2015-2016年甘肃省张掖四中八年级上学期数学期中试卷与答案
甘肃省 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去3.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3个B. 2个C. 1个D. 0个6.如图,△ABC≌△DEC,则结论 BC=EC,∠DCA=∠ACE,CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个7.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A. 2B. 3C. 4D. 58.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.角平分线上的点到______的距离相等.12.已知三角形两边长分别为4和9,则第三边的取值范围是______ .13.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为______ ,对应边分别为______ .14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是______(填上适当的一个条件即可)16.如图,AC⊥BD于O,BO=OD,图中共有全等三角形______对.17.已知△ABC≌△A′B′C′,△ABC的周长为12cm,AB=3cm,BC=4cm,则A′C′=______cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为______ .19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于______度.20.如图,E点为△ABC的边AC中点,CN∥AB,过E点作直线交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB= ______ cm.三、解答题(本大题共7小题,共60.0分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.25.如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P.求证:点P到三边AB,BC,CA所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC中,AD是△ABC中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.__________________.答案和解析1.【答案】A【解析】解:A、6,6,11满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC≌△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD≌△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP≌△BDP从而可得CP=DP,∴可得△OCP≌△ODP同理可证得△APO≌△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD【解析】解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.由全等且点A和点C对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB和△AOD中,,∴△AOB≌△AOD(SAS),∴AB=AD;②∵在△BOC和△DOC中,,∴△BOC≌△DOC(SAS),∴BC=DC;③∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB和△AOD中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB≌△AOD.同样的道理推出△BOC≌△DOC.再由AB=AD,BC=DC,AC为公共边,推出△ABC≌△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC≌△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x和5x,利用周长可求得x的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,△CHE≌△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE≌△AME,得出AM=CN,那么就可求AB的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O为圆心,以任意长为半径,画弧分别与OA、OB相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3时,腰为(13-3)÷2=5,∴以3,5,5为边能构成三角形.故另外两边长为5,5.【解析】由于长为3的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE≌△EBD.∴∠CEA=∠D.∵∠D+∠DEB=90°,∴∠CEA+∠DEB=90°.即线段CE与DE的大小与位置关系为相等且垂直.【解析】先利用HL判定△CAE≌△EBD,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE与DE的大小与位置关系为相等且垂直.此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意做题格式.25.【答案】证明:如图,过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,∵△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P,∴PF=PG,PG=PH,∴PF=PG=PH,∴点P到三边AB、BC、CA所在直线的距离相等.【解析】过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26.【答案】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【解析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD≌△ACD;△BDE≌△CDF;△ADE≌△ADF【解析】解:①△ABD≌△ACD,②△BDE≌△CDF,③△ADE≌△ADF;故答案为:△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF;∵AD是△ABC中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3对全等的三角形;(2)找出满足SAS的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。
2015-2016学年八年级上数学期中考试试卷(2)含答案
2015~2016学年第一学期中考试初二数学试卷试卷说明:本次考试满分100分,考试时间 100分钟。
一、精心选一选(每小题3分,共30分)1.计算33-的结果是( ).A .9-B .27-C .271D .271- 2.若分式221x x -+的值为0,则x 的值为( ). A .2 B .-2 C .12D .-123.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a a C . 22)2(422--=-+a a a a D .a b a b --=--11 4.下列条件中,不能..判定两个直角三角形全等的是( ). A .两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D .一个锐角和斜边对应相等5. 计算32a b(-)的结果是( ). A. 332a b - B. 336a b - C. 338a b- D. 338a b6.如图,AC 与BD 交于O 点,若OA=OD ,用“SAS ”证明△AOB ≌△DOC ,还需条件为 .( ) A. AB=DC B.OB=OCC. ∠A=∠DD. ∠AOB=∠DOC7.下列各式变形中,是因式分解的是( )2015.11A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)8.下列命题中正确的有 ( )个①三个内角对应相等的两个三角形全等; ②三条边对应相等的两个三角形全等; ③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. A .1B .2C .3D .49.