一元一次方程、二元一次方程(组)的解法
各种方程一元一次、二元一次、三元一次、一元一次、二元二次方程的解法的解法
各种方程(一元一次、二元一次、三元一次、一元一次、二元二次方程的解法)的解法————————————————————————————————作者:————————————————————————————————日期:一元一次、二元一次、三元一次、一元一次、二元二次方程的解法整理稿方程含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质;3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算;2.转化——计算——结果例如: 3x=5*63x=30x=30/3x=10移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
一元一次方程人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,再去中括号,最后去大括号。
但顺序有时可依据情况而定使计算简便。
可根据乘法分配律。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
一元一次方程与二元一次方程组
6.(2013 年浙江绍兴)我国古代数学名著《孙子算经》中有 这样一题,今有鸡兔同笼,上有 35 头,下有 94 足,问鸡兔各 几何?此题的答案是:鸡有 23 只,兔有 12 只.现在小敏将此 题改编为:今有鸡兔同笼,上有 33 头,下有 88 足,问鸡兔各 几何?则此时的答案是:鸡有__2_2___只,兔有__1_1___只.
问 A、B 两种树苗每株分别是多少元?
解:设 A 种树苗每株 x 元,B 中树苗每株 y 元,
由题意,得
x-y=2, x+2y=20,
解得
x=8, y=6.
答:A 种树苗每株 8 元,B 种树苗每株 6 元.
4.二元一次方程(组). (1)二元一次方程:含有__两__个__未知数,并且未知数的项的 次数都是___1___的整式方程. (2)二元一次方程组:含有两个未知数的两个_一__次___方程所 组成的一组方程. (3)二元一次方程组的解:二元一次方程组的两个方程的 _公__共__解___.
考点2 解一元一次方程和二元一次方程组 1.解一元一次方程的步骤. (1)_去__分__母___;(2)去括号;(3)___移__项____;(4)_合__并__同__类__项___; (5)未知数的系数化为 1. 2.二元一次方程组的解法. 解二元一次方程组的关键是消元,有 __代__入____ 消元法和 __加__减__消元法两种.
一元一次方程与二元一次方程 组
第1讲 方程与方程组
第 1 课时 一元一次方程与二元一次方程组
1.能够根据具体问题中的数量关系列出方程. 2.会解一元一次方程及简单的二元一次方程组. 3.能根据具体问题的实际意义,检验结果是否合理.
考点1 方程(组)的有关概念 1.等式的基本性质. (1)若a=b,则a±m=b±___m___(m为代数式).(2)m为实数,
一元一次方程及二元一次方程组
2、(09齐齐哈尔)一宾馆有二人间、三人间、四人间三种 客房供游客租住, 某旅行团20人准备同时租用这三种客房 共7间,如果每个房间都住满, 租房方案有 ( C ) A. 4种 B. 3种 C. 2种 D. 1种 解:设租二人间x间, 租三人间y间, 则四人间客房7-x-y. 依题意得:
x=2, 已知 是二元一次方程组 y=1
mx+ny=8, 的解,则 2m-n 的算术平方根为( nx-my=1
C )
A.±2
B. 2
C.2
D.4
类型之三
一元一次方程的解法
0.3x+0.5 2x-1 例2:[2011·滨州] 依据下列解方程 = 的过 0.2 3 程,请在前面的括号内填写变形步骤,在后面的括号 内填写变形依据.
14、(09达州) 将一种浓度为15℅的溶液30㎏, 配制成浓度不低于20℅的同种溶液, 则至少 10 ㎏. 需要浓度为35℅的该种溶液______ 解:设35%溶液为x则得:
35%x+30×15%=(x+30)×20% 解得x=10kg,故至少需要35%的溶液 10kg.
