信号检测与估计试题——答案(不完整版)

合集下载

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答

T x 2 (t )dt −2 A
0
Tx(t
0
)sin

0
t

)dt
+
A
2
T 0
sin
2

0
t

)dt
⎟⎞ ⎠
由于 ∫0Tsin 2 (ω0t
+ θ )dt
=
1 2
∫0T(1 − cos 2(ω0t
+ θ ))dt
=
T 2
,得到
( ) ∫ ∫ f
x A,θ
−1
= Fe N0
T x 2 (t )dt 2 A
ω0
ω0
s(t
)
=
⎪ ⎨
A

⎪ ⎪⎩
A(1
+
cos
ω0t)
− 2mπ < t ≤ 2mπ
ω0 2mπ
<t

(2ωm0 +1)π
ω0
ω0
试证明时延τ
的无偏估计量的方差为
σ
2 τˆ

3 + 4m
(2E / N0 )ω02
。其中 E 为信号能量。
解:略
9.4 接收信号 x(t) = s(t) + n(t),s(t)的到达有时延τ ,求时延τ 的无偏估计量τˆ 的最小方差。其中 n(t)
⎤ ⎥⎦
∫ ∫ ∫ ∫ [ ] = 4
N
2 0
T / 2 ∂s(t −τ )
−T / 2 ∂τ
T /2
E
−T / 2
n(t )n(u )
∂s(u −τ ) dudt

信号检测与估计试题——答案(不完整版)

信号检测与估计试题——答案(不完整版)

一、概念:1. 匹配滤波器。

概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。

应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。

在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。

2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。

我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。

解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。

考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。

对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。

()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。

要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。

信号检测与估计答案1

信号检测与估计答案1

信号检测与估计答案15-2 若观测方程为i i x s n =+()1,2,,i N =,其中信号()2~0,s s N σ,噪声()()2~0,1,2,,i n n N i N σ=独立同分布,且信号与噪声满足{}0i E sn =。

求s 的最大后验概率估计ˆMAP s。

解:依题意,以信号s 为条件的观测样本的概率密度函数为()()()2112221,,|exp 22N i i N Nnnx s f x x s σπσ=⎡⎤-⎢⎥⎢⎥=-⎢⎥⎢⎥⎣⎦∑信号s 的概率密度函数为()222ss f s σ⎛⎫=- ⎪⎝⎭则由上面两式可得()()()()()211222212221ln ,,|ln exp 221ln 22N i i N N nn Ni i N n n x s f x x s ss x s s σπσσπσ==⎧⎫⎡⎤⎧⎫-⎪⎪⎢⎥⎪⎪∂∂⎪⎪⎪⎪⎢⎥=-⎨⎨⎬⎬∂∂⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭⎡⎤-⎢⎥∂⎢⎥=-∂⎢⎥⎢⎥⎣⎦∑∑()22222ln ln 22s s s s f s s s s s s⎧⎫⎡⎤⎛⎫∂∂⎪⎪=-⎥⎨⎬ ⎪∂∂⎥⎝⎭⎪⎪⎦⎩⎭⎡⎤∂=-⎢⎥∂⎢⎥⎣⎦=-σσσ最大后验概率准则为()ˆmax |MAP f θθθ=x ,即()ˆ|0MAPf θθθθ=∂⎡⎤=⎢⎥∂⎣⎦x ,又可表示为()()ˆln |ln 0MAPf f θθθθθθ=∂∂⎡⎤+=⎢⎥∂∂⎣⎦x ,将之前结果带入其中可得2221ˆNs MAP ii ns sx N σσσ==+∑ 。

5-4已知观测信号0()cos()()x t A t n t ωθ=++(0)t T ≤≤,式子中()n t 是零均值,功率谱为2N 的高斯白噪声,θ是在[0,2)π上均匀分布的随机变量,求A 的最大似然估计和估计量的均方误差。

