1 超导体的性质

合集下载

超导体的基本性质和应用

超导体的基本性质和应用

超导体的基本性质和应用超导体是一种在极低温下表现出完全电阻为零的材料,是电学领域中独特且引人瞩目的现象。

超导体的发现和研究不仅极大地推动了科学领域的发展,也为行业的应用带来了巨大的潜力。

本文将介绍超导体的基本性质和一些重要的应用。

一. 超导体的基本性质超导体具有以下的基本性质:1. 零电阻:在超导态下,超导体内部没有电阻,电流可以在其中自由地流动。

这个性质让超导体在电力输送和能量储存方面具有巨大的潜力。

2. 迈出Meissner效应:超导体在过渡到超导态时,会对外部磁场产生排斥作用,将磁场排斥出体内。

这种现象被称为迈出Meissner效应,它是超导体的又一个重要性质。

3. 让低温成为关键:要使超导体发挥超导状态,需要将温度降到很低的极端。

对于常见的超导体材料来说,常规的液氮温度(77K)已经足够维持超导态。

二. 超导体的应用1. 增强能源传输:由于超导体的零电阻特性,能量在超导体中的传输效率非常高。

这使得超导体在能源传输方面具有广阔的应用前景。

超导体电缆可以大大提高电能传输的效率,降低能量损耗,并减少能源供应的对环境的影响。

2. 磁共振成像(MRI):超导磁体被广泛应用于医学成像领域中的核磁共振(NMR)和磁共振成像(MRI)技术。

超导磁体提供了一个强大的稳定磁场,可以更准确地检测疾病和生成高质量的影像。

3. 磁悬浮交通:超导磁悬浮技术利用超导体的穿透磁通特性,使列车浮起并在轨道上悬浮行驶。

这种无摩擦的悬浮方式可以大大提高列车的速度和运行平稳性,且不会产生噪音和振动,未来可能将成为一种重要的交通方式。

4. 快速电子元件:超导体的超快电子运输特性也为电子元件提供了可能。

超导元件可以实现更高的开关速度,更高的运行频率和更低的功耗。

这对于信息技术领域和计算机科学来说是非常有前途的。

5. 等离子体研究:超导体在等离子体物理研究中扮演着重要的角色。

超导磁体可以提供足够的磁场来约束等离子体,并使其保持稳定。

超导体的机理和性质

超导体的机理和性质

超导体的机理和性质超导体是一类具有特殊性质的物质,在极低温下可以实现电阻为零的状态。

超导体不仅在实际应用中有着广泛的用途,而且在物理学领域中也是一个极其重要的研究方向。

那么,超导体的机理和性质到底是什么呢?一、超导体的机理超导体的机理可以从两方面来讲解,一方面是基于磁场的描述,另一方面则是从电子的角度出发进行解释。

1. 基于磁场的描述在正常物质中,当电流通过时,会产生磁场,而这个磁场会导致电流受到阻力,即发生电阻。

而在超导体中,当电流被注入时,它会形成一个超导电流,这个超导电流会抵消掉磁场,从而产生电阻为零的状态。

2. 从电子的角度出发进行解释超导体中的电子具有一种特殊的状态,被称为“库伯对”。

库伯对可以被理解为二个电子之间的一种电子-电子耦合,通过这种耦合,两个电子可以彼此吸引,形成一个相对稳定的状态。

而且,这种相对稳定的状态不易被外部因素所破坏。

二、超导体的性质超导体除了电阻为零以外,还具有一些其他特殊的性质。

1. 迈斯纳效应当超导体中存在磁场时,超导电流会抵消掉这个磁场,但如果外加的磁场大小超过了一定的限制,就会产生一个有趣的现象,即迈斯纳效应。

这种现象可以被理解为,磁场逐渐穿透进超导体内部,形成一个环状的电流通路。

这种环状的电流通路会对磁场进行抗拒,从而保护超导体内部的电流状态不被外部磁场破坏。

2. 艾伦-费因曼效应艾伦-费因曼效应是一种非常奇妙的现象,它可以被理解为超导体中存在一种“超导电子”,这些超导电子感觉不到超导体中的杂质和缺陷,但却能够留下一个磁通量。