练习:P15 第8题 P16 第9题
列方程解应用题:
1.审题 2.设元
3.列方程
4.解方程
5.检验
6.答
一元一次方程应用题的类型:
1.数字问题(包括日历) 2.体积(面积)变化 3.打折销售问题
4.行程问题
5.工程问题
6.储蓄问题
7.和、差、倍、分问题
顺水航行速度=静水速度+水流速度 逆水航行速度=静水速度-水流速度
六年级一元一次方程二元一次方程组的解法及应用
学生编号学生姓名授课教师辅导学科六年级数学教材版本上教课题名称一元一次方程、二元一次方程组的应用课时进度总第()课时授课时间5月26日教学目标1.熟练掌握一元一次不等式和一元一次方程的解法和应用;2.会解二元一次方程组;能够熟练的运用二元一次方程组解决实际问题;3.使学生掌握三元一次方程、三元一次方程组和它的解的含义;重点难点1.二元一次方程组和三元一次方程组的解题技巧;2.根据应用题的题意列出二元一次方程组。
同步教学内容及授课步骤一、一知识梳理1.列二元一次方程组解应用题的步骤①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;②找出能够表示应用题全部含意的两个相等关系;③根据两个相等关系列出代数式,从而列出两个方程并组成方程组;④解这个二元一次方程组,求出未知数的值;⑤检查所得结果的正确性及合理性;⑥写出答案.2.设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.3.应用题常见的几种类型:(1)行程问题:①基本量之间的关系:路程=速度×时间②解题时一般应画线段示意图。
(2)工程问题①基本量之间的关系:工作量=工作效率×工作时间甲、乙合做的工作效率=甲的工作效率+乙的工作效率②解题时,若工作总量是抽象的,通常把它设为单位1。
(3)浓度问题①基本量之间的关系:溶液=溶质+溶剂(指体积或质量)溶液的浓度=溶质溶液×100%②解题时应注意配制前后溶液中的不变量和变化量分别是什么?(4)利润问题:①有关量的关系:利润=售价-进价利润率=售价进价进价-×100%利息=本金×利率×期数1. 已知zy x zy x 26=-=+)0(≠xyz ,则z y x ::= ;2. 解方程组:⎩⎨⎧=++=20233:2:1::z y x z y x3. 解方程组: 435:4:3)(:)(:)(-=-+=+++z y x x z z y y x4. ⎪⎩⎪⎨⎧=++==355:4:3:2:z y x z y y x【拓展题】方程组⎩⎨⎧-=--=+322m y x m y x 的解满足32=+y x ,求m 的值.解法指导 把m 看作已知字母.求出的x 与y 的值是含有m 的式子,再把求出的x 与y 的值代入32=+y x ,得到关于m 的一元一次方程,再求出m 的值;也可以把这三个方程组成三元一次方程组,求出m 的值.【典型例题5】六年级(2)班去春游,全班分成若干个小组进行活动,其中女同学分成2组,第一组人数的2倍比第二组人数多4人;如果从第二组调2人到第一组,那么两个小组的人数相等,求女同学的第一组、第二组人数分别是多少人?解法指导 设第一组的人数是x 人,第二组的人数是y 人.根据“第一组人数的2倍比第二组多4人”列出第一个方程,“第二组调2人到第一组,那么两个小组的人数相等”列出第二个方程.【基础习题限时训练】1. 西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。
一元一次方程与二元一次方程组
(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为一
2.二元一次方程组.
方程组的解
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解
解法
(1)代入消元法;(2)加减消元法
常见的实际问题
(1)和、差、倍、分问题;(2)等积变形问题;(3)工程问题;(4)行程问题;(5)商品销售问题;(6)数字问题;(7)劳力调配问题
A. B. C. D.
√
5.(2022·深圳)张三经营一家林场,林场里面有上等木材和下等木材.5捆上等木材的根数减去11,就等于7捆下等木材的根数;7捆上等木材的根数减去25,就等于5捆下等木材的根数.设上等木材1捆为 根,下等木材1捆为 根,则下列方程正确的是( ).
A. B. C. D.
解:设这种服装每件的标价是 元.根据题意,得 . 解得 . ∴这种服装每件的标价是110元.
例题4 (2022·郴州节选)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1 700元.甲、乙两种有机肥每吨各多少元?
要点梳理
1.一元一次方程.
概念
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程方程 ( 为未知数, )叫做一元一次方程的标准形式, 是未知数 的系数, 是常数项
等式的性质
(1)等式两边加(或减)同一个数(或式子),结果仍相等(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等
解:设甲种有机肥每吨 元,乙种有机肥每吨 元.依题意得 (1) +②,得 .解得 .把 代入②,得 .解得 .故方程组的解为 答:甲种有机肥每吨600元,乙种有机肥每吨500元.