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ;⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2.A .2个B .3个C .4个D .5个10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )① ②A .B .C . D二.、耐心填一填(每小题2分,共16分)11.当m_______时,(3- m)0=1.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为 米. 13.当x _________时,分式12x -有意义. 14.若2214a b -= ,12a b -= ,则a b +的值为 .15.若分式)3)(2(2+--a a a 的值为0,则a = .16题图 17题图16.如图,在△ABC 中,∠A=900,BD 平分∠ABC ,AC=8cm ,CD=5cm ,那么D 点到直线BC 的距离是 cm .17.如图,把△ABC 绕C 点顺时针旋转30°,得到△A ’B ’C , A ’B ’交AC 于点D ,若∠A ’DC=80°,则∠A= °.18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-.有下列命题:① 1(3)3⊗-=; ② a b b a ⊗=⊗; ③ 方程1()102x -⊗=的解为12x =;其中正确命题的序号是 .(把所有..正确命题的序号都填上).三、解答题(54分)CB'A A'BDABCD19.把下列各式因式分解(本小题满分10分)(1)3222a a b ab -+ (2) 3a 2﹣12 解: 解:20.已知:如图, A 、B 、C 、D 四点在同一直线上, AB =CD ,AE ∥BF 且AE =BF .求证: EC =FD .(5分) 证明: 21.计算2m n mm n n m ++-- (5分)EAC B DF22.先化简,再求值:2112()3369mm m m m +÷-+-+,其中9m =.(5分)23.解方程:3111x x x -=-+.(5分) 解:初中 年级 班 姓名 学号装订线内请不 要答题24.列方程解决问题(5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25. 已知2310x x -+=求221x x +的值(5分)26.已知: 如图, 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB. 若︒=21α, ∠ABC = 32°, 且AP 交BC 于点P, 试探究线段AB, AC 与PB 之间的数量关系, 并对你的结论加以证明; (6分)ABCP27.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,求证:AE=AC.(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7,求NC 的长.(8分)图1图2ABD MCNEBCAD初二数学试题参考答案及评分标准一、选择题(共10个小题,每小题3分,共30分) 题号 123 4 5 6 7 8 9 10 答案 CA CACBDABC二、填空题(共10个小题,每小题2分,共20分). 11.m ≠3 12. 8-102.5× 13. 2x ≠ 14.21 15. -216. 3 17. 70° 18. (1)三、解答题(共50分)19.(1))(2b a a - (2)3(a+2)(a-2) 20.略21.解:.原式=2m n mm n m n+--- . =2m n mm n +--……..3分. =n mm n --……5分.=1- ……6分22.化简得:33-+m m ,值为0.5 23.. 解:去分母,得.)1)(1()1(3)1(-+=--+x x x x x. 去括号,得13322-=+-+x x x x移项,得 31322--=--+x x x x .....-2x=-4x=2 .......经检验:x=2是原方程的解. .....∴原方程的解为:x=224. 解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ...1分据题意:12001200101.5x x =+ ..... 3分解得: 40x = 4分经检验:40x =是原方程的解. ..... 5分 所以1.560x =答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品、25. 726.关系:AB=AC+PB 证明:略 27.(1)略 (2)5.5辅助线:延长BA,MN 交与E 点,做AB 的平行线交NM的延长线于FEF。
2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510
12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
2015-2016学年八年级上学期期中考试数学试卷
2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………
甘肃省张掖市八年级上学期期中数学试卷
甘肃省张掖市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·梧州模拟) 已知△ABC两条边的长分别为5和8,若第三边长为5的倍数,则第三边的长度是()A . 5B . 5或10C . 10或15D . 152. (2分)(2019·大渡口模拟) 下列命题是假命题的是()A . 三角形的三条高交于一点B . 直角三角形有三条高C . 三角形的一条中线把三角形的面积分成相等的两部分D . 三角形的三条中线交于一点3. (2分) (2016八上·安陆期中) 我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十二边形至少再钉上()A . 11根B . 10根C . 9根D . 8根4. (2分) (2020八下·温州月考) 如图,圆O是△ABC的外接圆,AC=BC,AD平分∠BAC交圆⊙于点D,连接BD,若sin∠CBD= ,BD=5,则AD的长为()A . 10B . 11C . 4D . 55. (2分)如图,A点坐标为(5,0),直线y = x + b(b>0)与y轴交于点B,连接AB,=75°,则b的值为()A . 3B .C . 4D .6. (2分) (2015八上·丰都期末) 一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A . 5B . 5或6C . 5或7D . 5或6或77. (2分)已知如图,两个三角形全等,则∠1等于()A . 73°B . 57°C . 50°D . 60°8. (2分)直角三角形的一个锐角是40°,则另一个锐角的度数是()A . 50°B . 60°C . 70°D . 90°9. (2分) (2020八上·龙岩期末) 如图,中,的垂直平分线交的平分线于点,过作于点,若,,则()A .B .C .D .10. (2分)(2017·裕华模拟) 如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A . 1:1:1B . 1:2:3C . 2:3:4D . 3:4:5二、填空题 (共8题;共8分)11. (1分)等腰三角形的两边长分别为4和8,则此等腰三角形的周长为________.12. (1分)(2018·南通) 正边形的一个内角为135° ,则 ________.13. (1分) (2018八上·江阴期中) 如图,在△ABC中,AB=AC, DE垂直平分AC,若∠B=40°,则∠BAD的度数为________;14. (1分) (2019七下·江城期末) 如图,△ABC沿直线AB向下平移可以得到△DEF,如果AB=8,BD=5,那么BE等于________。
2015—2016学年八年级上学期数学期中试卷(5套)
2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
甘肃省张掖市2015-2016学年八年级数学上册期中试题
2015-2016学年度第一学期期中考试试卷初二数学第I 卷 (选择题 共30分) 一、选择题(本大题共10小题,每小题3分,共30分)。
