答案为:±2 【点睛】本题考查立方根和平方根,注意一个正解析:±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根∴x=4 ∴x 的平方根是±2 故答案为:±2 【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n=1+2+326+=351故答案为:351【点睛】 本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.16.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!17.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a +1=0,b−1=0,∴a =,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.22.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a2,∵∴6b=,∴a b+264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14²= 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出A B−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)a2015﹣1;(2)22015﹣1;(3)2015514-.【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,故答案为:a2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514-.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.26.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53 【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。

七年级初一数学第二学期第六章 实数单元达标测试题试卷

七年级初一数学第二学期第六章 实数单元达标测试题试卷

七年级初一数学第二学期第六章 实数单元达标测试题试卷一、选择题1.设记号*表示求,a b 算术平均数的运算,即*2a b a b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22a a b c b c +=+ A .①②③B .①②④C .①③④D .②④ 2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍 3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣54.2,估计它的值( )A .小于1B .大于1C .等于1D .小于05.0=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定6.下列一组数2211-8,3,0,2,0.010010001 (7)223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( ) A .0个 B .1个 C .2个 D .3个7.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个8.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( )A .2B .0C .-2D .以上都不对9.估计2+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间10.和 )A B C + D .-二、填空题11.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).12.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.如果某数的一个平方根是﹣5,那么这个数是_____.16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.17.比较大小:51-__________0.5.(填“>”“<”或“=”) 18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++=_____.19.46的整数部分是________.20.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 23.对于实数a,我们规定用a }a {a}为 a 的根整数.如10}=4.(1)计算9?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次12}=4,再进行第二次求根整数4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.24.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭ (253532325.1x +2y -z 是64的方根,求x y z -+的平方根26.阅读理解.459253.∴151<251的整数部分为1,5152.解决问题:已知a 17﹣3的整数部分,b 17﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)2172=17.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据材料新定义运算的描述,把等式的两边进行变形比较即可.【详解】①中()*2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中()2a b c a b c ++*+=,()*2a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=,()2*2a b c a b c +++=,所以③不成立; ④中()2a b a b c c +*+=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立.故选:B .【点睛】 考核知识点:代数式.理解材料中算术平均数的定义是关键.2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.C解析:C【分析】根据算术平方根的非负性求出x ,y ,然后再求x+y 即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.6.C解析:C【分析】根据无理数与有理数的概念进行判断即可得.【详解】 解:2211-8,3,0,2,0.010010001...7223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001...2π,(相邻两个1之间依次增加一个0),共2个 故选:C【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等. 7.C解析:C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可.【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误;③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误.所以错误的个数是3个.故答案为C【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.8.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.9.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<2+5<3+2,<5,则4<25故选:D.【点睛】本题考查了估算无理数的大小,正确得出5的取值范围,熟练掌握一个数的平方是关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,7和67-(6)76.故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11.515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.12.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr2=147,解得:r=7cm.∴两个圆的直径总长为28cm.∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm2的圆.22.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3 )7 -(﹣12)9×(-2)6 =-3-(-12)3 =-3+18 =7-28. 【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.23.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.24.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(23=-+-+-3=3【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8-+=-1-2+8=5,所以,x y z-+的平方根是所以,x y z【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)a=1,b﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.。