各类方程组的解法
各类方程组的解法 The pony was revised in January 2021一、一元一次方程步骤:系数化整、去分母、去括号、移项、合并同类项、系数化1。
1、系数化整:分子分母带有小数或分数的系数化成整数,方法是分子分母同时乘一个数使得系数变成整数;2、去分母:将包含的分母去掉,方法是等式两边同时乘所有分母的最小公倍数;3、去括号:根据去括号法则将括号去掉;4、移项:过等号要变号,将含未知数的放等号左边,常数放等号右边;5、合并同类项:根据合并同类项法则将同类项合并:6、系数化1:将未知数的系数化成1,方法是等式两边同时除以未知数的系数。
注:不一定严格按照步骤,例如移项的同时可以合并同类项,a(A)=b(a、b是已知数,A是含未知数的一次二项式)型方程可以先将括号前的系数化成1,第5步系数为1时省略1且第6步不需要写。
二、二元一次方程(组)一个二元一次方程有无数个解,它表示平面内一条直线,直线上每个点的坐标都是方程的解。
由两个二元一次方程联立成的二元一次方程组代表空间内两条直线,其公共点坐标就是方程组的解。
当然,若两直线平行则方程组无解,若两直线重合则方程组有无数个解。
当方程组形式复杂时先根据一元一次方程的解法化简成一般形式,然后求解。
1、代入消元法:⑴将任意一个方程变形成“y=带x的式子”或者“x=带y的式子”的形式,代入另一个方程,变成一个一元一次方程;⑵解一元一次方程;⑶将解代入任意一个原方程解出另一个未知数的值,并写出解。
2、加减消元法:⑴方程两边同时乘一个合适的数使得有同一个未知数的系数的绝对值相等(若已有系数的绝对值相等则这一步跳过);⑵两个方程左右加或减变成一元一次方程(系数相等用减,系数互为相反数用加);⑶解一元一次方程;⑷将解代入任意一个方程解出另一个未知数的值,并写出解。
3、图像解法:根据图像与方程的关系,在同一个平面直角坐标系中画出两个方程代表的直线,找出公共点的横坐标与纵坐标(不推荐此方法,因为当解为分数时看不出,这只能表示一种关系)。
第六讲一元一次方程和二元一次方程组
第二单元 方程(组)与不等式(组) 第六讲 一元一次方程与二元一次方程组一、目标要求:1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题.二、课前热身1.方程2x-5=3的解是( )A .x=4B .x=-4C .x=1D .x=-12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( ) A.1.2×0.8x+2×0.9(60+x )=87 B.1.2×0.8x+2×0.9(60﹣x )=87 C.2×0.9x+1.2×0.8(60+x )=87 D.2×0.9x+1.2×0.8(60﹣x )=873.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩4.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-35.方程组x y 60x 2y 30+=⎧⎨-=⎩的解是( )A .x 70y 10=⎧⎨=-⎩B .x 90y 30=⎧⎨=-⎩C .x 50y 10=⎧⎨=⎩D .x 30y 30=⎧⎨=⎩三、【基础知识重温】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.5. 二元一次方程组:把具有相同未知数的两个 合在一起,就组成了一个二元一次方程组.6.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解. 7.二元一次方程组的解: 二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 8. 解二元一次方程的方法:消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.四、例题分析题型一 一元一次方程的解法例1. (2015·辽宁大连)方程3x+2(1-x)=4的解是( ) A.x=52 B.x=65C.x=2D.x=1 【趁热打铁】1.已知关于x 的方程3a-x=4的解为2,求代数式(-a)2-2a+1的值. 2.解方程:(1)53(2)8x x +-= (2)212143x x -+=-3.解方程:)21(25)2(34y y y --=+- 题型二 二元一次方程组的解法 例2. 如果实数x ,y 满足方程组,则x 2﹣y 2的值为 .例3. (2015•泉州)方程组的解是 .【趁热打铁】1.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.42.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 3.方程组13x y x y -=⎧⎨+=⎩的解是4.解下列方程组:131,222;x y x y ⎧-=⎪⎨⎪+=⎩ 5.解方程组x 2y 4 2x y 30-=⎧⎨+-=⎩ ①②.6.解二元一次方程组:3x 2y 192x y 1+=⎧⎨-=⎩题型三 列方程(组)解决实际问题例4. (2015·辽宁朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?【趁热打铁】1.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各多少万元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.