当超导体被注入电流时,这些超导电子会以一种非常奇特的方式流动,从而产生一定的磁场。

3. 费米液体理论超导体中的电子状态极为复杂,涉及大量的量子力学知识。

在超导体的研究中,一个十分重要的理论就是费米液体理论。

这个理论可以被用来描述超导体中电子的行为,包括电子的动量、浓度、自旋等等特性。

费米液体理论十分复杂,但通过它,我们可以更深入地了解超导体中电子的运动规律。

超导体的性质及其应用

超导体的性质及其应用

超导体的性质及其应用超导体是一种特殊的物质,具有超导性质,即在超导状态下,电流能够无阻尼地流动。

超导体的发现已经有一百多年的历史,但是这一领域仍然在不断地探索和发展,因为它具有广泛的应用前景。

一、超导体的基本特性超导现象是普通金属、半导体、绝缘体在低温下发生的。

在某一温度下,金属或其他材料的电阻突然降到零,这被称为超导现象。

此时电流可以在材料内无耗散地流动。

超导体具有以下几个基本特性:1. 零电阻超导体在超导状态下的电阻是零,电流能够在材料内无阻尼地流动。

这种特性意味着超导体可以作为高效的电线和电缆使用。

通过在超导体内流动电流,我们可以将能量输送到远处的地方。

2. 磁通量量子化在超导体中,磁通量的变化是量子化的。

这意味着磁通量只能在一个固定的大小范围内变化。

这一特性使得超导体可以作为高精度的磁测量仪使用。

3. 非常低的热导率超导体的热导率非常低,这意味着在超导状态下,超导体会把电流输送到远处,而不会将能量释放为热量。

这是超导体应用于高能物理实验和医疗成像等领域的原因之一。

二、超导体的应用超导体的这些特性使得它在各种领域中具有广泛的应用前景。

以下是一些主要的应用领域:1. 超导磁体超导体可以用来制造非常强大的磁体。

这些磁体在医疗成像、核磁共振、加速器、磁悬浮列车等领域中广泛应用。

利用超导体制造的磁体比利用传统材料制造的磁体更强大,同时也能节省能源和成本。

2. 超导电缆超导体可以作为高能量输送的高效电缆使用。

利用超导体制造的电缆具有比传统电缆更高的能量传输速率,同时能够降低能量损失和线路堵塞。

3. 超导电子元器件超导体可以用来制造高速、高精度的电子元器件,如微波滤波器、量子比特、SQUID等。

这些元器件在通信、计算机、量子计算等领域中有重要的应用。

4. 超导电动机利用超导体制造的电动机比利用传统材料制造的电动机更高效、更具可靠性。

这些电动机在船舶、航空航天、高速列车等领域中有广泛的应用前景。

5. 超导材料随着超导材料的研究和制造技术的发展,超导材料的性能不断提高,同时成本也在逐步降低。

超导体的性质与应用

超导体的性质与应用

超导体的性质与应用超导体是一类在低温下具有零电阻和完全磁场排斥效应的材料。

自1908年Kamerlingh Onnes首次发现汞在低温下表现出超导性质以来,超导体一直引起科学家们的极大兴趣。

超导体不仅有着丰富多样的性质,还具有广泛的应用前景。

本文将介绍超导体的性质,并探讨其在不同领域的应用。

一、超导体的性质1. 零电阻性超导体的最显著特点是其在超导态下呈现出零电阻。

当超导体被冷却到临界温度以下,电流可以无阻力地通过超导体。

这种零电阻性使超导体在输电领域具有巨大的应用潜力,可以大大提高电能传输的效率。

2. 完全磁场排斥效应超导体在超导态下还表现出完全磁场排斥效应,即磁场线无法穿过超导体的内部,只能绕过。

这种磁场排斥性使超导体成为制造强大磁场的理想材料。

超导磁体广泛应用于磁共振成像(MRI)、粒子加速器等领域。

3. 迈斯纳效应超导体在外加磁场下,磁感应强度(磁场强度)发生量子化现象,即迈斯纳效应。

迈斯纳效应是超导体量子性质的重要表现,也是超导电子学的基础。

二、超导体的应用1. 超导电能传输超导体的零电阻性质使其成为高效率电力传输的理想材料。

将超导电缆应用于电力输送系统,可以降低能源损耗和环境污染。