七年级下册数学第六章《实数 》单元试题含答案

七年级下册数学第六章《实数 》单元试题含答案

2022年七年级下册数学第六章试题姓名:学号:分数:一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 已知,则的值为()A. B.不能确定 C. D.2. 无理数介于整数()A.与之间B.与之间C.与之间D.与之间3. 若是的算术平方根,的一个立方根是,则的平方根为( )A. B. C.或 D.或4. 李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入,则输出的结果应为( )A. B. C. D.5. 关于的说法错误的是( )A.是无理数B.的平方根表示为C.的大小介于和之间D.在数轴上可以找到的点6. 己知正方体表面积为,则这个正方体的棱长为( )A. B. C. D.7. 下列说法正确的是( )A.的平方根是B.的平方根是C.的平方根是D.是的立方根8. 若有理数和都不等于,且,则,A.异号B.同号C.不能同为正数D.不能同为负数二、填空题(本题共计9 小题,每题3 分,共计27分,)9. 的值为________.10. 的立方根是________.11. 若,则的取值范围是________.12. 已知,,且,则________.13. 计算:________,________.14. 的平方根是________;的立方根是________.15. 在实数①,②,③,④,⑤中,是无理数的有________;(填写序号)16. 下列各数:,,,,,,,…(每两个之间依次多个)中,无理数有________个,有理数有________个,负数有________个,整数有________个.17. 如图,在长方形内,两个小正方形的面积分别为,,则图中阴影部分的面积等于________.三、解答题(本题共计9 小题,共计69分,)18. 请在同一个数轴上用尺规作出和的对应的点.19. 把下列各数分别填写在相应的括号内:,,,,,…(相邻两个之间依次多一个)无理数有理数.20. 计算:.21. 已知,,在数轴上如图所示,化简:.22. 画一条数轴,把,,各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“”号连接.23. 已知与互为相反数,求与的值.24. 在数轴上表示下列各实数(大致标出其位置),并按从小到大的顺序排列,用“”号连接起来.,,,,,,.25. 已知的平方根是,的立方根是,是的整数部分,求的算术平方根.26. 把,,,各数(或近似值)在数轴上表示出来,并比较它们的大小,用“”号连接.参考答案与试题解析一、选择题(本题共计8 小题,每题 3 分,共计24分)1.【答案】C【考点】非负数的性质:算术平方根【解析】根据非负数的性质列出方程求出、的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则.故选.2.【答案】B【考点】估算无理数的大小【解析】利用平方根定义估算确定出所求即可.【解答】∵,∴,3.【答案】D【考点】立方根算术平方根平方根立方根的性质【解析】先根据算术平方根和立方根的定义求出、的值,然后代入求出平方根.【解答】解:是的算术平方根,.又的一个立方根是,,,的平方根为.故选.4.【答案】B【考点】实数的运算【解析】由于题目中“输入一个数,乘以后再减去,输出结果”,可表示为,将代入上式即可求得输出的值.【解答】解:由题意可知:,故选.5.【答案】B【考点】无理数的大小比较无理数的识别在数轴上表示实数平方根【解析】根据无限不循环小数是无理数可得说法正确;根据可得说法正确;根据一个数的平方等于,这个数叫的平方根可得说法错误;根据一个正数的平方等于,这个数叫的算术平方根可得说法正确.【解答】解:是无理数,说法正确;的平方根是,说法错误;,说法正确;在数轴上可以找到的点,说法正确.故选.6.【答案】C【考点】算术平方根在实际问题中的应用【解析】设正方体的棱长是,根据“正方体的表面积公式:,列出关于的方程,解方程即可得.【解答】解:设正方体的棱长是,由题意,得,解得,,,即正方体的棱长是.故选.7.【答案】D【考点】平方根立方根【解析】根据平方根与立方根的定义对各选项分析判断后利用排除法.【解答】解:,的平方根是,故错误;,的平方根是,故错误;,的平方根是,故错误;,,是的立方根,故正确.故选.8.【答案】C【考点】有理数无理数的概念与运算【解析】分别将选项的说法代入,看是否满足等式,继而可判断出答案.【解答】解:、如果、都为负数,则,故不能得出、异号,故本选项错误;、若、同号,如果、都为正,则,如果、都为负,则,故不能得出、同号,故本选项错误;、如果、同为正数,则,不符合题意,即、不能同为正数,故本选项正确;、如果、都为负数,则,故、可以同为负数,故本选项错误;故选.二、填空题(本题共计9 小题,每题 3 分,共计27分)9.【答案】【考点】算术平方根【解析】此题暂无解析【解答】解:.故答案为:.10.【答案】【考点】立方根的性质【解析】根据立方根的定义分别进行计算即可得解.【解答】解:.故答案为:.11.【答案】【考点】非负数的性质:算术平方根【解析】根据非负数的性质列出关于的不等式,求出的值即可.【解答】解:∵,∴,解得.故答案为:.12.【答案】【考点】立方根的应用平方根【解析】先根据平方和立方根的性质,条件,确定,的值,然后将、的值代入即可解答.【解答】解:∵,,∴,.∵,∴,∴,∴.故答案为:.13.【答案】,【考点】立方根的实际应用【解析】根据立方根的定义即可求解.【解答】解:,.故答案为:、.14.【答案】,【考点】立方根的实际应用平方根【解析】先求得的值,然后再求得的平方根即可,依据立方根的定义可求得的立方根.【解答】解:∵,∴的平方根是.∵,∴的立方根是.故答案为:;.15.【答案】②⑤【考点】无理数的识别【解析】分别根据无理数、有理数的定义即可判定选择项.【解答】①,③,④是有理数,②,⑤是无理数,16.【答案】,,,【考点】无理数的判定实数无理数的识别【解析】无理数是无限不循环小数和开方开不尽的数,不能写作两整数之比;有理数是整数和分数.【解答】解:根据无理数、有理数、负数和整数的定义,无理数有,...;有理数有:,,,;负数有:;整数有:故答案为:17.【答案】【考点】算术平方根在实际问题中的应用【解析】由两个小正方形的面积分别为,,得出其边长分别为和,则阴影部分合起来是长等于,宽等于的长方形,从而可得答案.【解答】解:面积为的正方形的边长为:,面积为的正方形的边长为:,则阴影部分面积为:.故答案为:.三、解答题(本题共计9 小题,每题10 分,共计90分)18.【答案】解:、所对应的点分别是和.【考点】在数轴上表示无理数勾股定理【解析】为直角边长为,的直角三角形的斜边的长,在数轴的负半轴上;为直角边长为,的直角三角形的斜边的长.【解答】解:、所对应的点分别是和.19.【答案】解:无理数有理数.【考点】实数【解析】根据实数的分类:进行填空即可.【解答】解:无理数有理数.20..【考点】实数的性质【解析】根据差的绝对值是大数减小数,可得答案.【解答】解:原式,21.【答案】解:∵从数轴可知:,∴,,,∴.【考点】二次根式的性质与化简绝对值数轴【解析】根据数轴的位置推出,,,根据二次根式的性质和绝对值进行化简得出,再合并即可.【解答】解:∵从数轴可知:,∴,,,∴.22.解:因为的相反数是,的相反数是,的相反数是;所以..【考点】实数大小比较在数轴上表示实数【解析】先求出,,的相反数,再将,,和它们的相反数在数轴上表示出来.【解答】解:因为的相反数是,的相反数是,的相反数是;所以..23.【答案】由题意可知=,解得:=.由此得,.【考点】立方根的性质实数的性质算术平方根【解析】直接利用相反数的定义得出的值,进而化简得出答案.【解答】由题意可知=,解得:=.由此得,.24.【答案】解:把所有数在数轴上表示,如图.所以.【考点】实数大小比较在数轴上表示实数【解析】先化简,确定每个数的符号,估计其值,其中正数有个,,,,;负数有个,,;一个,其中无理数要估计值,在数轴上表示出来,由此即可求解.【解答】解:把所有数在数轴上表示,如图.所以.25.【答案】解:根据题意,可得,;故,;又有,可得;当时,,其算术平方根为;当时,,其算术平方根为.【考点】估算无理数的大小立方根的实际应用算术平方根【解析】首先根据平方根与立方根的概念可得与的值,进而可得、的值;接着估计的大小,可得的值;进而可得,根据算术平方根的求法可得答案.【解答】解:根据题意,可得,;故,;又有,可得;当时,,其算术平方根为;当时,,其算术平方根为.26.【答案】解:.【考点】实数大小比较在数轴上表示实数【解析】先在数轴上表示出来,再比较即可.【解答】解:.。