某商店经营甲、乙两种商品,其进价和售价如下表: 已知该商店购进了甲、乙两种商品共160件.(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%. (1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株? (2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用. 4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、【题源】2015·湖北荆门王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了 千克. 2、【题源】2015·湖北黄冈已知A ,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A ,B 两件服装的成本各是多少元? 3、【题源】2015·湖南常德某物流公 司承接A 、B 两种货物运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨;该物流公司6月承接的A 种货物和B 种数量与5月份相同,6月份共收取运费13000元。
一元一次方程、二元一次方程(组)及应用
一元一次方程、二元一次方程(组)及应用知识点1:一元一次方程及应用1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准式是:ax +b=0(其中x 是未知数,a 、b 是已知数,并且a≠0). 一元一次方程的最简式是:ax=b(a≠0).【例1】下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 【例2】选项中是方程的是( ) B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。
【例3】解方程:(1)47815=-x ; (2) 21216231--=+--x x x ;解方程的问题。
【例4】甲、乙两个水池共蓄水50t,甲池用去5t ,乙池又注入8t 后,甲池的水比乙池的水少3t ,问原来甲、乙两个水池各有多少吨水?【例5】一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?知识点2:二元一次方程(组)及应用1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方1、 代入消元法解二元一次方程组基本思路:未知数由多变少。
消元法的基本方法:将二元一次方程组转化为一元一次方程。
2、 加减消元法解二元一次方程组两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
初中数学一元一次一元二次方程解法
一元一次方程与一元二次方程组方程的定义:是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号“=”。
它具有多种形式,如一元一次方程、二元一次方程等。
即:还有未知数的等式叫做方程一元一次方程:ax+b=0二元一次方程:ax2+by+c=0一般解法1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.二元一次方程组的解法步骤:3.代入消元法①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).4. 加减消元法①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).应用题结题方法1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;7作答:包括单位名称在内进行完整的答语。
一元一次方程,二元一次方程组,一元二次方程知识讲解
一元一次方程,二元一次方程组,一元二次方程教学目的1. 回顾已学过的关于方程(组)与方程的解的概念掌握方程的一些特点以及常规考点,特别是一元二次方程和二元一次方程组的解题技巧和容易犯错的地方,巩固关于一元二次方程和二元一次方程组的解的应用的问题解决方法。
重难点1. 二元一次方程组,一元二次方程的应用在做关于应用题的时候要会理清各个量之间的关系,并运用存在的关系建立方程 教学过程一.一次方程与一次方程组1.方程(组)与方程的解的概念(1)方程:含有未知数的等式叫做方程(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。
(3)一元一次方程:只含有一个未知数,且未知数的次数是一次的整式的方程叫做一元一次方程;它的标准形式是ax+b=0(a ≠0)。
(4)二元一次方程:含有两个未知数,并且含未知数的项的次数都是一次的整式方程叫做二元一次方程,它的基本形式是ax+by=0(a ≠0, b ≠0)。
(5)二元一次方程组:几个一次方程组成的含有两个未知数的一组方程叫做二元一次方程组。
(6)二元一次方程组的解:方程组里每个方程的公共解叫做二元一次方程组的解2.解方程的依据等式的性质:(1) 等式的两边都加上或者减去同一个整式,得到的结果仍是等式(2) 等式的两边都乘或除以同一个不为零的数或整式,所得结果仍是等式2. 方程或方程组的解法与步骤(1) 解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤未知数的系数化为一(2) 解二元一次方程组的基本思路:通过消元使其转化为一元一次方程来解,通常的消元法有代入法和加减法。