解:0()cos()()x t A t n t ωθ=++()x t 的似然函数为:020002220000022000000()cos()()1(|,)exp [()cos()]1exp [()2()cos()cos ()]12exp [()()cos()2TTTTTT x t A t n t f x A F x t A t dt N F x t dt x t A t dt At dt N A A T F x t dt x t t dt N N N ωθθωθωθωθωθ=++⎧⎫=⋅--+⎨⎬⎩⎭⎧⎫=⋅--+++⎨⎬⎩⎭⎧⎫=⋅-++-⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰因为1(),022f θθππ=≤≤ 所以202200000(|)(|,)()12exp{}exp [()()2Tf x A f x A f d A TAq F x t dt I N N N πθθθ=⎧⎫=⋅--⎨⎬⎩⎭⎰⎰ 其中22200002200000()sin ()cos 12ln (|)ln ()ln ()2T TT q x t tdt x t tdt A T Aqf x A F x t dt I N N N ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦=--+⎰⎰⎰令000ln (|)20()0f x A AT AqI A N A N ∂∂=⇒-++∂∂ (1)假设SNR,即02Aq N 足够大,则00022()Aq AqI N N ≈0022ˆ(1)0MLAT q q A N N T⇒-+=⇒=由2220000()sin ()cos T Tq x t tdt x t tdt ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰知22202221()exp(())()242T T TqA T qATf q q I σσσ=-+所以222323240001()2T T qq x x q T q E qf q dq AT e dq e AT x e dx AT σσσ=-+∞+∞+∞-⎛⎫−−−→ ⎪==←−−− ⎪⎝⎭⎰⎰⎰ 所以221ˆ()()2MLE A E q AT A T T ==⋅= (无偏估计) 200024ˆvar(),var()44T ML N T N T N q A T T σ====5-11. 假定已知信号112()cos cos 2...cos p s t a t a t a p t ωωω=+++212()sin sin 2...sin p s t b t b t b p tωωω=+++观测信号12()()()()x t s t s t n t =++,()n t 是均值为0、均方差为1的高斯白噪声。

信号检测与估计理论(复习题解)

信号检测与估计理论(复习题解)

H1)

s2 1k

s1k s0k
k 1
k 1
第3章 信号状态的统计检测理论 例题解答
Var(l |1H1) Var(l | H
)

E
N

k 1
nk
s1k

N k 1
nk
s0k
2



N
2
2
s n
1k
k1

N
s2 0k k 1
信号检测与估计理论
内容提要 例题解答
第1章 信号检测与估计概论 信号的随机性及其统计处理方法。
内容提要
第1章 信号检测与估计概论

例题解答
第2章 信号检测与估计理论的基础知识 内容提要
一. 离散随机信号
1. 概率密度函数p(x)及特性: 非负,全域积分等于1,落入[a,b]间的概率。
2. 统计平均量:均值,方差。
解:似然函数为
p(x
|
H0
)


1
2
2 n
N

2
exp
N

k 1
( xk
s0k
2
2 n
)2

p(x
|
H1)


1
2
2 n
N

2
exp
N

k 1
(xk s1k
2
2 n
)2

第3章 信号状态的统计检测理论 例题解答
其中,观测噪声n服从对称三角分布,如图3.1(a)所示。
若似然比检测门限 1,求最佳判决式,图示判决域,计算P(H1 | H0 )。

信号检测与估计理论(复习题解)-精选文档

信号检测与估计理论(复习题解)-精选文档


a ba 0 图 2. 1 (b)
ab y

2 b y x
2 2 y 4 x
第2章 信号检测与估计理论的基础知识 例题解答
例 2 . 3 设连续随机信号 x ( t ) a cos( t ), 其振幅 a 和频率 已知 相位 在 [ , ) 范围内均匀分布。分析 该信号的广义平稳 并求其自 差函数 。 解 : 分析该信号是否满足广 义平稳的条件。 信号的均值 ( t ) E a cos( t ) a cos( t ) p ( ) d x
2 1 ( y b ) / 2 1 x p ( y ) exp 2 2 2 2 2 x x 1 2
2 1 y ( 2 b ) x exp 2 2 8 8 x x 1 2
二. 离散随机信号矢量
1. 概率密度函数描述 。 2. 统计平均量:均值矢量 , 协方差, 协方差矩阵。 3. 各分量之间的互不相关 性和相互统计独立性及 关系。 4. 高斯离散随机信号矢量 的概率密度函数及特 点: x ~ N ( μ , C ), 互不相关等价于相互统 计独立 , 独立同分布 x x

E ( x b ) b
y
2 y
2 2 22 E ( y b ) E ( x b b ) E ( x 0 ) a / 6
第2章 信号检测与估计理论的基础知识 例题解答
当 a b 2 a 时, p ( y ) 的函数曲线如图 2 . 1 (b)所示 。 p ( x) p( y ) 1/ a 1/ a
第 1章
信号检测与估计概论