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

人教版七年级下册数学《第6章实数》单元测试一、选择题(本大题共10小题,共40分)1. 下列式子正确的是( )A. √36=±6B. √(−7)23=−√723C. √(−3)33=−3D. √(−5)2=−52. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④算术平方根不可能是负数;⑤(π−4)2的算术平方根是4−π,其中正确的个数是( )A. 2个B. 3个C. 4个D. 5个3. 要使√(a −1)33=a −1成立,那么a 的取值范围是( )A. a ≤1B. a ≤−1C. a ≥1D. 一切实数4. 任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数增加,结果越来越趋向( )A. 0B. 1C. −1D. 无法确定5. 在实数3π,−78,0,√2,−3.14,√9,√33,0.151 551 555 1…中,无理数有( ) A. 2个 B. 3个 C. 4个 D. 5个6. |3.14−π|−π的值是( ) A. 3.14−2π B. 3.14 C. −3.14 D. 无法确定7. 下列不等式中,错误的是( ) A. −7<−5 B. 5>3 C. 1+a 2>0 D. a >−a8. 若|a −12|+(b +1)2=0,则√4a ×2√−b 的值是( )A. 2√2B. 2√6C. √3D. 4√3 9. 下列说法中正确的是( )A. ∵3的平方是9,∴9的平方根是3B. ∵−5的平方是25,∴25的负的平方根是−5C. ∵任何数的平方都是正数,∴任何数的平方根都是正数D. ∵负数的平方是正数,∴负数的平方根都是正数10. 下列说法正确的是( ) ①a 的倒数是1a ;②m 的绝对值是m ;③无理数都是无限小数;④实数可以分为有理数和无理数.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)11. 已知数轴上A 、B 两点之间的距离为√3,点A 对应的数是2,那么B 对应的数是______ .12. 若√a +b −3+√ab +4=0,则√a 2−2ab +b 2的值为______ .13. 化简|3−√10|+(2−√10)= ______ .14. 设√11的小数部分为b ,则b(b +6)的值是______ .15. √7−2的相反数是______ .16. 观察思考下列计算过程:因为112=121,所以√121=11;同样,因为1112=12321,所以√12321=111,则√1234321= ______ ,可猜想√123456787654321= ______ .三、计算题(本大题共4小题,共38分)17. 求下列各式中的未知数x 的值:(1)2x 2−8=0; (2)(x +1)3=−64; (3)25x 2−49=0; (4)−(x −3)3=8.18. 已知5+√6的小数部分是a ,4−√6的小数部分是b ,求a +b 的值.19. 若a 是(−2)2的平方根,b 是√16的算术平方根,求a 2+2b 的值.20. 当a =10时,求√(a −4)2−√(a −11)2的值,有甲、乙同学分别这样解答:甲:原式=√(10−4)2−√(10−11)2,=10−4−(10−11),=7.乙:原式=|a −4|−|a −11|,当a =10时,a −4=10−4=6>0,a −11=10−11=−1<0,所以,原式=a −4−(a −11)=7.以上两人解答对吗?为什么?四、解答题(本大题共2小题,共18分) 21. 把下列各数填在相应的括号内:√36,√15,37,π,−3.14,0,3.1⋅3⋅,0.1010010001…(每两个1之间多一个0).有理数:{______ …};无理数:{______ …};实数:{______ …}.22.23. 如图,数轴的正半轴上有A ,B ,C 三点,表示1和√3的对应点分别为A ,B ,点B 到点A 的距离与点C 到原点的距离相等,设点C 所表示的数为x .(1)x 的值为______;(2)求x(x +2)的值,并写出x(x +2)的平方根.答案和解析1.【答案】C【解析】解:A 、√36=6,故本选项错误;B 、√(−7)23=√493=√723,故本选项错误;C 、√(−3)33=−3,故本选项正确;D 、√(−5)2=√25=5,故本选项错误;故选:C .根据立方根和算术平方根的定义分别对每一项进行分析,即可得出答案.本题主要考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.2.【答案】A【解析】解:根据算术平方根概念可知:负数没有算术平方根,故此选项错误;0的算术平方根是0,故此选项错误;当a <0时,a 2的算术平方根是−a ,故此选项错误;算术平方根不可能是负数,故此选项正确;(π−4)2的算术平方根是4−π,故此选项正确.所以正确的有2个.故选:A .根据算术平方根的概念即可判断.本题考查了算术平方根,熟记定义是解题的关键.3.【答案】D【解析】解:∵要使√(a −1)33=a −1成立,∴必须a −1为一切实数,即a 为任何实数,故选:D .根据正数有一个正的立方根,负数有一个负的立方根,0的立方根是0即可得出a −1为一切实数,求出即可. 本题考查了对立方根的应用,注意:正数有一个正的立方根,负数有一个负的立方根,0的立方根是0. 4.【答案】C【解析】解:∵负数的立方根仍是负数,且两个负数绝对值大的反而小,∴结果越来越趋向−1.故选:C .由于负数的立方根仍是负数,且两个负数绝对值大的反而小,由此即可得到结果.此题主要考查了立方根的定义及性质.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.5.【答案】C【解析】解:−78,0,−3.14,√9是有理数,3π,√2,√33,0.151 551 555 1…是无理数,共有4个,故选:C .分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.6.【答案】C【解析】解:|3.14−π|−π,=π−3.14−π,=−3.14.故选:C .首先根据绝对值的性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,即可去掉绝对值符号,即可化简求值.本题主要考查了绝对值的性质,正确根据绝对值的性质去掉绝对值符号是解决本题的关键.7.【答案】D【解析】解:A、−7<−5,故选项正确;B、5>3,故选项正确;C、由任何一个数的平方都是非负数,可知a2≥0,再由不等式的性质,可知1+a2≥1+0>0,故选项正确;D、当a为0或负数时,a≤−a,故选项错误.故选:D.A、B、C、D根据正数大于0,负数小于0实数大小比较的方法,结合不等式的性质,逐一进行判断即可.此题主要考查了实数大小比较的方法以及不等式的性质.本题需注意字母表示数具有任意性,D中字母a可表示一个任意的数.8.【答案】A【解析】解:∵|a−12|+(b+1)2=0,∴a−12=0,b+1=0,∴a=12,b=−1,∴√4a×2√−b=√4×12×2√1=2√2.故选:A.根据非负整数的性质得到a−12=0,b+1=0,则a=12,b=−1,然后把它们代入计算即可.本题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号.也考查了非负整数的性质.9.【答案】B【解析】解:A、∵±3的平方是9,∴9的平方根是±3,故选项错误;B、∵−5的平方是25,∴25的负的平方根是−5,故选项正确;C、∵任何数的平方不一定正数,其中0的平方就是0,故选项错误;D、由于负数没有平方根,故选项错误.故选:B.A、B、C、D都利用平方根的定义判定即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】B【解析】解:a的倒数是1a ,当a=0时该结论不成立,故说法错误;m的绝对值是|m|,当m≥0时m的绝对值是m,当m<0时m的绝对值是−m,故说法错误;无理数都是无限不循环小数,故说法正确;实数可以分为有理数和无理数,故说法正确.故选:B.①根据0没有倒数即可判定;②由于正数的绝对值是它本身,负数的绝对值是其相反数,由此即可判定;③由于无理数是无限不循环小数,由此即可判定;④根据实数的分类即可判定.本题考查倒数、绝对值、有理数、无理数、实数的概念.“0没有倒数”需要特别注意;绝对值的性质“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”;实数分为有理数和无理数.11.【答案】2+√3或2−√3【解析】解:设B点对应的数是x,∵数轴上A、B两点之间的距离为√3,点A对应的数是2,∴|x−2|=√3,解得x=2+√3或x=2−√3.故答案为:2+√3或2−√3.设B点对应的数是x,再根据两点间的距离公式求出x的值即可.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.【答案】5【解析】解:∵√a +b −3+√ab +4=0,∴{a +b −3=0ab +4=0, 解得{a =4b =−1, ∴√a 2−2ab +b 2=√(a −b)2=|a −b|=|4+1|=5,故答案为5.根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.【答案】−1【解析】解:原式=−(3−√10)+2−√10=−3+√10+2−√10=−1.故答案为−1.利用绝对值的意义得到原式=−(3−√10)+2−√10,然后去括号、合并即可.本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.14.【答案】2【解析】解:∵3<√11<4,∴b =√11−3,∴b(b +6)=(√11−3)×(√11−3+6)=√11−3)×(√11+3)=11−9=2.故答案为:2.求出√11的范围,即可求出b 的值,最后代入求出即可.本题考查了估算无理数大小和二次根式的混合运算的应用,关键是求出b 的值.15.【答案】2−√7【解析】解:根据相反数的定义可知,√7−2的相反数是2−√7.无理数的相反数和有理数的相反数的意义相同,在一个数前面放上“−”,则该数的相反数,由此即可求解. 本题考查了实数相反数的意义,实数相反数的意义与有理数相反数的意义相同.16.【答案】1111;11111111【解析】解:∵11112=1234321,∴√1234321=1111,∵111111112=123456787654321,∴√123456787654321=11111111,故答案为:1111;11111111.根据给出的算式可以发现最中间是几,其算术平方根是几个1的平方进行解答即可.本题考查的是算术平方根的概念和数字的变化规律,根据给出的算式找出规律、根据规律正确解答是解题的关键. 17.【答案】解:(1)方程整理得:x 2=4,开方得:x =±2;(2)开立方得:x +1=−4,解得:x =−5;(3)方程整理得:x 2=4925,开方得:x =±75;(4)开立方得:x −3=−2,解得:x =1.【解析】各方程整理后,利用平方根或立方根定义开方(开立方)即可求出解.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.18.【答案】解:∵√4<√6<√9,∴2<√6<3,∴5+√6的小数部分是a ,则a =5+√6−7=−2+√6,∵4−√6的小数部分是b ,∴b =4−√6−1=3−√6,∴a +b 的值为:−2+√6+3−√6=1.【解析】首先得出√6的取值范围,进而分别得出a ,b 的值,即可得出答案.此题主要考查了估计无理数的方法,得出a ,b 的值是解题关键.19.【答案】解:根据题意知a =±√(−2)2=±2,b =√√16=√4=2,则原式=(±2)2+2×2=4+4=8.【解析】根据平方根和算式平方根得出a 、b 的值,再代入计算可得.本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义.20.【答案】解:甲错误原式=10−4−(11−10)=6−1=5,故甲错误;乙错误原式=a −4−(11−a)=a −4−11+a=5,故乙错误.【解析】根据2=a (a ≥0),可得甲的答案;根据绝对值都是非负数,可得乙的答案.本题考查了算术平方根,注意算术平方根是非负数,绝对值是非负数. 21.【答案】√36,37,−3.14,0,3.1.3., √15,π,0.1010010001…(每两个1之间多一个0), √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),【解析】解:有理数{√36,37,−3.14,0,3.1.3.,…}; 无理数{√15,π,0.1010010001…(每两个1之间多一个0),…}; 实数:{√36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),…}.故答案为:√36,37,−3.14,0,3.1.3.;√15,π,0.1010010001…(每两个1之间多一个0); √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0).整数和分数统称为有理数;无理数是无限不循环小数;有理数和无理数统称为实数.根据对应定义解答即可. 本题主要考查实数的分类,掌握有理数与无理数的概念是解决本题的关键. 22.【答案】√3−1【解析】解:(1)∵点A.B 分别表示1,√3,∴AB =√3−1,即x =√3−1;故答案为:√3−1;(2)∵x =√3−1,∴x(x +2)=(√3−1)(√3−1+2)=(√3−1)(√3+1)=3−1=2,∵2的平方根是±√2,∴x(x +2)的平方根为±√2.(1)根据数轴上两点间的距离求出AB 之间的距离即为x 的值;(2)把x 的值代入所求代数式进行计算即可.本题考查的是实数与数轴,熟知实数与数轴上的点是一一对应关系是解答此题的关键.。