3. 列方程(组)解应用题的一般步骤(1) 审题,特别注意关键的字和词的意义,弄清相关数量关系,已知什么,求什么;(2) 设未知数(注意单位的同意);(3) 根据相灯关系列出方程(组);(4) 解方程(组),并检验;(5) 写出答案(包括单位名称)。
注意:列方程(组)解应用题的关键是:确定等量关系。
方程解法公式
方程解法公式方程解法公式是数学中常用的一种解题方法,通过运用特定的公式和方法,可以快速求解各种类型的方程。
下面将介绍几种常见的方程解法公式。
一、一元一次方程的解法公式一元一次方程是指只有一个未知数,并且该未知数的最高次数为1的方程。
解一元一次方程的方法有很多种,其中最常用的是使用一元一次方程的解法公式。
一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。
解一元一次方程的公式是x = -b / a。
根据这个公式,我们可以很方便地求得方程的解。
例如,对于方程2x + 3 = 0,根据解一元一次方程的公式,我们可以得到x = -3 / 2,即解为x = -1.5。
二、二元一次方程组的解法公式二元一次方程组是指含有两个未知数,并且每个未知数的最高次数都为1的方程组。
解二元一次方程组的方法有很多种,其中最常用的是使用二元一次方程组的解法公式。
二元一次方程组的一般形式为:a1x + b1y = c1a2x + b2y = c2其中a1、b1、c1、a2、b2、c2为已知数,x和y为未知数。
解二元一次方程组的公式为:x = (c1b2 - c2b1) / (a1b2 - a2b1)y = (a1c2 - a2c1) / (a1b2 - a2b1)根据这个公式,我们可以很方便地求得方程组的解。
例如,对于方程组2x + 3y = 7,4x - 5y = 1,根据解二元一次方程组的公式,我们可以得到x = 2,y = 1,即解为x = 2,y = 1。
三、一元二次方程的解法公式一元二次方程是指只有一个未知数,并且该未知数的最高次数为2的方程。
解一元二次方程的方法有很多种,其中最常用的是使用一元二次方程的解法公式。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,x为未知数。
解一元二次方程的公式为:x = (-b ± √(b^2 - 4ac)) / 2a根据这个公式,我们可以很方便地求得方程的解。
一元一次方程,二元一次方程,三元一次方程
一元一次方程,二元一次方程,三元一次方程1. 引言1.1 概述在数学领域中,方程是一种数学表达式,它包含了未知数和已知数之间的关系。
解决方程问题是数学中重要的基础问题之一。
从最简单的一元一次方程到更复杂的二元和三元一次方程,我们将逐步探讨它们的定义、性质以及解决方法。
1.2 目的本文旨在介绍并深入了解一元一次方程、二元一次方程和三元一次方程。
通过对这些不同类型方程的研究,我们将能够掌握它们的特征、求解方法以及实际应用。
通过深入理解这些方程,读者将能够更好地应用数学知识解决实际生活中遇到的问题,并培养逻辑推理和问题解决能力。
1.3 结构本文主要分为五个部分:引言、一元一次方程、二元一次方程、三元一次方程以及结论。
- 在第二部分“一元一次方程”中,我们将先介绍其定义和性质,然后探讨如何通过不同的解题方法来求解这类方程,并举例说明其实际应用。
- 第三部分“二元一次方程”将对此类方程进行概述,然后比较不同的解法,并介绍图形解法及其应用。
- 在第四部分“三元一次方程”中,我们将讨论其理论基础,探究求解方法,并提供应用举例。
- 最后,在结论部分我们将对全文进行总结回顾,并展望一元一次方程、二元一次方程和三元一次方程在未来的发展趋势。
通过阅读本文,读者将能够全面了解不同类型的一次方程以及它们在数学和实际生活中的应用。
希望本文能够对读者进一步提升数学水平和问题解决能力有所帮助。
2. 一元一次方程:2.1 定义与性质:一元一次方程是指只含有一个变量,并且该变量的最高次数为1的方程。
常见的一元一次方程的标准形式为ax + b = 0,其中a和b 为已知常数,x为待求变量。
一元一次方程具有以下特性:- 方程中只包含一个未知数x,并且x的最高次数为1;- 系数a不等于0;- 方程两边可以通过加减乘除等基本运算进行转化。
2.2 解题方法:解一元一次方程的常用方法包括:- 原则1: 对等式两边同时加减相同数字或字母,仍然相等;- 原则2: 对等式两边同时乘以(或除以)非零系数,仍然相等;下面是解一元一次方程的步骤:- 将方程根据需要进行整理,使其成为ax + b = 0的标准形式; - 运用原则1和原则2对方程进行逆向运算化简,使得x左侧只剩下一个x并系数为1;- 最后计算出未知数x的值即可。
《一元一次方程与二元一次方程(组)》课件
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗 歌能动人心弦,哲学使人获得智慧,科学可改善 物质生活,但数学能给予以上的一切。--克莱因.
y=80. 答:黑色文化衫 60 件,白色文化衫 80 件.
方法总结: 1.列方程(组)解应用题的关键是准确地找出题中的相等关系, 正确列出方程(组). 2.设未知数可以采用直接设法也可以采用间接设法. 3.一般地,设几个未知数,就应列出几个方程. 4.要根据应用题的实际意义检验求得的解是否合理,不符合 题意的解应该舍去.