此外,超导电缆还具有高带宽特性,可以满足现代信息传输的需求。

2. 超导磁体超导磁体是超导体应用最广泛的领域之一。

超导磁体可以产生强大的磁场,用于磁共振成像、粒子加速器、磁悬浮交通等领域。

与传统铜线磁体相比,超导磁体不仅能够提供更高的磁场强度,还可以显著减少能源消耗。

3. 超导电子器件超导体的零电阻性和迈斯纳效应为超导电子器件的发展提供了契机。

超导量子干涉器件、超导量子比特等在未来量子计算和量子通信领域具有巨大的潜力。

4. 其他领域应用超导体还可以应用于能源存储、磁悬浮列车、地下磁铁等领域。

超导能源存储技术可以高效储存电能,为电网调峰、新能源平稳供应提供支持。

磁悬浮列车利用超导磁体产生的强大磁场实现列车的悬浮和运行。

第一类和第二类超导体的定义

第一类和第二类超导体的定义

第一类和第二类超导体的定义
超导体是指在低温下电阻为零的材料。

超导体的发现和研究是物理学领域的一项重要成果,也是现代科技的重要基础。

根据超导体的性质和特点,可以将其分为第一类和第二类超导体。

第一类超导体是指在超导状态下,磁场完全被排斥,磁通量量子化现象不明显的超导体。

第一类超导体的超导性质是由于电子和晶格之间的相互作用导致的。

在超导状态下,电子形成了一种类似于玻色子的凝聚态,从而导致电阻为零。

第一类超导体的典型代表是铅、铝等金属。

第二类超导体是指在超导状态下,磁场只能在材料内部存在,而在材料表面形成一层磁场。

此外,磁通量量子化现象明显,磁通量量子数为整数倍的超导体。

第二类超导体的超导性质是由于电子和磁场之间的相互作用导致的。

在超导状态下,电子形成了一种类似于玻色子的凝聚态,从而导致电阻为零。

第二类超导体的典型代表是铜氧化物超导体。

第一类和第二类超导体的区别在于磁场的行为。

在第一类超导体中,磁场完全被排斥,而在第二类超导体中,磁场只能在材料内部存在。

此外,第二类超导体的磁通量量子化现象明显,而第一类超导体的磁通量量子化现象不明显。

超导体是一种在低温下电阻为零的材料。

根据超导体的性质和特点,
可以将其分为第一类和第二类超导体。

第一类超导体的超导性质是由于电子和晶格之间的相互作用导致的,而第二类超导体的超导性质是由于电子和磁场之间的相互作用导致的。

第一类和第二类超导体的区别在于磁场的行为。

超导体应用

超导体应用

(高怡祥)
科学家新近创造出一种新的物质形态,并预言它将帮助人类做出下一代超导体,以用于发电和提高火车的工作效率等多种用途。
这种新的物质形态称作“费密冷凝体”,是已知的第六种物质形态。前五种物质形态分别为气体、固体、液体、等离子体和1995年刚刚发明的玻色一爱因斯坦冷凝体。
1986年
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K(﹣240.15)的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K(﹣235.15℃)液氢的“温度壁垒”(40K)被跨越。
来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。
其次是超导体具有完全抗磁性。超导体处于超导状态时,其内部的磁通密度为零,而且与到达超导体的路径无关。
超导体的完全抗磁性与理想导电性两者既相互独立又有紧密联系。以某种意义上讲,完全抗磁性比理想导电性更为基本。
二、超导体的应用:
超导体的应用最主要的是做电磁铁的超导线圈以产生强磁场。和传统的相比,具有体积小、设备简单、省电等优点。超导体也在高能加速器、受控热核反应实验中得到广泛的应用。在医学上超导电磁铁还用作“核磁共振波谱仪”的关键部件。利用核磁共振技术成像可早期诊断癌症,具有准确率高、无辐射伤害、诊断面广、使用方便等优点。
简介
高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。