(精校版)人教版七年级下册(新)第六章《实数》单元测试题及答案

(精校版)人教版七年级下册(新)第六章《实数》单元测试题及答案

(直打版)人教版七年级下册(新)第六章《实数》单元测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册(新)第六章《实数》单元测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册(新)第六章《实数》单元测试题及答案(word版可编辑修改)的全部内容。

第六章《实数》单元测试题一、用心填一填,一定能填对:(每空1分,共53分)1. 正数的平方根记作 ,正数的正的平方根记作 ,正数的负的平方根记a a a 作 .2。

如果2=4,则叫作4的 ,记作 .x x 3。

81的平方根是 ,0。

64的算术平方根是 。

5的平方根是 ,0的平方根是 。

4。

的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝491对值是 .5。

的相反数的倒数是 ,这个结果的算术平方根是 .24-6。

当 时,有意义,当 时,=0。

a 1-a a 1-a 7。

如果=5,则= 。

2x x 8。

如果一个正数的一个平方根是m ,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 .9。

当〉0时,表示的 ,当<0时,表示x x -x x 3x -x 的 。

10. 的负的平方根是 ,的平方根是 。

162)5(-11. 的平方根是 。

962+-x x 12. 如果那么是的 ,是的 。

a x =3x a a x 13。

0.064的立方根是 ,的立方根是 ,3的立方根1-是 ,0的立方根是 ,的立方根是 .9-14.是5的 ,一个数的立方根是,则这个数是 。

新人教版初中数学七年级下册第六章《实数》单元测试及答案

新人教版初中数学七年级下册第六章《实数》单元测试及答案

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B. 1C.0或1 D . 0或± 12.以下各式建立的是 ( C )A.=-1B.=± 1C.=- 1D.=± 13.与最靠近的整数是 ( B )A. 0B. 2C. 4D. 54.. 若x- 3 是 4 的平方根,则x 的值为( C)A. 2B.±2C.1或5 D. 165.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个6.以下选项中正确的选项是(C)A. 27 的立方根是± 3B.的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是17.. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C.6.70 D.± 6.708.一个底面是正方形的水池,容积是11.52m 3,池深 2m,则水池底边长是( C ) A. 9.25m B.13.52m C.2.4m D.4.2m9. 比较 2, ,的大小 , 正确的选项是( C )A.2<<B.2<<C.<2<D.<<210. 假如一个实数的算术平方根等于它的立方根,那么知足条件的实数有 (C)A .0 个B . 1 个 om]C .2 个D . 3 个二、填空题11. 3 的算术平方根是 ____ 3____.12. (1) 一个正方体的体积是 216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示 _______9_____ 的立方根;13. 已知 a , b 为两个连续整数,且 a< 15<b ,则 a + b 的值为 7 .14. 已知一个有理数的平方根和立方根相同,则这个数是 ______0______ .15.实数 1- 2的相反数是2 - ,绝对值是 2- .113____3, 415. 0________.16.写出 9到 23之间的全部整数: 三、解答题17. 求以下各数的平方根和算术平方根:(1)1.44 ;解: 1.44 的平方根是 ± 1.44 =±1.2 ,算术平方根是1.44 = 1.2.169(2) 289;169169 13 169 13 解: 289的平方根是 ±289= ±17, 算术平方根是289=17.92(3)( - 11) .解: (-9 )2 的平方根是±(-9)2=±9 ,算术平方根是(-9 )2=9.[]1111111111 18.已知一个正数x 的两个平方根分别是3-5m和 m- 7,求这个正数x 的立方根.由已知得 (3 - 5m)+ (m- 7)=0 ,-4m- 4=0,解得: m=-1.因此 3- 5m=8, m- 7=- 8.2因此 x=( ±8) =64.19.计算:(1)2+3 2-5 2;(2)2(7- 1) +7;431(3) 0.36 ×÷;1218(4)|3-2| +| 3-2| -| 2-1| ;34(5)1-0.64 --8+-|7- 3|.25解: (1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7= 27- 2+7=37- 2.2 1(3)原式= 0.6×11÷2人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10 小题)1.以下式子,表示 4 的平方根的是()A.4B.42C. -4D.±42.若a是无理数,则a 的值能够是()1A.4B. 1C. 2D.93.已知实数a, b 在数轴上对应的点如下图,则以下式子正确的选项是()A. -a<-b B. a+b<0C. |a|<|b|D.a-b>04.实数 3的大小在以下哪两个整数之间,正确的选项是()A.0和1B.1和2C.2和3D.3和 45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10B. 10,11C. 11,12D.12,136.在 -3、 0、 6、 4 这四个数中,最大的数是()A. -3B. 0C. 6D.47.以下说法正确的选项是()A.立方根等于它自己的实数只有0 和 1B .平方根等于它自己的实数是 0C . 1 的算术平方根是± 1D .绝对值等于它自己的实数是正数8.已知 a , b 为两个连续整数,且 a< 13<b,则 a+b 的值为()A .9B . 8C . 7D .69.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .110.有以下说法:①实数与数轴上的点一一对应; ②2- 7的相反数是 7-2;③在1和3 之间的无理数有且只有2, 3, 5, 7这4个;④ 2+3x-4x2是三次三项式;⑤绝对值等于自己的数是正数; 此中错误的个数为()A .1B . 2C . 3D .4二.填空题(共 6 小题)11. 4 的算术平方根是 ,-64 的立方根是 .12.若 m 为整数,且 5<m<10,则 m=13.某个正数的平方根是 x 与 y,3x-y 的立方根是 2,则这个正数是 .14.已知实数 a 、 b 都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个 a 、 b 的值: a=, b=.15.如图,在数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C所表示的数是.16.如图,长方形内有两个相邻的正方形, 面积分别为 4 和 3 ,那么暗影部分的面积为 .三.