信号检测与估计试题及答案

信号检测与估计试题及答案
P( x) 1 2 1 exp ln x , x 0 , X1 , X 2 ,..., X N 是 X 的 N 个样本值。 2 2
(1). 若 为常数,求 的最大似然估计。
ˆ 1 N ln xiБайду номын сангаасN i 1
(2). 判断 的最大似然估计是否是有效估计? 因为
ˆ HX B ,其中 H C M N , B C M 1
(1). 用最小均方误差准则确定矩阵 H , B 。 (用 , x 的一阶和二阶统计量表 示。 )
H cov( , x ) cov1 ( x , x ) B E ( ) cov( , x ) cov 1 ( x , x ) E ( x)
2 ) ,做 H1 判决,反之做 H 0 判决。 ln 2 3
2
4. 求解下列问题 (1). 什么是序贯检测?
A1 , D1 ( x) A0 , D0 other , more obervation
(2). 对二元检测 P D1 H 0 , P D0 H1 若,推导瓦尔特序贯检测的门
1 (2). 若是线性调频信号, 即 s1 (t ) A1 cos(1t t 2 ) 0 t T , 2 / 1 T , 2
是常数,再求 Pe 结果相同。
3. 设有两种假设分别为:
H 0 : P0 ( x)
x2 1 exp 2 2 2 1 x A, A 0 H1 : P 1 ( x) 2 A 0 x >A
(2). ˆ 是否无偏
是无偏估计。
7. 求解下列问题。 (1). 什么是卡尔曼滤波,写出卡尔曼滤波的状态方程,观测方程和滤波方程

《信号检测与估计》第十二章习题解答

《信号检测与估计》第十二章习题解答

《信号检测与估计》第十二章习题解答12.1 采用下式给出的有偏自相关函数的定义,并加窗,得到BT 谱估计器:()()()()()()⎪⎩⎪⎨⎧−−−−−=−+=+=∑∗1,,2,11ˆ1,,1,01ˆL L N N m m R N m m n x n x N m R X X ()⎪⎩⎪⎨⎧−≤=其它011N m m W N()()()()∑−−−=−⋅⋅=11e ˆˆN N m m j X N X m R m W G ωω证明该BT 估计器与周期图相同。

解:()()()()()()()()()()()()()()()()()211111111e 1e e 1e e 1e 1e ˆˆωωωωωωωωj N N m n m j nj N N m nj n m j N N m m j N N N m m j X N XX N m n x n x N m n x n x N m n x n x N m W m R m W G =⋅+⋅⋅=⋅⋅+=⋅⎥⎦⎤⎢⎣⎡+⋅=⋅⋅=∑∑∑∑∑∑∑−−−=+−−∗−−−=−+−∗−−−=−∗−−−=− 12.2 设自相关函数()3,2,1,0,==m m R m X ρ。

试用Levinson-Durbin 递推法求解AR (3)模型参量。

解: ()()ρ−=−=0111X X R R a 110=a()()221121101ρσ−=⋅−=X R a ()()012211122=+−=σX X R a R a ρ−=⋅+=11221121a a a a ()2212222211ρσσ−=⋅−=a因此模型为一阶 ()()[]()012322222133=⋅+−=σX X X R a R a R a021332232=⋅+=a a a aρ−=⋅+=22332131a a a a()2222332311ρσσ−=⋅−=a 所以模型为()()()n w n x n x +−=1ρ12.3 设5=N 的数据记录为:10=x ,21=x ,32=x ,43=x ,54=x ,AR 模型的阶数3=p 试用Levinson-Durbin 递推法求模型参量。

《信号检测与估计》第四章习题解答

《信号检测与估计》第四章习题解答

(3sinω0T

2sin3ω0T
)
则判决规则变为
H1
I
> <
β
H0
两种错误判决的概率分别为
+∞
∫ P(D1 | H0 ) = β f (I | H0 )dI
《信号检测与估计》习题解答
β
∫ P(D0 | H1) = −∞ f (I | H1)dI
平均错误概率 Pe 为
∫ ∫ Pe
= P(H0 )P(D1 | H0 ) + P(H1)P(D0
T 0
[x(t
)−
B
cos(ω2t

)]2
dt
《信号检测与估计》习题解答
( ) ( ) ( ) f xH0 =
1
∫ − 1
e N0
T 0
[x
(t
)−
s
0
(t
)]2
dt
=
2π σ k
1
∫ − 1
e N0
T 0
[x
(t
)−
A
cos
ω1t

B
cos(ω
2
t

)]2
dt
2π σ k
根据最小差错概率准则有
0 N0
T 2 s2(τ )dτ = 2a2T
0 N0
N0
输出信号
xo (T
)
=
T
∫0
h(t )x(T