1.4的平方根是( ).A.2 B.±2 C.-2 D.4.2.不在直线y =-2x -3上的点是( )A .(0,-3)B .(0.5,-4)C .(2,-7)D .(-1,-5)3.下列数中是无理数的是( )A .∙∙3212.0B .2πC .0D .722 4.满足下列条件的∆A B C,不是直角三角形的是( ) A . ∠A : ∠B : ∠C =3:4:5 B . ∠A -∠B = ∠CC . a 2-b 2=c 2D . a :b :c =7:24:255.估计的值在( )之间.A . 1与2之间B . 2与3之间C . 3与4之间D . 4与5之间 6.已知函数y=(1-3m)x 是正比例函数,且y 随x 的增大而增大,那么m 的取值范围是( )A 、m >31 B 、m <31 C 、m >1 D 、m <1 7.直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a >1),那么所得的图案与原来图案相比( )A .形状不变,大小扩大到原来的a 2倍B .图案向右平移了a 个单位C .图案向上平移了a 个单位D .图案沿纵向拉长为a 倍8.点P 在x 轴的下侧, y 轴的左侧, 距离每个坐标轴都是3个单位长度,则点P 的坐标为( )A . (3,3)B . (-3,3)C . (-3,-3)D . (3,-3).9.点M(-3,4)离原点的距离是( )个单位长度.A 、3B 、4C 、5D 、710.如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A. a 3 B. ()a 21+ C. a 3 D.a 5第II 卷 (非选择题 共120分)二、填空题(本大题共10小题,每小题4分,共40分) 11.36的算术平方根是_________;12.若点A (a,b )在第三象限,则点C (-a +1,b -2)在第 象限;13. 已知点A(x ,2)和B(3,y)关于x 轴对称,则x+y= . ;14.一个正数的平方根是2a -1与-a+2,则a =_________;15. 的相反数是 ;--2的绝对值是 ;-0.5的倒数是 ;16.有一个边长为1米的正方形洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。
2015—2016学年度第一学期八年级数学(上)期中测试试卷附答案
第1题图第13题图第12题图2015—2016学年度第一学期八年级数学(上)期中测试试卷(考试用时:120分钟 ; 满分: 100分)(共:10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是: 点M (3,2)关于x 轴对称的点的坐标为 :A.(—3,2)B.(-3,-2)C. (3,-2)D. (2,-3) 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为:A. 5或7B. 7或9C. 7D. 9 等腰三角形的一个角是80°,则它的底角是:A. 50°B. 80°C. 50°或80°D. 20°或80° 如图:OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,CD=3㎝,则CE 的长度为:A.2㎝B.3㎝C.4㎝D.5㎝如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取三根木棒,能组成三角形的个数为:A .1个B .2个C .3个D .4个 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ;(2)AD ⊥BC ;(3)∠B=∠C ;4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于BDC 的度数为:A.72°B.36°C.60°D.82°10.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题:(本大题:10小题,每小题2分,共20分.请把答案填写在相应题目后的横线上)11. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ ,12.如图:ΔABE ≌ΔACD ,AB=10cm ,∠A=60°,∠B=30°,则AD=_____ cm ,∠ADC=_____。
2015—2016学年度上学期期中检测八年级数学试卷(附答案答题卡)
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
甘肃省八年级(上)期中数学试卷(含答案)(可编辑修改word版)
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10 小题,共30.0 分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B. 带②去C. 带③去D. 带①和②去3.下列图形中有稳定性的是()A.正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3 个B. 2 个C. 1 个D. 0 个6.如图,△ABC➴△DEC,则结论①BC=EC,②∠DCA=∠ACE,③CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A.1 个B. 2 个C. 3 个D. 4 个7.如图,在∠AOB 的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A.2B.3C.4D.58.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2 倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810. 如图,△ABN➴△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A. 120 ∘B. 70 ∘C. 60 ∘D. 50 ∘二、填空题(本大题共10 小题,共30.0 分)11.角平分线上的点到的距离相等.12.已知三角形两边长分别为4 和9,则第三边的取值范围是.13.如图所示,AC,BD 相交于点O,△AOB➴△COD,∠A=∠C,则其它对应角分别为,对应边分别为.14.如图示,△ABC 中,∠C=90°,AD 平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.图示,点B 在AE 上,∠CBE=∠DBE,要使△ABC➴△ABD,还需添加一个条件是(填上适当的一个条件即可)16.如图,AC⊥BD 于O,BO=OD,图中共有全等三角形对.17.已知△ABC➴△A′B′C′,△ABC 的周长为12cm,AB=3cm,BC=4cm,则A′C′= cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为.19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.20.如图,E 点为△ABC 的边AC 中点,CN∥AB,过E 点作直线交AB 与M 点,交CN于N 点,若MB=6cm,CN=4cm,则AB= cm.三、解答题(本大题共7 小题,共60.0 分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F 在BC 上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.25.如图,△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于P.求证:点P 到三边AB,BC,CA 所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC 中,AD 是△ABC 中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.①②③.答案和解析1.【答案】A【解析】解:A、6,6,11 满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16 不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10 不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14 不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A 选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B 选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C 选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D 选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC➴△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3 个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD➴△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP➴△BDP从而可得CP=DP,∴可得△OCP➴△ODP同理可证得△APO➴△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC 不全等;图乙符合SAS 定理,即图乙和△ABC 全等;图丙符合AAS 定理,即图丙和△ABC 全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900 度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360 度,多边形的内角和比它的外角和的2 倍还大180°,则多边形的内角和是2×360+180=900 度;n 边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN➴△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN 的度数,再利用全等三角形的性质得出∠MAC 的度数.