解答题(共 7 小题)17.求 x 的值:(1)2x 2-32=0;(2)(x-1)3=2743-64|+(-3)23 12518.计算:-|-27919.已知 2 的平方等于 a,2b-1 是 27 的立方根 , ± c-2表示 3 的平方根.( 1)求 a,b,c 的值;( 2)化简对于 x 的多项式: |x-a|-2(x+b)-c, 此中 x < 4.20.正数 x 的两个平方根分别为 3-a 和 2a+7.( 1)求 a 的值;( 2)求 44-x 这个数的立方根.21.定义新运算:对随意实数a 、b ,都有 a △ b=a 2-b 2,比如: (3△ 2)=32 -22=5,求 (1△ 2)△ 4的值.22.如图甲,这是由8 个相同大小的立方体构成的魔方,整体积为 64cm 3.( 1)这个魔方的棱长为 cm;( 2)图甲中暗影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形 ABCD 搁置在数轴上,如图乙所示,使得点A 与数1 重合,则 D 在数轴上表示的数为.23.有两个大小完整相同的长方形 OABC 和 EFGH 重合放在一同,边 OA 、 EF 在数轴上, O 为数轴原点(如图 1),长方形 OABC 的边长 OA 的长为 6 个坐标单位.( 1)数轴上点 A 表示的数为.( 2)将长方形 EFGH 沿数轴所在直线水平挪动①若挪动后的长方形 EFGH 与长方形 OABC 重叠部分的面积恰巧等于长方形OABC 面积的1 ,则3挪动后点 F 在数轴上表示的数为.②若出行 EFGH 向左水平挪动后, D 为线段 AF 的中点,求当长方形EFGH 挪动距离 x 为什么值时, D、 E 两点在数轴上表示的数是互为相反数?答案:1.D2.C3.C4.B5.B6.D7.B8.C9.A10.C11.2,-412.313.414.1,15.2+16.2-317. 解:( 1)∵ 2x2-32=0,∴2x2=32,则 x2=16,因此 x=±4 ;(2)∵(x-1)3=27,∴x-1=3,则 x=4.18.2 5解:原式=3-4+3- 3=-2.19.解:( 1)由题意知 a=22=4,2b-1=3 ,b=2;c-2=3, c=5;(2)∵ x<4,∴|x-a|-2 ( x+b)-c=|x-4|-2 ( x+2) -5=4-x-2x-4-5=-3x-5.20. 解:( 1)∵正数 x 的两个平方根是3-a 和 2a+7,∴3-a+ (2a+7)=0,解得: a=-10( 2)∵ a=-10, ∴ 3-a=13, 2a+7=-13. ∴这个正数的两个平方根是± 13,∴这个正数是 169. 44-x=44-169=-125 , -125 的立方根是 -5.21. 解:( 1△ 2)△ 4 =( 12-22)△ 4=( -3)人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共 10 小题)1.计算: 27 =()A .3B .± 3C .3 3D .332 3, π,此中,无理数共有() 2.以下实数 0,,3A .1 个B .2 个C .3 个D .4 个22)3.若 a =4,b =9,且 ab<0,则 a-b 的值为(A . -2B .± 5C .5D .-54.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .15.给出以下说法:① -2 是 4 的平方根;②9 的算术平方根是9;③327 =-3;④ 2 的平方根是2 .此中正确的说法有()A .0 个B .1 个C .2 个D .3 个6.以下变形正确的选项是( )A . 17=±4B . 3 27 =±3C . ( 4)2 =-4D . ± 121 =± 119 37.一个数的立方根是 4 ,这个数的平方根是( )A .8B . -8C .± 8D .± 48.实数 a 、 b 在数轴上的对应点的地点如下图,则正确的结论是( ) A . b>-2B . -b<0C . -a>bD .a>-b9.在数 -3,-(-2),0, 9 中,大小在 -1 和 2 之间的数是()A . -3B . -(-2)C .0D . 910.如图将 1、2 、3 、 6 按以下方式摆列.若规定(m,n)表示第 m 排从左向右第n 个数,则 (5,4)与 (15,8)表示的两数之积是( )A .1B . 2C . 6D .3 2二.填空题(共 6 小题)11.4的平方根是, 1 的立方根是,16 的算术平方根是.912. 16 的算术平方根与 -8 的立方根之和是.13.一个正方体,它的体积是棱长为 2cm 的正方体的体积的 8 倍,则这个正方体的棱长是cm .14.对于正实数 a , b 作新定义: a ⊙ b=2 ab, 若 25 ⊙ x 2=4,则 x 的值为 .15.|15 4|=.16.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a=.三.解答题(共7 小题)4 | 364 |( 3)2 3 12517.计算:27918.求以下各式中x 的值:2(1)9x -4=0;(2)(3x-1)3 +64=0.31和 a+13,求这个数的立方根.19.已知一个数的两个平方根分别是220.已知 -8 的平方等于a, b 的平方等于121,c 的立方等于 -27,d 的算术平方根为5.(1)写出 a,b,c,d 的值;(2)求 d+3c 的平方根;(3)求代数式 a-b2+c+d 的值.21.有一个边长为 9cm 的正方形和一个长为 24cm 、宽为 6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.阅读达成问题:数轴上,已知点A、 B、 C.此中, C 为线段 AB 的中点:AB 的长为,C 点表示的数(1)如图,点 A 表示的数为 -1,点 B 表示的数为3,则线段为;(2)若点 A 表示的数为 -1,C 点表示的数为2,则点 B。

精选初中数学七年级下册第六章《实数》单元检测试卷(解析版)

精选初中数学七年级下册第六章《实数》单元检测试卷(解析版)

人教版七年级数学下册第六章实数单元检测题一、选择题。

(每小题3分,共30分)1.下列选项中正确的是()A.27的立方根是±3B.16的平方根是±4C.9的算术平方根是3D.立方根等于算术平方根的数是12.下列各数中是无理数的为()A. 2 B.0 C.12017D.-13. 已知m=4+3,则以下对m的估算正确的() A.2<m<3 B.3<m<4C.4<m<5 D.5<m<64.比较4,17,363的大小,正确的是()A.4<17<363 B.4<363<17C.363<4<17 D.17<363<45.如图6-X-1所示,实数a=3,则在数轴上表示-a的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上6.下列说法中,正确的有( )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个7.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A.0个B.1个om]C.2个D.3个8.已知5+11的整数部分为a,5-11的小数部分为b,则a+b的值为( )A.10 B.211C.11-12 D.12-11[9.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为()A.5 B.6 C.7 D.810. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题。