超导体的性质及应用

超导体的性质及应用

超导体的性质及应用超导体是一种在极低温下(通常小于零下196度)能够完全无阻力地导电的材料。

超导体具有一系列特殊的性质,而这些性质也为其在现代科技中的应用带来了极大的潜力。

本文将介绍超导体的基本性质以及其在各个领域中的应用。

一、超导体的基本性质1. 零电阻在极低温下,超导体能够完全无阻力地导电。

此时,电流会在超导体内部的电子对上流动,而这些电子对能够有效地避免了电阻的产生。

同时,由于存在零电阻状态,超导体的能量损失也非常小,因此能够有效地减少能量的浪费。

2. 恒定磁通量超导体内部的磁通量是恒定的,不受外界磁场的影响。

这是由于超导体内部的电流会产生磁场,而这个磁场会抵消外部的磁场,从而使得超导体内部的磁通量保持不变。

3. 超导态和正常态超导体存在两种状态,分别为超导态和正常态。

在超导态下,电流能够无阻力地流动,而在正常态下,电流受到阻力的影响,会产生能量损耗。

超导体的这种双重状态使其在不同领域中的应用具有极大的灵活性。

二、超导体的应用1. 磁共振成像技术超导体能够恒定磁通量,因此被广泛应用于MRI(磁共振成像)技术中。

MRI技术利用磁场和无线电波来创建图像,而超导体是产生这种强磁场的关键材料。

目前,MRI技术已经成为医学诊断的重要手段,为人们提供了高清晰度的内部图像。

2. 超导电缆超导电缆利用超导体的零电阻特性,将电流无损耗地传输。

由于超导电缆不仅能够减少能量的损失,而且还能够极大地提高能量传输的效率,因此被广泛应用于输电和通信领域。

例如,一些国际能源大项目中需要长距离、高电流密度输电,而超导电缆正是实现这一目标的重要手段。

3. 量子计算量子计算是一种基于量子力学原理的计算方式,其中的基本单位是量子比特(qubit)。

超导体能够很好地充当qubit,因为其双重状态使其有较好的干净度、长寿命和易于量子操控等特点。

目前,量子计算被看作是未来计算技术的发展方向之一,而超导体则是量子计算中不可或缺的重要材料。

超导体的电磁性质

超导体的电磁性质

§5 超导体的电磁性质1本节主要内容: 1. 超导体特性之一:零电阻 2. 超导体特性之二:完全抗磁性(Meissner 迈斯纳效应) 3. 超导体的电动力学性质 4. 超导环的磁通俘获和磁通量子化现象2气体液化与低温环境的获得 1892年,发明了杜瓦瓶(中间抽真空,内胆涂有银 的双层玻璃瓶)  1899年,杜瓦(James Dewar)在伦敦皇家研究所成 立100周年庆典上,展示氢气(H2)的液化实验3水银超导体的发现Heike Kamerlingh Onnes (1853-1926) Dutch Physicist、  1882年,进入Leiden大学,研 究低温气体;  1908年,将液体的温度降低到 大约1K,成功将氦气液化;  1911年,开始研究金属在极 低温下的性质;  1912年,发现了水银的超导 电性,  1913年,获Nobel奖4The discovery of superconductivityNotebook 56, 8 April, 1911 Notebook 57, 26 October, 1911“Mercury[‘s resistance] practically zero [at 3 K] ……repeated with gold…”2014/11/5The historic plot. Superconducting transition at 4.2k in mercury5Meissner effectFritz Walther Meissner (1882-1974) 1933 Robert Ochsenfeld (1901-1993)German physicists2014/11/5Perfect diamagnetism below Tc6Londons’ theoryHeinz Fritz Wolfgang London London (1907-1970) (1900-1954) Londons’ Equation: (1935)Ampère's law:German Physicists2014/11/5 7Ginzburg-Landu theoryLev Landau (1908-1968) Vitaly Ginzburg (1916-2009) 1950 The free energy density:Complex order parameterU(1) gauge symmetry broken Soviet physicists2014/11/5其它几种超导体 元素 Al(铝) In(铟) Sn(锡) Pb(铅) Nb(铌) 1911 超导转变温度 1.2 K 3.4 K 3.7 K 7.2 K 9.2 K 198691986年,Muller和Bednorz发现:陶瓷氧化物 LaBaCuO的转变温度可达到35K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超导理论
1911年夏天,当昂纳斯的两个研究生在做低温实验时,偶然发现某些金属在极低温环境中,金属的电阻突然消失了。

这一发现轰动了全世界的科学家,大家纷纷想要揭开超导的奥秘,因为只有了解了超导现象的微观机理,才能使它为人类作出更大的贡献。

1955年金秋季节,巴丁与他的研究生罗伯特·施里弗,以及另一位年轻的博士利昂·库珀组成了一个探索超导现象微观机理的研究小组,开始朝这一神秘的领域进发。

最终创立一套完整的超导微观理论。

他们三人荣幸地分享了1972年度的诺贝尔物理学奖。

这一理论也以他们姓氏的头一个字母命名,称为“BCS理论”。

在很长一段时间内,超导材料的临界温度都在相当低的温度范围内徘徊,1986年,从瑞士苏黎士的IBM实验室传来了激动人心的消息:钡镧铜氧化物的临界温度达到30K。

根据BCS理论,超导最高临界温度不会超过40K,而现在却早已远远地超过了这一极限,必须寻找新的理论。

美国物理学家菲利普·安德森也提出了一个新的超导理论,他一反“库珀对”的常规,认为电子不是互相吸引而是互相排斥,正是这种排斥才使电子与电子挨近了,结合了。

中国复旦大学的陶瑞宝也提出了一个超导的激子渗流理论,这一理论认为,处于超导态下的电子具有特殊的能带结构,这些电子形成的电子波在晶体中互相迭加,当在这晶体中通以电流时,电子就会绕过晶体中的点阵,沿电子波迭加的方向运动,不会产生阻力,由此便产生了超导现象。