此题主要考查了全等三角形的性质,得出∠BAN 的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD【解析】解:∵△AOB➴△COD,∠A=∠C,∴A 和C、B 和D、O 和O,分别为对应点,∴对应角为∠B 和∠D,∠AOB 和∠COD,对应边分别为:OA 和OC,OB 和OD,AB 和CD,故答案为:∠B 和∠D,∠AOB 和∠COD;OA 和OC,OB 和OD,AB 和CD.由全等且点A 和点C 对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB 于E,∵AD 平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD 的面积= ×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC 和△ABD 中∴△ABC➴△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS 推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB 和△AOD 中,,∴△AOB➴△AOD(SAS),∴AB=AD;②∵在△BOC 和△DOC 中,,∴△BOC➴△DOC(SAS),∴BC=DC;③∵在△ABC 和△ADC 中,,∴△ABC➴△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB 和△AOD 中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB➴△AOD.同样的道理推出△BOC➴△DOC.再由AB=AD,BC=DC,AC 为公共边,推出△ABC➴△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC 的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC➴△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x 和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x 和5x,利用周长可求得x 的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E 是AC 中点,∴AE=CE,而∠AEM=∠CEN,△CHE➴△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE➴△AME,得出AM=CN,✲么就可求AB 的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O 为圆心,以任意长为半径,画弧分别与OA、OB 相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF 的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3 时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3 时,腰为(13-3)÷2=5,∴以3,5,5 为边能构成三角形.故另外两边长为5,5.【解析】由于长为3 的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF➴△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF➴△DCE,来得出∠A=∠D 的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE ➴△EBD .∴∠CEA =∠D .∵∠D +∠DEB =90°,∴∠CEA +∠DEB =90°.即线段 CE 与 DE 的大小与位置关系为相等且垂直.【解析】先利用 HL 判定△CAE ➴△EBD ,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE 与DE 的大小与位置关系为相等且垂直. 此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意做 题格式.25. 【答案】证明:如图,过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,∵△ABC 的∠ABC 的外角的平分线 BD 与∠ACB 的外角的平分线 CE 相交于 P , ∴PF =PG ,PG =PH ,∴PF =PG =PH ,∴点 P 到三边 AB 、BC 、CA 所在直线的距离相等.【解析】过点 P 作 PF ⊥BC 于 F ,PG ⊥AB 于 G ,PH ⊥AC 于 H ,然后根据角平分线上的点到角的两边的距离相等可得 PF=PG=PH .本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26. 【答案】证明:∵∠DCA =∠ECB ,∴∠DCA +∠ACE =∠BCE +∠ACE ,∴∠DCE =∠ACB ,∵在△DCE 和△ACB 中DC = AC ∠DCE = ∠ACB , C E = CB∴△DCE ➴△ACB , ∴DE =AB . 【解析】求出∠DCE=∠ACB ,根据 SAS 证△DCE ➴△ACB ,根据全等三角形的性质即可推出答案.{本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD➴△ACD;△BDE➴△CDF;△ADE➴△ADF【解析】解:①△ABD➴△ACD,②△BDE➴△CDF,③△ADE➴△ADF;故答案为:△ABD➴△ACD,△BDE➴△CDF,△ADE➴△ADF;∵AD 是△ABC 中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED 与Rt△AFD 中,,∴Rt△AED➴Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3 对全等的三角形;(2)找出满足SAS 的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。
甘肃省张掖四中2015-2016学年八年级上学期期中数学试卷【解析版】
2015-2016学年甘肃省张掖四中八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分).1.4的平方根是( )A.2 B.±2 C.﹣2 D.42.不在直线y=﹣2x﹣3上的点是( )A.(0,﹣3)B.(0.5,﹣4)C.(2,﹣7)D.(﹣1,﹣5)3.下列数中是无理数的是( )A.B.C.0 D.4.满足下列条件的△ABC,不是直角三角形的是( )A.∠A:∠B:∠C=3:4:5 B.∠A﹣∠B=∠CC.a2﹣b2=c2 D.a:b:c=7:24:255.估计的值在( )之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是( )A.m>B.m<C.m>1 D.m<17.直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a(a>1),那么所得的图案与原来图案相比( )A.形状不变,大小扩大到原来的a2倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案沿纵向拉长为a倍8.点P在x轴的下侧,y轴的左侧,距离每个坐标轴都是3个单位长度,则点P的坐标为( ) A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)9.点M(﹣3,4)离原点的距离是多少单位长度( )A.3 B.4 C.5 D.710.如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )A. a B.(1+)a C.3a D. a二、填空题(本大题共10小题,每小题4分,共40分)11.的算术平方根是__________.12.若点A(a,b)在第三象限,则点C(﹣a+1,b﹣2)在第__________象限.13.已知点A(x,2)和B(3,y)关于x轴对称,则x+y=__________.14.若一正数的平方根是2a﹣1与﹣a+2,则a=__________.15.的相反数是__________;﹣2的绝对值是__________;﹣0.5的倒数是__________.16.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为__________米.17.