(每空3分,共15分)1.请写出两个你喜欢的无理数,使它们的和为有理数,你写出的两个无理数是________________.2.化简-(5+7)-|5-7|的结果为________.3.a +3的立方根是2,3a +b -1的平方根是±4,则a +2b 的算术平方根是________.4.规定用符号[m]表示一个实数m 的整数部分,例如:⎣⎢⎡⎦⎥⎤23=0,[3.14]=3.按此规定[10+1]的值为________.5..已知数轴上有A ,B 两点,且这两点之间的距离为4 2,若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为________.三、计算题(10分)(1)2+3 2-5 2;(2)|3-2|+|3-2|-|2-1|;四、解下列方程:(10分)(1)(x -2)3=64;(2)4(3x+1)2-1=0.五、综合题(共35分)1.(8分)在数轴上表示a,b,c三个数的点的位置如图6-X-2所示.化简:|c|-(c+a)2+b2-|a-b|.图6-X-22.(8分)已知一个正数x的两个平方根分别是2a-3和5-a,求a和x的值.3.(9分)已知A=m-2n-m+3是n-m+3的算术平方根,B=2n-17m-12n是7m-12n的立方根,求B+A的平方根.4.(10分)如图所示,长方形内相邻两个正方形的面积分别为2和4,求长方形内阴影部分的面积.参考答案一、选择题。

人教版七年级数学下册第六章《实数 》单元同步检测试试题(含答案)

人教版七年级数学下册第六章《实数 》单元同步检测试试题(含答案)

第六章《实数》单元检测题题号 一 二三总分21 22 23 24 25 26 27 28 分数一、选择题(第小题3分,共30分)1.在-1.732,,π,3.,2+,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( ) A.5 B.2 C.3 D.42. .已知:|a|=5,=7,且|a+b|=a+b ,则a-b 的值为( ) A.2或12 B.2或-12 C.-2或12 D.-2或-123.下列说法中正确的是( )A .若a 为实数,则a ≥0B .若a 为实数,则a 的倒数为C .若x ,y 为实数,且x=y ,则D .若a 为实数,则a 2≥0 4. 实数a ,b 在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b 5.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 6.立方根等于3的数是( )A.9B. ±9C. 27D.±277.在数轴上表示5和-3的两点间的距离是( ) A.5+3 B. 5-3 C .-(5+3) D. 3-58.满足-3<x <5的整数是( )A .-2,-1,0,1,2,3B .-1,0,1,2,3C .-2,-1,0,1,2,D .-1,0,1,2 9.当14+a 的值为最小时,a 的取值为( ) A .-1 B. 0 C. 41-D. 1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为( ) A.3 B.7 C.3或7 D.1或7 二、填空题(每小题3分,共30分)11.算术平方根等于本身的实数是 . 12.化简:()23π-= .13.94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍. 15.估计60的大小约等于 或 .(误差小于1) 16.若()03212=-+-+-z y x ,则x +y +z = .17.我们知道53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444ΛΛ+(2001个3,2001个4)= .18.比较下列实数的大小(填上>、<或=).;②215- 21;③53. 19.若实数a 、b 满意足0=+b b a a ,则abab = . 20.实a 、b 在数轴上的位置如图所示,则化简()2a b b a -++= .三、解答题(共40分)21.(4分)求下列各数的平方根和算术平方根: (1)1; (2)410-;22.(4分)求下列各数的立方根: (1)21627; (2)610--;23.(8分)化简:(1)5312-⨯; (2)8145032--24.(8分) 解方程:(1)42x =25 (2)()027.07.03=-x .25.(8分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.(8分)已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?参考答案1. A ;2.B ;3.D ;4.C ;5.B ;6.C ;7.A ;8.D ;9.C ;10.D11.0.1;12. π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.2011个5;18. <,>,<; 19.-1;20. a 2-;21.(1) ±1,1;(2)±210-,210-;22. (1)21,(2)210--;23.(1)1,(2)22 ;24.(1)±25,(2)1;25.0;26.解:解:设截得的每个小正方体的棱长为x cm .依题意,得1 000-8x 3=488. ∴8x 3=512. ∴x =4.答:截得的每个小正方体的棱长是4 cm .。

2021年(最新)七年级下册第六章《实数》单元测试卷(附答案)

2021年(最新)七年级下册第六章《实数》单元测试卷(附答案)

七年级下册第六章《实数》单元测试卷满分:150分 考试用时:120分钟班级 姓名 得分第Ⅰ卷一、选择题(本大题共12小题,共48.0分)1. 81的平方根是( )A. −9B. 9C. ±9D. ±32. 下列各式中正确的是( )A. √4=±2B. √(−3)2=−3C. √43=2D. √8−√2=√23. 下列语句:①无限小数不能转化为分数;②无理数分为正无理数、零、负无理数;③有限小数是有理数;④无限小数是无理数.其中正确的有( )A. 0个B. 1个C. 2个D. 3个4. |3−π|+√(π−4)2的结果是( )A. 1B. −1C. 7D. −75. 若√m 3+√n 3=0,则m 与n 的关系是( ).A. m =n =0B. m =nC. m =−nD. m =1n 6. 已知正方体的表面积是12dm 2,则这个正方体的棱长为( )A. 1dmB. √2dmC. √6dmD. 3dm7. 若有理数x ,y 满足y =√x −2+√2−x +1,则x −y 的平方根是( )A. 1B. ±1C. −1D. 无法确定 8. 下列说法错误的是( )A. √a 3中的a 可以是正数、负数或零B. √a 中的a 不可以是负数C. 数a 的平方根有两个,它们互为相反数D. 数a 的立方根只有一个9.有一个数值转换器,原理如下.当输入的x为4时,输出的y是()A. 4B. 2C. √2D. −√210.如图,在数轴上,点A、点C到点B的距离相等,A、B两点表示的实数分别是−√3和1,则点C表示的实数是()A. 1+√3B. 2+√3C. 2√3−1D. 2√3+111.下列说法正确的是()A. ±3都是27的立方根;B. √64的立方根是2;3; D. √4的算术平方根是2.C. √(−2)2等于√(−2)312.将一组数√2,2,√6,√8,√10,…,√40,按下列方式进行排列:√2,2,√6,√8,√10;√12,√14,4,√18,√20;...若2的位置记为(1,2),√12的位置记为(2,1),则√38这个数的位置记为()A.(5,4)B. (4,4)C. (4,5)D. (3,5)第Ⅱ卷二、填空题(本大题共4小题,共16.0分)13.小明学习了《实数》这一章的知识后,设计了如下一个运算程序:按照上述运算程序,当x=8时,y=______.14.对于实数m,n,定义运算m∗n=(m+2)2−2n.若2∗a=4∗(−3),则a=.15.如图,数轴上A,B两点表示的数分别为√2和5.1,则A,B两点之间表示整数的点共有个.16. 小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的盒子的体积大218 m 3”,则小明做的盒子的棱长为 cm .三、解答题(本大题共8小题,共86.0分)17. (8分)解方程:(1)2x 2=18(2)3(x +1)3+81=018. (8分)已知a ,b 满足如下两个条件:①一个正数x 的两个不同的平方根是2a −3与1−b ;②√3a −23+√83=0.求a ,b ,x 的值.19. (10分)当a =10时,求√(a −4)2−√(a −11)2的值,有甲、乙同学分别这样解答:甲:原式=√(10−4)2−√(10−11)2,=10−4−(10−11),=7.乙:原式=|a −4|−|a −11|,当a =10时,a −4=10−4=6>0,a −11=10−11=−1<0,所以,原式=a −4−(a −11)=7.以上两人解答对吗?为什么?20.(10分)如图,一根细线上端固定,下端系一个小重物,让这个小重物来回自由摆动一次所用的时间t(单位:秒)与细线的长,当细线L的长度为0.5m度L(单位:m)之间满足关系t=2π√l10时,小重物来回摆动一次所用的时间是多少?(精确到0.1秒)21.(12分)如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.请你设计出一个合理的方案来围成满足要求的长方形场地.22.(12分)有一块面积为625cm2的正方形木板,李师傅打算沿着该正方形边的方向裁出一个面积为432cm2的长方形桌面,并且它的长宽之比为4:3,你认为他能做到吗?如果能,请计算出桌面的长和宽;如果不能,请说明理由。