t )dt
=
∫Ts(T 0
− t)x(T

t )dt
=
T
∫0
2 N0
s(τ
)x(τ

《信号检测与估计》第二章习题解答

《信号检测与估计》第二章习题解答

E[x]
=
0

R(t, t

)
=
R(τ
)
=
a2 2
cos ω0τ
即数学期望与时间无关,自相关函数仅与时间间隔有关,故 X (t) 为广义平稳随机过程
2.7 设有状态连续,时间离散的随机过程 X (t) = sin(2πAt),式中, t 只能取正整数,即 t = 1,2,3,L ,
A 为在区间 (0,1) 上均匀分布的随机变量,试讨论 X (t)的平稳性。
cos
t2
+
1 9
sin
t2
cos t1
=
1 9
+
1 9
sin
t1
+
1 9
cos
t1
+
1 9
sin
t2
+
1 9
cos t2
+
1 9
cos(t1
-
t2
)+
1 9
sin(t1
+
t2
)
2.4 随机过程 X (t)为 X (t) = A cosω0t + B sin ω0t
[ ] [ ] 式中,ω0 是常数,A 和 B 是两个相互独立的高斯随机变量,而且 E[A] = E[B] = 0 ,E A2 = E B2 = σ 2 。
1 ↔ e−aτ u(τ )
jω + a
所以
RX (τ ) = ⎜⎜⎝⎛
1 e− 3
3τ −
1e 3
3τ + 1 e− 22
2τ − 1 e 22
2τ ⎟⎟⎠⎞u(τ )
平均功率

信号检测与估计试卷

信号检测与估计试卷

XXX 大学(学院)试卷《信号检测与估计》试卷 第 1 页 共 2 页 《信号检测与估计》模拟试卷一、填空题(每空1分,共10分)1.广义匹配滤波器可通过 和 级联而构成。

2.卡亨南-洛维展开是把平稳随机信号表示成 的形式,并使 。

3.修正的奈曼-皮尔逊准则是在给定 和 的条件下,从第一个观测数据开始就进行似然比检测,直至能做出判决为止。

4.秩检测是一种利用观测样本的 和 的一种非参量检测方法。

5.最小二乘估计的使用条件:含有被估计参量的信号模型已知, 和 的任何统计知识均未知。

二、简答题(每题4分,共20分)1.概述高斯白噪声情况下和高斯色噪声情况下信号检测所采用方法的特点。

2.简述序列检测的概念与特点。

3.简述非参量检测的概念、特点及基本原理。

4.简要说明在似然函数对的频率偏导数难以求解情况下,信号频率估计的方法。

5.说明参量的最小二乘估计方法的基本思路。

三、(10分)设线性滤波器的输入为)()()(t n t s t x +=,其中)(t n 是功率谱密度为2/0N 的白噪声,信号为⎩⎨⎧><≤<-=T t t T t t T A t s ,000)()( 式中,0>A ,且为常数。

(1)试求匹配滤波器的冲激响应及对应于)(t s 的输出信号。

(2)求匹配滤波器输出的信噪比。

四、(10分)对于二元随机参量信号的检测问题,若两个假设下观测信号分别为:n x H =:0,n s x H +=:1,其中,信号s 和噪声n 是相互统计独立的随机变量,其概率密度函数分别为⎩⎨⎧<>≥-=0,00,0,)exp()(s a s s a a s p ⎩⎨⎧<>>≥-=0,00,0,)exp()(n a b b n n b b n p 且 设似然比检验门限为0Λ,试证明信号的似然比检测判决式可化简为γ10H H x<>。

五、(15分)在T t ≤≤0时间范围内,二元通信系统发送的二元信号为t A t s 00sin )(ω=,。

信号检测与估计理论(复习题解)

信号检测与估计理论(复习题解)
优缺点
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法

《信号检测与估计》第七章习题解答

《信号检测与估计》第七章习题解答

《信号检测与估计》第七章习题解答7.1 在二元数字通信系统中,两个假设下的观测波形()t x 分别为L ,2,1,1:1=+=i n x H i iL ,2,1,:0==i n x H i i式中,i n 是均值为零、方差为1的高斯白噪声,要求虚警概率410−=α,漏报概率110−=β,且()()5.010==H P H P 。