若有意义,则a的取值范围是__________.18.一次函数y=﹣x+3的图象与x轴的交点坐标是__________,与y轴的交点坐标是__________.19.当k=__________时,函数y=(k+3)x﹣5是关于x的一次函数.20.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简﹣|c﹣a ﹣b|的结果__________.三、解答题1(本大题共3小题,共20分)21.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.22.函数y=kx+b的图象平行于直线y=2x,且经过点(0,3),求此函数的解析式.23.若x、y都是实数,且y=++8,求x+3y的立方根.四、解答题2(本大题共3小题,共24分)24.如图,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=6cm,BC=8cm.求:①AB的长;②斜边AB上的高CD的长.25.在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.26.如图,四边形ABCD中,AB=4,BC=13,CD=12,DA=3,∠A=90°,求四边形ABCD 的面积.五、解答题3(本大题共2小题,共16分)27.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.28.如果y+3与x﹣2成正比例,且x=1时,y=1.(1)写出y与x之间的函数关系式;(2)画出(1)中函数的图象;(3)求当x=0时,y的值和y=0时,x的值.六.探究题(本大题共2小题,共20分)29.如图,直线AB与y轴,x轴的交点为A,B两点,点A,B的纵坐标、横坐标如图所示.在x轴上是否存在一点p,使S△PAB=3?若存在,求出P点的坐标,若不存在,说明理由.30.观察下列勾股数:第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1;…观察以上各组勾股数的组成特点,你能求出第七组的a,b,c各应是多少吗?第n组呢?2015-2016学年甘肃省张掖四中八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分).1.4的平方根是( )A.2 B.±2 C.﹣2 D.4【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:4的平方根是±2.故选B.【点评】本题考查了平方根的应用,关键是注意:一个正数有两个平方根,它们互为相反数.2.不在直线y=﹣2x﹣3上的点是( )A.(0,﹣3)B.(0.5,﹣4)C.(2,﹣7)D.(﹣1,﹣5)【考点】一次函数图象上点的坐标特征.【分析】只需把每个点的横坐标即x的值分别代入y=﹣2x﹣3上,计算出对应的y值,然后与对应的纵坐标比较即可.【解答】解:A、当x=0时,y=﹣3,即(0,﹣3)在直线y=﹣2x﹣3上,故本选项不符合题意;B、当x=0.5时,y=﹣4,即(0.5,﹣4)在直线y=﹣2x﹣3上,故本选项不符合题意;C、当x=2时,y=﹣7,即(2,﹣7)在直线y=﹣2x﹣3上,故本选项不符合题意;C、当x=﹣1时,y=﹣1,(﹣1,﹣5)不在直线y=﹣2x﹣3上,故本选项符合题意.故选:D.【点评】本题考查了一次函数图象上点的坐标特征.在这条直线上的各点的坐标一定适合这条直线的解析式.3.下列数中是无理数的是( )A.B.C.0 D.【考点】无理数.【专题】存在型.【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0,是有理数;是无理数.故选B.【点评】本题考查的是无理数的概念,解答此类问题时一定要注意π是无理数.4.满足下列条件的△ABC,不是直角三角形的是( )A.∠A:∠B:∠C=3:4:5 B.∠A﹣∠B=∠CC.a2﹣b2=c2 D.a:b:c=7:24:25【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:∠A:∠B:∠C=3:4:5,设∠A、∠B、∠C分别为3x、4x、5x,则3x+4x+5x=180°,解得,x=15°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;∠A﹣∠B=∠C,则∠A=∠B+∠C,∠A=90°,△ABC是直角三角形;a2﹣b2=c2则a2=b2+c2△ABC是直角三角形;72+242=252,△ABC是直角三角形,故选:A.【点评】本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.估计的值在( )之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.【解答】解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.【点评】此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹比法”是估算的一般方法,也是常用方法.6.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是( )A.m>B.m<C.m>1 D.m<1【考点】正比例函数的定义.【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.7.直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a(a>1),那么所得的图案与原来图案相比( )A.形状不变,大小扩大到原来的a2倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案沿纵向拉长为a倍【考点】坐标确定位置.【分析】由题意知,如果是一个长方形,一个顶点在原点,另有两个点的坐标都在坐标轴上,每个点的坐标分别乘以正数a(a>1),那么相当于长和宽都变为原来的a倍,所得的图案与原来图案相比,形状不变,大小扩大到原来的a2倍.【解答】解:图案上各个点的横坐标和纵坐标分别乘以正数a得到的图案与原图案是以原点为位似中心,位似比为a2的位似图形,故选A.【点评】本题涉及到的知识点为:横坐标和纵坐标分别乘以正数a(a>1),相当于图形的边长扩大为原来的a倍,因而是形状不变,大小扩大到原来的a2倍.8.点P在x轴的下侧,y轴的左侧,距离每个坐标轴都是3个单位长度,则点P的坐标为( ) A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)【考点】点的坐标.【分析】先判断出点P在第三象限,然后写出点P的坐标即可.【解答】解:∵点P在x轴的下侧,y轴的左侧,∴点P在第三象限,∵点P距离每个坐标轴都是3个单位长度,∴点P的坐标为(﹣3,﹣3).故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.点M(﹣3,4)离原点的距离是多少单位长度( )A.3 B.4 C.5 D.7【考点】两点间的距离公式.【专题】计算题.【分析】根据两点间的距离公式即可直接求解.【解答】解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选C.【点评】本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B (x2,y2),则这两点间的距离为AB=.10.如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为( )A. a B.(1+)a C.3a D. a【考点】平面展开-最短路径问题.【专题】压轴题.【分析】先将图形展开,再根据两点之间线段最短可知.【解答】解:将正方体展开,连接A、B,根据两点之间线段最短,AB==a.故选D.【点评】本题是一道趣味题,将正方体展开,运用勾股定理解答即可.二、填空题(本大题共10小题,每小题4分,共40分)11.的算术平方根是.【考点】算术平方根.【分析】根据算术平方根的意义知.=6,故可以得到的算术平方根.【解答】解:∵=6,故的算术平方根是.故填.【点评】此题主要考查了算术平方根的意义,不要忘记计算=6.12.若点A(a,b)在第三象限,则点C(﹣a+1,b﹣2)在第四象限.【考点】点的坐标.【分析】先确定出a、b的符号,然后再确定出﹣a+1和b﹣2的正负情况,从而可得到点C 所在的象限.【解答】解:∵点A(a,b)在第三象限,∴a<0,b<0.∴﹣a+1>0,b﹣2<0.∴点C在第四象限.故答案为:四.【点评】本题主要考查的是点的坐标,掌握各象限内点的横纵坐标的符号是解题的关键.13.已知点A(x,2)和B(3,y)关于x轴对称,则x+y=1.【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(x,2)和B(3,y)关于x轴对称,∴x=3,y=﹣2则x+y=3﹣2=1.故答案为:1.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.14.