人教版七年级下册数学第六章实数 单元测试训练卷含答案

人教版七年级下册数学第六章实数 单元测试训练卷含答案

22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm

人教版七年级数学下册第六章《实数》单元测试(含答案)

人教版七年级数学下册第六章《实数》单元测试(含答案)

人教版七年级数学下册第六章《实数》单元测试一、单项选择题(共 11 题,共 52 分) 1.下列四个实数中,是无理数的是( )A.0 B.C.—2D.2.下列结论一定正确的是( )A.16 的立方根是 B. 没有立方根 C.立方根等于本身的数是 0 D. 3.下列说法中正确的是( ) A.带根号的数都是无理数 B.无限小数都是无理数 C.无理数是无限不循环小数 D.无理数是开方开不尽的数 4.对任意实数 a,下列等式一定成立的是( )A.B.C.D.5.下列等式一定成立的是( )A.B.C.D.6.下列各数中,界于 6 和 7 之间的数是( )A.B.C.D.7.若 有意义,则 x 的取值范围是( )A.x≥1B.x>1 C.x≤1 D.x<18.的大小顺序是( )A.B.C.D.9.实数 a 在数轴上对应点的位置如图所示,则化简∣a+3∣的结果是( )A.a+3B.C.-a+3 D.-a-310.若 a、b 均为正整数,且 a> ,b< ,则 a+b 的最小值是( ) A.3 B.4 C.5 D.611.若,则 a+b 所有可能的值为( )A.8 B.8 或 2 C.8 或-2 D.二、填空题(共 6 题,共 24 分)12.在中,其中___________________ 是无理数;___________________是有理数.13. 的相反数是__________________,绝对值是__________________.14.15. 比较下列各数的大小:16.已知_______________________ .17.如图所示的数轴上,点 B 与点 C 关于点 A 对称,A、B 两点对应的实数分别是,则点 C 所对应的实数是.三、解答题(共 6 题,共 24 分) 18.计算: (1)(2) 19.求下列各式中 x 的值: (1)49x2=25 (2) 3(x-2)2 =9 20.一个正数 x 的平方根是 2a-3 与 5-a,求 a 和 x 的值.21.已知实数 a、b 分别是的整数和小数部分,求式子:的值.22.已知 23.如图所示,(1)两个边长为 1 个单位长的正方形沿对角线剪开所得的四个三角形能 拼 成 一 个 较 大 的 正 方 形 , 设 这 个 大 的 正 方 形 的 边 长 为 x ( x>0 ) , 则 可 得 方程, 解 得 x=,所以小正方形的对角线的长是。

精选初中数学七年级下册第六章《实数》单元测试(含答案)

精选初中数学七年级下册第六章《实数》单元测试(含答案)

人教版七年级下册第六章实数尖子生培优测试试卷一、单选题(共10题;共30分)1.如图,在数轴上表示无理数的点落在( )A. 线段AB上B. 线段BC上C. 线段CD上D. 线段DE 上2.在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A. 2个B. 3个C. 4个 D 5个3.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1B. x2+1C. +1D.4.下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A. 1B. 2C. 3D. 45.下列说法中,不正确的是( ).A. 3是(﹣3)2的算术平方根B. ±3是(﹣3)2的平方根C. ﹣3是(﹣3)2的算术平方根D. ﹣3是(﹣3)3的立方根6.的算术平方根是()A. 4B.C. 2D.7.如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()A. a+b>0B. ab>0C.D. a+ab-b<08.已知一个正数的两个平方根分别是a+3和2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定二、填空题(共6题;共24分)11.的平方根是________,的算术平方根是________,-216的立方根是________.12.是9的算术平方根,而的算术平方根是4,则= ________.13.已知:(x2+y2+1)2﹣4=0,则x2+y2=________.14.实数a在数轴上的位置如图,则|a﹣3|=________.15.若四个有理数同时满足:,,,则这四个数从小到大的顺序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共1题;共6分)17.计算:四、解答题(共6题;共40分)18.一个数的算术平方根为2M-6,平方根为±(M-2),求这个数.19.某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?20.a,b,c在数轴上的对应点如图所示,化简+|c﹣b|﹣()3.21.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.23.求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.答案一、单选题1. C2. B3. D4.A5.C6.C7.C8. D9. B 10. C二、填空题11.±;;-6 12.19 13.1 14.3﹣a 15.16.﹣5三、计算题17. 解:原式=5+3-6=2四、解答题18.解:应分两种情况:①2M-6=M-2,解得M=4,∴2M-6=8-6=2,22=4,② 2M-6=-(M-2),解得M=,∴ 2M-6=-6=(不合题意,舍去),故这个数是4.19.解:把d=32,f=2代入v=16 ,v=16 =128(km/h)∵128>80,∴肇事汽车当时的速度超出了规定的速度20.解:根据数轴上点的位置得:a<b<0<c,且|a|>|b|>|c|,∴a﹣b<0,c﹣b>0,a+c<0,则原式=|a﹣b|+|c﹣b|﹣(a+c)=b﹣a+c﹣b﹣a﹣c=﹣2a21.解:∵<,<,∴a= ﹣2,b= ﹣3,∴= ﹣2+ ﹣3﹣= ﹣522.解:∵a△b=a×b﹣a+b+1,∴(﹣3)△=(﹣3)×﹣(﹣3)++1=4﹣2,△(﹣3)=×(﹣3)﹣+(﹣3)+1=﹣4﹣2,∵4﹣2>﹣4﹣2,∴﹣3△>△(﹣3).23.解:(1)∵2x3=﹣16,∴x2=﹣8,∴x=﹣2.(2)∵(x﹣1)2=4,∴x﹣1=±2,∴x=﹣1或3.人教版七年级数学下册第六章实数单元综合检测卷一、选择题(每小题3分,共30分)1、若的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数2、下列各组数中,互为相反数的组是( ) A 、-2与 B 、-2和 C 、-与2 D 、︱-2︱和23、下列说法不正确的是( ) A 、的平方根是B 、-9是81的一个平方根C 、0.2的算术平方根是0.04D 、-27的立方根是-3 4、下列运算中,错误的是 ( ) ①,②,③ ④A 、 1个B 、 2个C 、 3个D 、 4个 5、下列说法正确的是( ) A 、 有理数都是有限小数 B 、 无限小数都是无理数 C 、 无理数都是无限小数 D 、有限小数是无理数6、 若m 是169的算术平方根,n 是121的负的平方根,则(+)2的平方根为( )A 、 2B 、 4C 、±2D 、 ±4 7、若 (k 是整数),则k =( )A 、 6B 、7C 、8D 、9 8、下列各式成立的是( ) A 、B 、C 、D 、9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A 、2B 、8C 、3D 、2a 2)2(-38-2125115±1251144251=4)4(2±=-3311-=-2095141251161=+=+1k k <<+10、若均为正整数,且,,则的最小值是( )A 、3B 、4C 、5D 、6 二、填空题(每小题3分,共24分)11、 4的平方根是_________;4的算术平方根是__________. 12、比较大小:________.(填“>”,“<”或“=”)13、已知5-a +3+b ,那么.14、在中,________是无理数.15、的立方根的平方是________. 16、 若5+的小数部分是,5-的小数部分是b ,则+5b = . 17、 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18、若、互为相反数,、互为负倒数,则=_______.三、解答题(共46分)19.(6分)计算:231(2)2⎛⎫-- ⎪⎝⎭20. (8分)求下列各式中的x.(1)(x-2)2-4=0; (2)(x+3)3+27=0.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.22.把下列各数填入相应的大括号内.32,-32,3-8,0.5,2π,3.141 592 65,-|-25|,1.103 030 030 003…(两个3之间依次多一个0). ①有理数集合{ …}; ②无理数集合{ …}; ③正实数集合{ …};a b c d④负实数集合{ …}.23.(6分)已知m 是的整数部分,n是的小数部分,求m -n 的值。