副乒乓球拍的费用=①__5_0___;购买5副羽毛
球拍的费用+购买10副乒乓球拍的费用=②
_____3_2_0_.
解:设每副羽毛球拍x元,每副乒乓球拍y元,
由题意得,5xxy10
50 y
, 320
解得
x 36
y
14
,
答:每副羽毛球拍36元,每副乒乓球拍14元.
重难点精讲优练 练习2 某小区为响应市政府提出的“建绿透绿”
考点三 一次方程(组)的应用
例 3 (2017·张家界)某校组织“大手拉小手,义卖献爱心”活
动,购买了黑、白两种颜色的文化衫共 140 件,进行手绘设计后
出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和
零售价如下表:
批发价/元 零售价/元
黑色文化衫
10
25
白色文化衫
8
20
假设文化衫全部售出,共获利 1 860 元,则黑、白两种文化衫
2
3
解:3(1-x)=2(4x-1)-6
3-3x=8x-2-6
x=1.
提分必练
3.
解二元一次方程组:
4x 5 y 11
一元一次方程和二元一次方程组
如图是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三
块横放的墙砖比一块竖放的墙砖高 10 cm,两块横放的墙砖比两块
竖放的墙砖低 40 cm,则每块墙砖的截面面积是(
)
A.425 cm2 C.600 cm2
B.525 cm2 D.800 cm2
某气象台发现:在某段时间里,如果早晨下雨,那么晚上是
A.2×1 000(26-x)=800x B.1 000(13-x)=800x C.1 000(26-x)=2×800x D.1 000(26-x)=800x
我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困
地区,其中每包书的数目相等.第一次他们领来这批书的2,结果 3
打了 16 个包还多 40 本;第二次他们把剩下的书全部取来,连同 第一次打包剩下的书一起,刚好又打了 9 个包,那么这批书共有 多少本?
本节课回顾复习 一元一次方程和 二元一次方程组
1. 一元一次方程的解法:1.依据是等式的性质。2.基本步骤略 2. 二元一次方程组的解法: 代入消元法;加减消元法
1.下列变形不是根据等式性质的是( ) A.00..35xy=35xy B.若-a=x,则 x+a=0 C.若 x-3=2-2x,则 x+2x=2+3 D.若-12x=1,则 x=-2
方程 y-1=2-y+2去分母后,结果正确的是( )
2
3
A.6y-y-1=2-2(y+2)
B.6y-y-1=12-2(y+2)
C.6y-3(y-1)=12-2(y+2)
D.6y-3(y-1)=2-2(y+2)
某车间有 26 名工人,每人每天可以生产 800 个螺栓或 1 000 个螺母,1 个螺栓需要配 2 个螺母,为使每天生产的螺栓和螺母刚 好配套,设安排 x 名工人生产螺栓,则下面所列方程正确的是 ()
中考数学复习:第二章:方程与不等式专题复习
分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c
一元一次方程二元一次方程组
一元一次方程二元一次方程组一、一元一次方程例如:求解方程3x+5=0。
解题步骤:1.移项得到3x=-5;2.除以系数3得到x=-5/3;3.解出x=-5/3,即方程3x+5=0的解为x=-5/3二、一元一次方程组一元一次方程组是指由若干个一元一次方程组成的方程组,其一般形式为⎧⎧⎧⎧⎧a1x+b1y+c1=0a2x+b2y+c2=0...anx+bny+cn=0,其中ai,bi和ci为已知数,且ai≠0,bi≠0(i=1,2,...n)。
解一元一次方程组的基本步骤是通过消元法或代入法将方程组化简为只含有一个未知数的方程,然后求出未知数的值,最后代入原方程求出其他未知数的值。
例如:求解方程组⎧⎧⎧⎧⎧2x+y=-33x-4y=6解题步骤:1.通过消元法,将第二个方程的系数乘以2,得到⎧⎧⎧⎧⎧2x+y=-33x-4y=62.消去y的系数,得到⎧⎧⎧⎧⎧2x+y=-33x-4y=63.将得到的方程组化简,得到⎧⎧56x=-12;y=15解得x=-12/56,y=15即方程组⎧⎧⎧⎧⎧2x+y=-33x-4y=6的解为x=-12/56,y=15三、二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,其一般形式为⎧⎧⎧⎧⎧a1x+b1y=c1a2x+b2y=c2...anx+bny=cn,其中ai,bi和ci为已知数,且ai≠0,bi≠0(i=1,2,...n)。
解二元一次方程组的基本步骤是通过消元法或代入法将方程组化简为只含有一个未知数的方程,然后求出未知数的值,最后代入原方程求出其他未知数的值。