若一正数的平方根是2a﹣1与﹣a+2,则a=1或﹣1.【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.15.的相反数是;﹣2的绝对值是2;﹣0.5的倒数是﹣2.【考点】实数的性质.【分析】根据相反数、绝对值、倒数的定义回答即可.【解答】解:的相反数是;﹣2的绝对值是2;﹣0.5的倒数是﹣2.故答案为:;2;﹣2.【点评】本题主要考查的是相反数、绝对值、倒数的定义,掌握相反数、绝对值、倒数的定义是解题的关键.16.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米.【考点】勾股定理的应用.【分析】圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住.【解答】解:∵正方形的对角线长==,∴圆形盖半径至少为米.故答案为:.【点评】考查了勾股定理的应用,本题主要是运用勾股定理将正方形的对角线求出.17.若有意义,则a的取值范围是a≥﹣.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得4a+1≥0,再解即可.【解答】解:由题意得:4a+1≥0,解得:a≥﹣,故答案为:a≥﹣.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.18.一次函数y=﹣x+3的图象与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,3).【考点】一次函数图象上点的坐标特征.【分析】根据x轴上点的坐标特征,计算x,y为0时所对应的自变量的值即可得到一次函数与坐标轴的交点坐标.【解答】解:当y=0时,﹣x+3=0,解得x=3,所以一次函数与x轴的交点坐标是(3,0).当x=0时,y=﹣0+3,解得y=3,所以一次函数与y轴的交点坐标是(0,3).故答案为(3,0);(0,3).【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.19.当k=3时,函数y=(k+3)x﹣5是关于x的一次函数.【考点】一次函数的定义.【分析】根据一次函数的定义得到k2﹣8=1,且k+3≠0.【解答】解:∵函数y=(k+3)x﹣5是关于x的一次函数,∴k2﹣8=1,且k+3≠0.解得k=3.故答案是:3.【点评】本题考查了一次函数的定义.注意,一次函数的自变量x的系数不为零.20.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简﹣|c﹣a ﹣b|的结果2c﹣2b.【考点】二次根式的性质与化简.【分析】根据三角形三边关系得到a﹣b+c>0,c﹣a﹣b<0,根据二次根式的性质化简即可.【解答】解:∵a+c>b,∴a﹣b+c>0,∵a+b>c,∴c﹣a﹣b<0,∴﹣|c﹣a﹣b|=a﹣b+c﹣a﹣b+c=2c﹣2b,故答案为:2c﹣2b.【点评】本题考查的是二次根式的性质,性质:=|a|.三、解答题1(本大题共3小题,共20分)21.化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2﹣3+4=4﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.函数y=kx+b的图象平行于直线y=2x,且经过点(0,3),求此函数的解析式.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据图象平行可得出k=2,再将(0,3)代入可得出函数解析式.【解答】解:∵函数y=kx+b的图象平行于直线y=2x,∴k=2,将(0,3)代入y=2x+b得:3=b,∴函数解析式为:y=2x+3.【点评】本题考查待定系数法求函数解析式的知识,难度不大,关键是掌握两直线平行则k 值相同.23.若x、y都是实数,且y=++8,求x+3y的立方根.【考点】立方根;非负数的性质:算术平方根.【分析】首先根据二次根式的非负性可以求出x的值,再将其代入已知等式即可求出y的值,从而求出x+3y的值,再对其开立方根即可求解.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.【点评】本题考查了代数式的求值和立方根的定义,关键是从已知条件得到x的取值范围,然后得出x的值.四、解答题2(本大题共3小题,共24分)24.如图,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=6cm,BC=8cm.求:①AB的长;②斜边AB上的高CD的长.【考点】勾股定理.【分析】①直接根据勾股定理求出AB的长即可;②根据三角形的面积公式求出CD的长即可.【解答】解:①∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm).答:AB的长是10cm;②∵CD⊥AB,∴CD===4.8(cm).答:CD的长是4.8cm【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25.在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.【考点】坐标与图形性质;三角形的面积.【分析】(1)根据平面直角坐标系找出各点的位置,然后顺次连接即可;(2)根据四边形的面积等于一个直角三角形的面积加上一个梯形的面积计算即可得解;(3)利用勾股定理和四边形的周长公式列式计算即可得解.【解答】解:(1)如图,是四边形;(2)面积=×1×3+×(3+4)×3,=+,=12;(3)由勾股定理得,=,所以,周长=2+4+4=2+8.【点评】本题考查了坐标与图形性质,主要利用了在平面直角坐标系中确定点的位置是方法,三角形的面积,勾股定理,需熟记.26.如图,四边形ABCD中,AB=4,BC=13,CD=12,DA=3,∠A=90°,求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接BD,在直角三角形ABD中,利用勾股定理求出BD的长,在三角形BCD中,利用勾股定理的逆定理得到三角形BCD为直角三角形,四边形ABCD面积=三角形ABD面积+三角形BCD面积,求出即可.【解答】解:连接BD,在Rt△ABD中,AB=4,AD=3,根据勾股定理得:BD==5,在△BCD中,BC=13,CD=12,BD=5,∴BD2+CD2=BC2,∴△BCD为直角三角形,则S四边形ABCD=S△ABD+S△BCD=×4×3+×12×5=6+30=36.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理是解本题的关键.五、解答题3(本大题共2小题,共16分)27.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【考点】勾股定理.【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.28.如果y+3与x﹣2成正比例,且x=1时,y=1.(1)写出y与x之间的函数关系式;(2)画出(1)中函数的图象;(3)求当x=0时,y的值和y=0时,x的值.【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】计算题.【分析】(1)根据正比例的意义可设y+3=k(x﹣2),然后把已知的对应值代入求出k即可得到y与x之间的函数关系式;(2)利用描点法画函数图象;(3)把x=0代入解析式计算出对应的函数值;把y=0代入解析式求出对应的x的值.【解答】解:(1)设y+3=k(x﹣2),把x=1,y=1代入得k•(1﹣2)=1+3,解得k=﹣4,所以y+3=﹣4(x﹣2),所以y与x之间的函数关系式为y=﹣4x﹣5;(2)如图,(3)当x=0时,y=﹣4x﹣5=﹣5;当y=0时,﹣4x﹣5=0,解得x=﹣.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象.六.探究题(本大题共2小题,共20分)29.如图,直线AB与y轴,x轴的交点为A,B两点,点A,B的纵坐标、横坐标如图所示.在x轴上是否存在一点p,使S△PAB=3?若存在,求出P点的坐标,若不存在,说明理由.【考点】一次函数图象上点的坐标特征.【分析】利用三角形面积求法结合A、B点坐标进而得出答案.【解答】解:在x轴上存在一点P,使S△PAB=3,理由:如图所示:当BP=3,则S△PAB=3,此时P(7,0),当BP′=3,则S△P′AB=3,此时P′(1,0).综上所述:符合题意的点的坐标为:(1,0),(7,0).【点评】此题主要考查了一次函数图象上点的坐标特征以及三角形面积求法,得出三角形底边长是解题关键.30.观察下列勾股数:第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1;…观察以上各组勾股数的组成特点,你能求出第七组的a,b,c各应是多少吗?第n组呢?【考点】勾股数.【专题】规律型.【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数及第n组勾股数.【解答】解:∵第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第四组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第七组勾股数是a=2×7+1=15,b=2×7×(7+1)=112,c=2×7×(7+1)+1=113,即15,112,113;第n组勾股数是2n+1,2n(n+1),2n(n+1)+1.【点评】此题考查的是勾股数,属于规律性题目,关键是通过观察找出规律求解.。