超导现象真正的微观机理还是一个谜,解开这个谜将是人类的又一大进步。

1 超导体的性质
超导现象的发现
超导是某些金属或合金在低温条件下出现的一种奇妙的现象。

19世纪末,低温技术获得了显著的进展,曾一向被视为“永久气体”的空气被液化了。

1877年氧气被首先液化,液化点也就是我们所说的常压下沸点是-183℃(90K)。

随后人们又液化了液化温度是-196℃的氮气。

1898年杜瓦(J.Dewar)第一次把氢气变成了液体氢,液化温度为-253℃,他并发明了盛放液化气的容器——杜瓦瓶。

最先发现这种现象的是荷兰物理学家卡麦林·昂纳斯。

1908年卡麦林·昂纳斯液化氦(-259℃)成功,从而达到一个新的低温区(4.2K以下),他在这样的低温区内测量各种纯金属的电阻率。

1911年夏天,当昂纳斯的两个研究生在做低温实验时,偶然发现某些金属在极低温环境中,金属的电阻突然消失了。

昂纳斯接着用水银做实验,发现水银在4.1K时(约相当于-269℃),出现了这种超导现象;不但纯汞,而且加入杂质后,甚至汞和锡的合金也具有这种性质。

他把这种性质称为超导电性。

他又用铅环做实验,九百安培的电流在铅环中流动不止,两年半以后仍旧毫无衰减。

1932年霍尔姆和卡茂林-昂尼斯都在实验中发现,隔着极薄一层氧化物的两块处于超导状态的金属,没有外加电压时也有电流流过。

1933年荷兰的迈斯纳和奥森菲尔德共同发现了超导体的一个极为重要的性质。

超导体的基本性质
1、零电阻效应
在超导条件下,电阻等于零是超导体的最显著的特性。

如果将一金属环放在磁场中,突然撤去磁场,在环内就会出现感生电流。

金属环具有电阻R和电感L。

由于焦耳热损耗,感生电流会逐渐衰减到零,衰减速度与L和R的比值有关,L/R的值越大,衰减越慢。

如果圆环是超导体,则电阻为零而电感不为零;因此电流会毫不衰减地维持下去。

这种“持续电流”已在多次实验中观察到。

测量超导环中持续电流变化的实验给出,样品铅的电阻率小于3.6×10-2欧姆厘米,它比铜在室温下的电阻率1.6×10-6欧姆厘米还要小4.4×1016倍。

这个实验结果表明超导体的电阻率确实是零。

临界温度T c ——超导体由正常态转变为超导态的温度。

临界磁场B C ——对于超导体,只有当外加磁场小于某一量值时,才能保持超导电性,否则超导态即被破坏,而转变为正常态。

这一磁场值称为临界磁场B C (临界磁感应强度),有时用H C (临界磁场强度)表示。

临界磁场与温度的关系为
H C =H o [1-(T/T c )2] 式中H o 为0K 时的临界磁场。

同样,超导体也存在一临界电流I C 。

零电阻测试装置:
零电阻现象可以采用四引线法,通过样品的电阻随温度的变化来进行测量。

2、迈斯纳效应(理想抗磁性):
这是超导体的另一个特征。

1933年德国物理学家迈斯纳(W.Meissner )和奥森菲尔德(R.Ochsebfekd )对锡单晶球超导体做磁场分布测量时发现,在小磁场中把金属冷却进入超导态时,体内的磁力线一下被排出,磁力线不能穿过它的体内,也就是说超导体处于超导态时,体内的磁场恒等于零。

这说超导体不是电阻无限小的理想导体。

因为对于电阻率ρ无限小的理想导体,根据J =σE=E/ρ,当ρ为0时,E必须为0才能使J保持有限。

这就是说对理想导体在没有电场E的条件下仍可以维持稳恒的电流密度。

另一方面,按麦克斯韦方程之一
E B t
⨯-∇=∂∂ 既然E恒为0,势必0=∂∂B t
,磁感应强度B不随时间变化,或者说,在理想导体中磁感应通量不可能改变。

但迈斯纳效应与其不一致。

下面的图说明理想导体与超导体的区别。

相关文档
最新文档