例如:求解方程组⎧⎧⎧⎧⎧2x+3y=53x-4y=14解题步骤:1.通过消元法,将第二个方程的系数乘以2,得到⎧⎧⎧⎧⎧2x+3y=56x-8y=282.消去x的系数,得到⎧⎧⎧⎧⎧2x+3y=56x-8y=283.将得到的方程组化简,得到⎧⎧11y=25;x=14/8解得y=25/11,x=14/8即方程组⎧⎧⎧⎧⎧2x+3y=53x-4y=14的解为y=25/11,x=14/8四、一元一次方程(组)的应用1.速度问题汽车以恒定速度行驶,已知汽车每小时行驶60千米,问行驶t小时后,汽车行驶的千米数?解:设行驶的千米数为x,则根据速度=距离/时间的公式可得x=60t。
各种方程(一元一次、二元一次、三元一次、一元一次、二元二次方程的解法)的解法
各种方程(一元一次、二元一次、三元一次、一元一次、二元二次方程的解法)的解法一元一次、二元一次、三元一次、一元一次、二元二次方程的解法整理稿方程含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果例如: 3x=5*63x=30x=30/3x=10移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
一元一次方程人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,再去中括号,最后去大括号。
但顺序有时可依据情况而定使计算简便。
可根据乘法分配律。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项将原方程化为ax=b(a≠0)的形式。
⒌系数化一方程两边同时除以未知数的系数。
⒍得出方程的解。
二元一次方程组的解法
解法有如下:
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法
二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
例: 1)x-y=3 2)3x-8y=4 3)x=y+3 代入得3×(y+3)-8y=4
y=1
所以x=4 这个二元一次方程组的解x=4 y=1
以上就是代入消元法,简称代入法。
利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法。
例题:(1)3x+2y=7 (2)5x-2y=1
解:消元得:8x=8 x=1 3x+2y=7 3*1+2y=7 2y=4 y=2 x=1 y=2
你看下,明白没?没得话,我再解释!
这里说实在的最主要的还是方法,方法掌握了,类似的问题都能解决了!
希望我的回答对你有帮助,祝你好运!像这样的问题自己多尝试下,下次才会的!
祝你学业进步!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 一元一次方程、二元一次方程(组)的解法
一、温故互查知识要点
一元一次方程的概念及解法,二元一次方程(组)及其解法,解方程组的基本思想.
二、题组训练一
1.(2012重庆)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )
A .2
B .3
C .4
D .5
2.(2011枣庄)已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧ax +by =7,ax -by =1
的解,则a -b = . 3.(2012连云港)方程组326x y x y +=⎧⎨-=⎩
的解为 . 4.已知:13
2=--+y x y x ,用含x 的代数式表示y ,得 . 三、题组训练二
1解下列方程(组):
(1)3(x +1)-1=8x ; (2)⎩
⎨
⎧=+=-1732623y x y x .
2(1)m 为何值时,代数式2m - 5m -13的值比代数式7-m 2
的值大5?
(2)若方程组31331x y a x y a
+=+⎧⎨+=-⎩的解满足x +y =0,求a 的值.
四、中考连接
1.若⎩⎨⎧x =1,y =2.
是关于x 、y 的方程ax -3y -1=0的解,则a 的值为______. 2.已知(x-2)2+|x-y-4|=0,则x+y= .
3.定义运算“*”,其规则是a*b=a-b 2,由这个规则,方程(x+2)*5=0的解为 .
4.如图,已知函数y=ax+b 和y=kx 的图象交于点(-4,-2),
则方程组⎩⎨⎧y=ax+b ,y=kx 的解是 . 5.若关于x 、y 的方程组⎩⎨⎧x+y=5k ,x -y=9k
的解也是方程2x +3y =6 的解,则k 的值为( ) A .- 34 B .34 C .43 D .- 43
6.解下列方程(组):
(1)2(x +3)-5(1-x )=3(x -1); (2)143
2312=-
--x x ;
(3)(2012南京)31328x y x y +=-⎧⎨-=⎩ ; (4)⎩⎨⎧-=+-=+1)(258
y x x y x .。