2015——2016学年度第一学期初二数学期中练习附答案
2015——2016学年度第一学期初二数学期中练习5、在下列图案中,不是..轴对称图形的是( )A. B. C. D.6.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( ) A .PC =PD B .OC =PCC .∠CPO =∠DPOD .OC =OD图9-17.下列等式成立的是A .632x x x = B .x m m x n n+=+ C .1x y x y -+=-- D .22x y x y x y +=++8. 如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D AB =6cm ,BD =5cm ,AD =4cm ,那么BC 的长是 ( )A .4cmB .5cmC .6cmD .无法确定9.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD 交于点F ,与CB 延长线交于点E .四边形AECF 的面积是( ).A. 12 B.16 C.8 D.4 10.如图所示,将一张正方形纸片经过两次对折,并剪出一个小洞后展开铺平,得到的图形是( )二.细心填一填(每小题2分,共20分)一种细菌的半径为0.000407m ,用科学记数法表示为__________m..当x =_____时,分式13-x x 没有意义;当x =_____时,分式112--x x 的值为0.计算 232)4()2(ba ba -÷-的结果是____________. 计算aa -+-329122的结果是____________. 如果162++mx x 是一个完全平方式,则 m = ______.如图,在△ABC 和△DEF 中,AB请再添加一个条件,使△ABC 和△的条件是(填写一个即可):,理由是如图,把△ABC 绕C 点顺时针旋转30°,得到△A ’B ’C , ’B ’交AC 于点D , 若∠A ’DC=80°,则∠A= °. 如图,在ABC △中,90C ∠= ,AD 平分CAB ∠,BC =9cm ,,BD =6cm ,那么点D 到AB 的距离是 cm .19. 如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点.(1)若∠A =35°,则∠BPC =_____;(2)若AB =5 cm ,BC =3 cm ,则ΔPBC 的周长=_____.20.探究:观察下列各式211211-=⨯,3121321-=⨯,4131431-=⨯,……请你根据以上式子的规律填写:111111223344520102011+++++⨯⨯⨯⨯⨯…=______; 1111_____133557(21)(21)n n ++⋯+=⨯⨯⨯-+.三.精心解一解:(21,22每小题2分,23,24,25每小题4分,共16分) 21. 因式分解:=+-m mx mx2422.22. 因式分解:y y x 92-=_______________.23.化简:244222x x x x x -+--- B'AA'BDADA先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2.解分式方程:2316111x x x +=+--.耐心想一想:(本小题6分)应用题 2010年4月14日我国青海玉树地区发生强烈地震,急需大量赈灾帐篷比原计划多200顶,现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同。
2015-2016学年八年级上学期期中考试数学试卷带答案
2015(全卷满分120分,班级 姓名 分数 一. 符合题目要求的。
本大题共15小题,每小题3分,计1.下列计算中正确的是 ( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=-2.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ).A .12B .15C .9D .12或153.下面是某同学在一次测验中的计算摘录,其中正确的个数有 ( ) ①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷-A .1个B .2个C .3个D .4个4.已知210x y -=,则124+-y x 的值为( )A .10B .21C .10-D .21-5.下列各式是完全平方式的是 ( )A .412+-x x B .21x + C .1++xy x D .122-+x x6.若3x =15,3y =5,则3x -y 等于 ( )A .5B .3C .15D .107. 从五边形的一个顶点作对角线,把这个五边形分成三角形的个数是( )A. 5个B. 4个C. 3个D.2个8.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为( )A.32B.3210C.1210D.10129. 下列图形中有稳定性的是 ( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形10.到三角形三边距离相等的点是( )A .三边垂直平分线的交点B .三条高线交点C .三条中线的交点D .三条角平分线的交点11.如图,用尺规作图画角平分线:以O 为圆心,任意长为半径画弧交OA ,OB 于点C ,D ,再分别以C ,D 为圆心,以大于CD 21长为半径 画弧,两弧交于点P ,由此得△POC ≌△POD 依据是( ) A .AAS B. SAS C.SSS D .ASA 12.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且13.若(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( ) A. –3 B. 3 C. 0 D. 1 14.若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为 ( ) A .3:2:1 B .1:2:3 C .3:4:5 D . 5:4:3 15.在ABC Rt ∆中,︒=∠90A ,BD 平分ABC ∠交AC 于点D ,AD=2, AC=5,则D 到BC 的距离是( ) A .2 B .3 C .4 D .5 二、解答题:(请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~17每小题6分,18~19每小题7分,20~21每小题8分,22题10分,23题11分,24题12分,合计75分) 16、计算:2(2)(2)x x x ++- 17.先化简,再求值. 2(3)(3)(3)x x x --+-, 其中x=1 18. 如图,AD 是△ ABC 中∠ BAC 的平分线,DE ⊥ AB 于点E ,DF ⊥AC 交AC 于点F ,S ABC △ =7,DE=2,AB=4, 求AC 的长 19如图,在ABC Rt ∆中,︒=∠90ABC ,点F 在CB 的延长线上且AB=BF ,过F 作AC EF ⊥交AB 于D ,求证:DB=BCDCPOC D C B F A D E20. 如图,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D .(1)求证:△ADC ≌△CEB (2)若AD=8cm ,DE=5cm ,求BE 的长度21. (1)已知 (a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值.(2)已知:x 2+y 2+4x -6y +13=0,x 、y 均为有理数,求x y 的值.22.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B C E ,,在同一条直线上,连结DC .(1).请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2).请判断DC 与BE 的位置关系,并证明;(3).若CE=2,BC=4,求△DCE 的面积.23. 如图,△ABC 中,AB =AC ,∠BAC =90°, (1)CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上,BE 的延长线交CA 的延长线于M ,补全图形,并探究BE 和CD 的数量关系,并说明理由; (2)若BC 上有一动点P ,且∠BPQ =12∠ACB ,BQ ⊥PQ 于Q ,PQ 交AB 于F ,试探究BQ 和PF 之间的数量关系,并证明你的结论. 24.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由; ②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由; (2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,连CF ,已知GD=4,求△CFH 的面积. (12分)ABC DE① ②D图2图1C答案:1-15,DBBBA BCCCD CCADA16, 224x -17.化简后是22223x x a -++,结果是718,AC=319,证△ABC ≌△FBD (AAS 或ASA )20,(1)用AAS 或ASA 证三角形全等(2)由△ADC ≌△CEB 得BE=CD,CE=AD,所以BE=CD=CE-DE=AD-DE=3cm 21,(1) △ABE ≌△ACD(SAS)(2) DC BE ⊥(3)6 22,(1)a 2+b 2=112, ab=3423(1)BE=12CD (2) BQ=12PF 24,(1)①全等,用AAS 或ASA 证三角形全等;②BE=CH(2)①全等②8。