求:(1)序贯似然比检测的判决门限及判决规则。

(2)序贯似然比检测的平均观测取样数。

(3)若采用常规的固定样本数的似然比检测,求满足检测性能所要求的取样数。

解:(1)单次观测所得随机变量x 的似然函数为2)1(1221)|(−−=x e H x f π 20221)|(x e H x f −=π得到似然必为2101)()()(−==x e H x f H x f x l对应的对数似然比为21ln )(ln 21−==−x e x l x 假定顺序得到取样,则第N 步的对数似然比为 22121ln )](ln[122)1(1212N x e e l N i i x N x N N N i i N i i −=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=∑=∑−∑−−==ππx 两个检测门限值分别为303.21ln ln 0−=⎟⎠⎞⎜⎝⎛−=αβl 105.91ln ln 1=⎟⎠⎞⎜⎝⎛−=αβl 序贯似然比检测的判决规则如下303.221−≤−∑=N xN i i 0H 假设为真 105.921≥−∑=N xN i i1H 假设为真105.92303.21<−<−∑=N x N i i 增加一次观测转入下一检测阶段 []21211]|)21[(|)(ln 11=−=−=H x E H x l E []21210]|)21[(|)(ln 00−=−=−=H x E H x l E (2)将各参数的取值分别代入1H 假设为真时的平均取样数和0H 假设为真时的平均取样数公式得[]93.15|)(ln ln ln )1(]|[1011=+−=H x l E l l H N E ββ []60.4|)(ln ln )1(ln ]|[0010=−+=H x l E l l H N E αα总的平均取样数为265.10]|[)(]|[)(][1100=+=H N E H P H N E H P N E因此取样数为11就可以达到预期的检测性能。

《信号检测与估计》复习纲要与复习题参考答案-2012

《信号检测与估计》复习纲要与复习题参考答案-2012


ML(4)
多元假设检验的最佳贝叶斯方法
*注:
ARMA:自回归滑动平均 BLUE:最佳线性无偏估计 CFAR:恒虚警率 CRLB :Cramer-Rao 下限 EM:数学期望最大化 GLRT:广义似然比检验 IID:独立同分布 LLR:对数似然比 LMMSE:线性最小均方误差 LMP:局部最大势 LRT:似然比检验 LSE:最小二乘估计 LSI:线性时不变 MAP:最大后验概率 MLE:最大似然估计 MMSE:最小均方误差估计 MVU:最小方差无偏 NP:Neyman-Pearson 准则 PRN:伪随机噪声 RBLS:Rao-Blackwell-Lehmann-Scheffe 定理 ROC:接收机工作特性 UMP:一致最大势 WGN:白色高斯噪声 WSS:广义平稳
ˆ2 1 N 1 2 x [ n] N n 0
ˆ 2 的方差,并考察当 N 时会发生什么情况? 这是无偏估计吗?求
3. 如 果 观 测 到 数 据 x[n] A w[n], n 0,1,, N 1 , 其 中 噪 声 数 据
w [w[0], w[1],, w[ N 1]]T N (0, C) ,求 A 的 CRLB。有效估计量存在吗?如果
N
充分统计量为
N 1 x[n]cos 2 f 0 n n 0 T ( X ) N 1 x[n]2 n 0
由(1)已经知道 A
x[n]cos 2 f n
n 0 N 1 n0 0
N 1
cos
2
2 f 0 n
并且,
N 1 N 1 2 E ( x[n]2 ) E A cos 2 f 0 n w[n] n 0 n 0
S T C 1 X 1 S T C 1S N

信号检测与估计—原理及其应用

信号检测与估计—原理及其应用

信号检测与估计考试题库考试内容:1.随机信号分析平稳随机信号与非平稳随机信号,随机信号的数字特征,平稳随机过程,复随机过程,随机信号通过线性系统。

2.信号检测信号检测的基本概念,确知信号的检测(包括匹配滤波原理、高斯白噪声中已知信号检测、简单二元检测)3.信号估计信号参数(包括贝叶斯估计、最大似然估计、线性均方估计和最小二乘估计),信号波形估计(主要指卡尔曼滤波)。

一、填空(1x15=15)1.可以逐一列举的随机变量称为(离散型随机变量)随机变量;可能的取值占满一个连续区间的随机变量称为(连续型随机变量)随机变量。

(P3)2.服从正态分布的调幅噪声经过包络检波之后服从(瑞丽分布)分布。

(P5)3.(方差)就是描述随机变量的在其均值周围发散程度的度量。

(P6)4.全体观测结果构成的函数族称为(随机过程)。

(P9)5.一维分布函数只能反映随机过程在某一时刻的统计规律,随机过程在不同时刻的相互联系需要用(多位分布函数)来描述。

6.有一类随机过程的统计特征(不随时间变化),称为平稳随机过程。

(P12)7.线性时不变(LTI)系统的特性在时域用冲击响应(h(t))来描述,在频域用频率响应函数(H(W))来描述。

(P15)8.高斯分布的随机过程通过LTI系统后是(高斯过程)过程。

(P16)9.高斯过程是随机过程的概率密度函数为__________,白噪声是指具有均匀(功率谱密度恒为常数)的随机信号。

(P17)10.在信号传输和处理过程中,经常会受到各种干扰,使信号产生失真或受到污染,这些干扰信号通常称为(噪声)。

(P18)11.白噪声的均值为(零)。

(P18)12.功率谱密度恒为常数的随机信号称为(白噪声)。

(P18)13.限带白噪声的相关函数比理想白噪声的相关函数宽,(既噪声的相关时间加长)。

(P20)14.在雷达系统中要根据观测(回波信号)来判断目标是否存在。

(P49)15.为了寻找未知先验概率情况下的最佳判决准则,首先研究(风险)与先验概率之间的关系。

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答

《信号检测与估计》第九章习题解答9.1 接收信号(((t n t A t x ++=θω0sin ,其中(t n 是高斯白噪声,θ在(π20,均匀分布,现在需求振幅A 的最大似然估计量。