新人教版初中数学七年级下册第六章《实数》单元测试卷及答案

新人教版初中数学七年级下册第六章《实数》单元测试卷及答案

人教版七年级数学下册第六章实数单元综合能力提高测试卷一、选择题( 每题 3 分,共30分)1.以下选项中正确的选项是()A. 27的立方根是± 3B.16 的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是12.在实数﹣ 0.8, 2015 ,﹣223),四个数中,是无理数的是(73A .﹣ 0.8B. 2015223 C.﹣D.733.( -1)2的平方根是()51B. -111A.25C.D.±25554.以下四个数中的负数是()A.﹣ 22B.( 1)2C.(﹣ 2)2D. |﹣2| 5. | 6 -3|+|2- 6 |的值为()A . 5B. 5-2 6C.1D. 2 6 -16.在以下各式中正确的选项是().( 2)2=-2.9=3.16=8.22=2A B C D 7.一个自然数 a 的算术平方根为x,则 a+1 的立方根是().3x 1B .3( x 1)2.3 a21D.3 x21A C8.以下结论中正确的个数为()( 1)零是绝对值最小的实数;( 2)数轴上所有的点都表示实数;( 3)无理数就是带根号的数;(4)-1的立方根为±1;273A.1 个B.2 个C.3 个D.4个9.若x 3 =3,则(x+3)2的值是()A. 81B. 27C. 9D. 310.如有理数 a 和 b 在数轴上所表示的点分别在原点的右侧和左侧,则b2-︱ a- b︱等于()A. a B.- a C. 2b+ a D.2b -a二、填空 (每小 3分,共30 分)11.在以下各数中无理数有个。

3 2 ,1,7, -, -3, 2 ,20, -5,38,25, 0, 0.5757757775 ⋯⋯6239(相两个 5 之的7 的个数逐次加1).12.一个数的算平方根等于它自己,个数是__________。

13.假如 x-4 是 16 的算平方根,那么x+ 4 的 ________.14.比大小:103;15.若25.36 =5.036,253.6 =15.906,253600= __________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 +3 2 —5 2
…… …… ……

A.3a+b-c B.-a-3b+3c C.a+3b-3c D.2a 6.4 14 、 226 、15 三个数的大小关系是( ) A.4 14 <15< 226 B. 226 <15<4 14 C.4 14 < 226 <15 D. 226 <4 14 <15 7、下列说法正确的是( ) (A)任何一个实数都可以用分数表示 (B)无理数化为小数形式后一定是无限小数 (C)无理数与无理数的和是无理数 (D)有理数与无理数的积是无理数
(1)观察上面的解答过程,请写出 5、
1 n 1 n
=

12 75 8 2
2 6、 ( 3 2 )( 2 3 ) 6 3
(2)利用上面的解法,请化简: 1 1 1 1 1 1 2 2 3 3 4 98 99 99 100
五、 分)如图,两个边长是 2 的正方形: (5 1、将这两个正方形适当剪拼成一个正方形,请画出示意图。 2、求拼出的正方形的边长。
六、 分)易拉罐的形状是圆柱,其底面的直径为 7cm,将 6 个这样的易拉 (6 罐如图堆放,求 6 个易拉罐所占的宽度与高度。
(a b c) 2 -2|c-a-b|的结果为(

8、如图,在方格纸中, 假设每个小正方形的面积为 2, 则图中的四条线段中长度是 有理数的有( )条。 (A)1 (B)2 (C)3 (D)4 9.估算 28 7 的值在 A. 7 和 8 之间 B. 6 和 7 之间 C. 3 和 4 之间 D. 2 和 3 之间 二、填空题(每题 3 分,共 27 分) 10. 25 的算术平方根是______. 11.如果 x 3 =2,那么(x+3)2=______. 12.若 2a 2 与|b+2|是互为相反数,则(a-b)2=______. 13.若 x、y 都是实数,且 y= x 3 + 3 x +8,求 x+3y 的立方根为 . 14、一个正方形的面积扩大为原来的 100 倍,则其边长扩大为原来 的 倍。 15、算术平方根等于本身的数有 。 16、若 4 a 10 ,则满足条件的整数 a 有 个。 17、已知某数的平方根为 a 3 和 3a 15 ,则这个数是 18.点 A 在数轴上和原点相距 5 个单位,点 B 在数轴上和原点相距 3 个单 位,且点 B 在点 A 左边,则 AB 之间的距离为________ 三、将下列实数填在相应的集合中(5 分) 1 13 , ,0.7171171117…, 0.34 0 , 3 , (5) 2 , , 3 20 , , 3 7 整数集合 正无理数集合 有理数集合 四、计算(每小题 5 分,共 30 分) 1、
2、
6(
1 - 6) 6
3、 (5) 2 1
9 25
4、 27
6 2
七、选作:阅读下列解题过程:
1 6 5 1 ( 6 5 ) ( 6 5 )( 6 5 )
1 5 4

1 ( 5 4 ) ( 5 4 )( 5 4 )
5 4,
6 5 ,请回答下列回题:

题 目 学 校 设计 来源 学习 目标 学习 方法 星火 一中




课时 1 数学
第六章实数单元测试 教 者 刘占国 年 级 七年
学 科
自我设计
教学 时间
2013 年 4 月 9 日
通过测试,及时掌握学生对新知识的接受以及理解情况 测试
一、选择题(每题 3 分,共 27 分) 1、如果 x 是 0.01 的算术平方根,则 x=( ) (A)0.0001 (B)±0.0001 (C)0.1 (D)±0.1 2.在实数 0.3,0, 7 , ,0.123456…中,无理数的个数是( ) 2 A.2 B.3 C.4 D.5 4 3.化简 (2) 的结果是( ) A.-4 B.4 C.±4 D.无意义 4.下列各式中,无意义的是( ) A. 32 试题 内容 B. 3 (3) 3 C. (3) 2 D. 10 3 5.在 Rt△ABC 中,∠C=90°,c 为斜边,a、b 为直角边,则化简
相关文档
最新文档