由于θ的先验知识已知,故可先对θ求平均得到(A x f ,试问要求振幅A 的最大似然估计量必须解什么样的方程? 解:接收信号(t x 的似然函数为((([]((((((((⎟⎠⎞⎜⎝⎛+++−−+++−−+−−∫∫∫∫∫===T TT TTdt t A dt t t x A dt t x N dtt A t t Ax t xN dtt A t x N FeFeFeA x f 0002200200022020200sin sin 21sin sin 21sin 1,θωθωθωθωθωθ由于(((∫=+−=∫+TTT dt t dt t 0000222cos 121sin θωθω,得到 ((((020000202sin 21,N TA dt t t x N A dtt x N e eFeA x f T T−+−∫∫=θωθ对θ积分,得到(((((((((θπθπθθθπθωθωπθωπd eeFed e e Fed f A x f A x f dt t t t x N A N T A dt t x N dt t t x N A N T A dt t x N T TTT∫∫∫∫∫∫∫+−−+−−===20cos cos sin sin 22120sin 221 2000000202000020202121,令(ϕωcos cos 00z dt t t x x Tc ==∫,(ϕωsin sin 00z dt t t x x T s ==∫,得到222s cx x z +=,csx x arctg =ϕ (((((⎟⎟⎠⎞⎜⎜⎝⎛====∫∫∫∫∫−+++0020cos 220cos cos sin sin 220cos sin 220 cos cos sin sin 22212121210 000N Az I d ed ed e d eN Azz z N Ax x N Adt t t t x N A c s Tθπθπθπθππϕθπθϕθϕπθθπθωθω 上式中,[](cos exp 21020x I d x =∫πθθπ为零阶修正贝塞尔函数。

2021年信号检测与估计各章作业参考答案(1~9章)

2021年信号检测与估计各章作业参考答案(1~9章)
习题1.考虑检测问题:
其中 是常数, 是 上均匀分布的随机参量; 是高斯白噪声。
(a)求判决公式及最正确接收机结构形式。
(b)如果 ,证明最正确接收机可用 作为检验统计量,并对此加以讨论。
解:〔a〕设 是均值为0、功率谱密度为 的正态白噪声,那么有
由于
所以
按照贝叶斯准那么
或者
两边取对数得到
最正确接
因此 的均值、二阶原点矩和方差分别为
9.假设随机过程 的自相关函数为 ,求 的功率谱密度。
解:自相关函数与功率谱密度函数是一对傅立叶变换对,所以有
利用欧拉公式,可得
11.平稳随机过程 具有如下功率谱密度
求 的相关函数 及平均功率 。
解:
而自相关函数 与功率谱密度 是一对傅立叶变换,
〔b〕不管是否有条件 ,
都可选 作为检验统计量。
当 时,由于
所以判决规那么为
第六章多重信号检测
思考题1:为何要进行多重信号的检测?
答:利用多重信号检测的优势是可以增加检测系统的信噪比,从而增强系统的检测性能。
思考题3:何谓随机相位相干脉冲串信号和随机相位非相干脉冲串信号?
答:通常把多个脉冲信号组成的一串信号称为脉冲串信号,各个脉冲叫做子脉冲,整个信号叫做脉冲串信号。如果脉冲串信号的初相随机,但各个子脉冲信号的相位一致,那么称之为随机相位相干脉冲串信号。如果各子脉冲信号的相位都是随机变化的,且彼此独立变化,那么称之为随机相位非相干脉冲串信号。
〔1〕求 的最大似然估计。
〔2〕假设 的概率密度
求 的最大后验概率估计。
解:〔1〕由题意可写出似然函数
按最大似然估计方程 ,由此解得
〔2〕当 时,可按最大后验概率方程 求解,得到

信号检测与估计 张明友 第一二三八章答案

信号检测与估计 张明友 第一二三八章答案

时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。

请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。

1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。

信号存在的先验概率P =0.2。

试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。

解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。

此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。

信号检测与估计第一章课后答案

信号检测与估计第一章课后答案

22]exp[22228.8)])R pp101022]p x x H ss 22]1x x s +似然函数为221/22()(|)(2/2)exp[]2/2x k x k m a P m H ps s --= (k=1,0)虚警概率100(|)(|)[]/2x x P D H P m H dm erfc bb s ¥==ò漏报概率0111(|)1(|)1[]/2x x P D H P m H dm erfc bb s ¥-=-=-ò平均风险011001Pr (|)(|)f m R Qr Qc P D H Pc P D H =+=+=1[]{1[]}/2/2f m Qc erfc Pc erfc b b s s -+-其中b 为(1)式确定1.3只用一次观测x 来对下面两个假设作选择,0H :样本x 为零均值、方差20s 的高斯变量,1H :样本x 为零均值、方差21s 的高斯变量,且21s >20s 。

根据观测结果x ,确定判决区域0D 和1D 。

画出似然比接收机框图。

1H 为真而选择了0H 的概率如何? 解:(1)似然函数221(|)exp()2*2k k kx P x H s s p -= (k=1,0) 似然比2100220101(|)111exp[()](|)2P x H x P x H s s s s =-³L 判为1H 化简得2220101221002ln 0x s s sb s s s L³=>- (21s >20s ) 判为1H得 1:||D x b ³ 0:||D x b <0L 根据选取准则而定21exp()2bbbbs s p(2s p12s p 222lns ps=b ||1x b > |1b £则||x—bx ³0 判为1H<0 判为0H1001(|)(|)2P D H P x H dx dx bbbbb a --====òò所以得判决区域为1:||||1D x x a £> 0:||1D x a <£1.7 1.7 根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断1H :()1()x t n t =+0H :()()x t n t =设n (t )为零均值和功率为2s 的高斯过程,且00111001,1c c c c ===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概念:1. 匹配滤波器。

概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。

应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。

在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。

2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。

我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。

式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。

结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k 状态下最优的估算值X(k|k)。

但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k 状态下X(k|k)的covariance :P(k|k)=(I-Kg(k) H )P(k|k-1) (5)其中I 为1的矩阵,对于单模型单测量,I=1。

当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。

这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。

根据这5个公式,可以很容易用计算机编程实现。

3. 白噪声的概念白噪声定义:将噪声用n(t)表示,功率谱密度 为常数,具有这种特性的噪声称为白噪声。

说明:这种称呼来源于光学。

因为光学中将包括全部可见波长的光称为白光,所以我们也将包括了全部频率成分的噪声称为白噪声。

说明:实际上,完全理想的白噪声是不存在的,但只要噪声功率谱均匀分布的范围超过电子系统工作的频率范围很多时,就可以近似认为是白噪声。

例如,热噪声功率谱密度均匀分布的部分高达1013Hz ,因此可将它看成白噪声。

4. 二元信号检测理论模型 第三章ppt 第4页开始5. 谱、功率谱、频谱的联系与区别。

区别:1、 一个信号的频谱,只是这个信号从时域表示转变为频域表示,只是同一种信号的不同的表示方式而已, 而功率谱是从能量的观点对信号进行的研究,其实频谱和功率谱的关系归根揭底还是信号和功率,能量等之间的关系。

2、 频谱是个很不严格的东西,常常指信号的Fourier 变换,是一个时间平均(time average )概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。

保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。

3、功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换,对于一个随机过程而言,频谱也是一个2)(0nP n =ω“随机过程”。

(随机的频域序列)4、功率概念和幅度概念的差别。

此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。

联系:1、功率谱可以从两方面来定义,一个是自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。

第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。

根据parseval定理,信号傅氏变换模平方被定义为能量谱,能量谱密度在时间上平均就得到了功率谱。

2、在频域分析信号分两种:(1).对确定性信号进行傅里叶变换,分析频谱信息。

(2).随机信号的傅里叶信号不存在,转向研究它的功率谱。

随机信号的功率谱和自相关函数是傅里叶变换对(即维纳辛钦定理)。

功率谱估计有很多种方法6. 二元通信系统的检测性能与那些因素有关。

(可能不准确)概率转移机构,观测空间R,最佳判决准则第三章ppt第4页开始二、计算:1. 在二元数字通信系统中,假设为H1时,信源输出为正电压A,假设为H0时,信源输出为零电平。

信号在通信信道传输过程中叠加了高斯噪声n(t);每种信源的持续时间为T,在接收端对接收到的信号x(t) 在T时间内进行N次独立采样,样本为x k(k=1,2,…,N)。

已知噪声样本n k是均值为零、方差为σn2的高斯噪声。

(1)试建立信号检测系统的信号模型;(2)若似然检测门限已知,确定似然比检验的判决表达式;(3)计算判决概率P(H1|H0)和P(H1|H1)。

解:(1) 接收信号模型为:01()(),0()(),0H x t n t t T H x t A n t t T=≤≤=+≤≤::在(0,T )内进行N 次独立采样后,接收信号模型为:01,1,2,...,,1,2,...,k k k k H x n k N H x A n k N===+=:: 其中 x k 之间相互独立。

(2)已知22()2k k n n p n σ⎛⎫=- ⎪⎝⎭在两种假设情况下,似然函数为:()202212(|)2(|)2k k n kk n x p x H x A p x H σσ⎛⎫=- ⎪⎝⎭⎛⎫- ⎪=- ⎪⎝⎭由于N 次采样的样本 x k 之间是独立同分布(iid)的,所以()210021211121(|)(|)exp()2(|)(|)exp()2NNkNk k k n NNkNk k k nxp x H p x H xA p x H p x H σσ====⎛⎫==--⎛⎫==-∑∏∑∏这样,似然比函数为()221112202221(|)()exp()(|)22exp()2λσσσσ===--==+=-∑∑∑NNk kk k nnNk k n nx A xP x H x P x H ANA x似然比函数检验(LRT )为102221exp(2H Nk k nn H ANA x ησσ=≥-<∑) 取对数:12221ln 2H Nk k nn H ANA x ησσ=≥-<∑进一步整理得1021ln 12H Nn kk H A x NNA ση=≥+<∑ (3) 检验统计量11Nkk xN=∑是N 个信号的平均值,它是x k (k=1,2,…,N)的函数,是个随机变量。

121ln 1(),()2H Nnk k H A l x x l x NNAσηγγ=≥==+∴<∑令,说明:由于N 次采样的样本x k 之间是独立同分布(iid)的,因此 l(x) 在两种假设情况下均服从高斯分布,均值和方差计算过程如下。

假设H 0情况下,均值和方差分别为:[][][]00112220001111()||011()||()|N N k k k k N Nn k k k k E l x H E x H E n N N D l x H E x H E l x H E n N NN σ====⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫=-==⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑假设H 1情况下,同样的方法计算均值和方差为:[]()[][]()11112221111111()||11()||()|N N k k k k N Nn k k k k E l x H E x H E A n AN N D l x H E x H E l x H E A n A N N Nσ====⎡⎤⎡⎤==+=⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑用l 表示l(x),有()()20211|~0,1|~,n n l H N N l H N A N σσ⎧⎛⎫⎪⎪⎪⎝⎭⎨⎛⎫⎪ ⎪⎪⎝⎭⎩根据判决准则,()10022|(|)2n P H H p l H dlNl dl γγσ∞∞=⎛⎫=- ⎪⎝⎭⎰⎰2ln :2n Awhere NAσηγ=+()()11122|(|)2n P H H p l H dlN l A dl γγσ∞∞=⎛⎫-=- ⎪ ⎪⎝⎭⎰⎰2. 例题3.4-2:在OOK 通信系统中,两个假设下的观测信号模型为nA x H n x H +==:10:其中,观测噪声n~N (0,σn2);信号A 是常数,且A>0。

若两个假设的先验概率P(Hj)未知,代价因子C00=C11=0,C10=C01=1,采用极小化极大准则,试确定检测门限和平均错误概率。

解:在两个假设下,观测量x 的概率密度函数分别为()202212(|)2(|)2n n x p x H x A p x H σσ⎛⎫=- ⎪⎝⎭⎛⎫-=- ⎪ ⎪⎝⎭似然比函数为: ()()21220|2(exp |22n n P x H Ax A x P x H λσσ⎡⎤∴==-⎢⎥⎣⎦)假设判决门限为η,则: 12222exp 22H n n HAx A ησσ⎡⎤≥-⎢⎥<⎣⎦ 化简得: 12ln 2H n H AxAσηγ≥+=< 显然,检验统计量l(x)=x .X 在两种假设情况均服从高斯分布,根据判决准则,有()100222|(|)22F n n P P H H p l H dll dl u du Q γγσγσ∞∞∞==⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫= ⎪⎝⎭⎰⎰()()01122|(|)21M n n P P H H p l H dll A dl A Q γγσγσ-∞==⎛⎫- ⎪=- ⎪⎝⎭⎛⎫-=- ⎪⎝⎭⎰⎰因为C 00=C 11=0,C 10=C 01=1, 此时极小化极大方程 为:P F =P M ,即极小化极大方程为**1n n A Q Q γγσσ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭解得*2Aγ=此时平均错误概率**2Fn n A Pe P r Q Q γσσ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦() 式中22nASNR σ=3. 例题3.4-3:在二元数字通信系统中,假设为H1时信源输出为1,假设为H0时信源输出为0,信号在通信信道上传输时叠加了均值为零、方差为1的高斯噪声。

相关文档
最新文档