甘肃省张掖市八年级上学期数学期中考试试卷
甘肃省张掖市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题每小题3分,共30分) (共10题;共30分)1. (3分)(2019·贵阳) 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A . 2B . 3C .D .2. (3分) (2020八上·西安期末) 在-1.414,,π,,3.21221222…3.14这些数中,无理数的个数为()A . 5B . 2C . 3D . 43. (3分) (2018八上·苍南月考) 在平面直角坐标系中,点P(-4,3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (3分) (2017八上·东台期末) 正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A .B .C .D .5. (3分)(2018·利州模拟) 如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为()A .B .C .D . 36. (3分)(2013·钦州) 下列运算正确的是()A . 5﹣1=B . x2•x3=x6C . (a+b)2=a2+b2D .7. (3分) (2015八上·福田期末) 在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A . (﹣4,﹣3)B . (﹣3,﹣4)C . (3,4)D . (3,﹣4)8. (3分)如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A .B .C .D .9. (3分) (2018八下·合肥期中) 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别是9、25、1、9,则最大正方形E的边长是()A . 12B . 44C . 2D . 无法确定10. (3分)如图,数轴上A点表示的数可能是()A .B .C .D .二、细心填一填(本大题共6小题,每小题4分,共24分 (共6题;共24分)11. (4分) (2017七下·自贡期末) 若点M(a+4,a﹣3)在x轴上,则点M的坐标为________.12. (4分)的算术平方根是________.13. (4分)(2017·东营) 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是________尺.14. (4分) (2017八下·安岳期中) 如图,在平面直角坐标系xOy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,线段OA长________; (2)若在直线a上存在点P,使△AOP是以OA为腰的等腰三角形.那么所有满足条件的点P的坐标是________.15. (4分) (2019八下·璧山期中) 一个直角三角形的两边长为3和5,则第三边为________.16. (4分)(2016·南京) 若式子在实数范围内有意义,则x的取值范围是________.三、用心做一做(本大题共3个小题,每小题6分,共18分) (共3题;共18分)17. (6分) (2016八上·无锡期末) 计算:(1);(2)(- )2+|1- |+(- )-1.18. (6分)如图,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)19. (6分) (2019七上·道外期末) 如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向下平移3格,其中每个格子的边长为1个单位长度.(1)请在图中画出平移后的△A′B′C′;(2)求△ABC的面积.四、沉着冷静,缜密思考(本大题共3个小题每小题7分,共21分) (共3题;共21分)20. (7.0分)(2017·白银) 计算:﹣3tan30°+(π﹣4)0﹣()﹣1 .21. (7分) (2019八下·施秉月考) 小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面后还余1m (如图),当他拉着绳子的下端,使其离旗杆5m时,发现下端刚好接触地面,求旗杆的高.22. (7.0分)已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?五、灵动智慧超越自我(本大题共3小题每小题9分共27分) (共3题;共21分)23. (7.0分) (2017八上·西湖期中) 如图所示,在中,,,在中,为边上的高,,的面积.(1)求出边的长.(2)你能求出的度数吗?请试一试.24. (7.0分) (2016八下·龙湖期中) 观察下列等式:① = = -1;② = = ;③ = = ﹣;…回答下列问题:(1)化简: =________;(2)化简: =________;(n为正整数);(3)利用上面所揭示的规律计算:+…+ + .25. (7.0分) (2019八上·新兴期中) 如图,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|a+2|+(b-4)2=0(1)求a,b的值(2)在y轴上是否存在一点M,使△COM的面积= △ABC的面积求出点M的坐标。
2015~2016学年度上期期中质量监测八年级数学试题附答案
C.任何一个非负数的平方根都不大于这个数 D.2是4的平方根
7.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.若正比例函数y=kx的图象经过点(1,2),则k的值为( )
15.计算:(1) . (2)
16.计算:
四、解答题(每小题8分,共16分)
17.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根。
18.如图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长。
五、解答题(19题10分,20题10分,共20分)
19.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为( ,5),( ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
20.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时问x(小时)之间的函数图像如图所示,结合图像回答下列问题:
1
第3排
1
第4排
1
第5排
……
……
25.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.
二、解答题(本题8分)
26、已知a、b、c满足 .
2015-2016学年初二数学上册期中试卷及答案
2015~2016学年第一学期八年级数学期中考试卷一、选择题(每题3分,共30分)1、在△ABC和△DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A、BC=EFB、∠A=∠DC、AC=DFD、∠C=∠F2、下列命题中正确个数为()①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.4个 B、3个 C、2个 D、1个3、已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A、 80°B、40°C、 120°D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A、70°B、70°或55°C、40°或55°D、70°或40°5..三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点B、三条高的交点C、三条中线的交点D、三条角平分线的交点6、等腰三角形底边上的高为腰的一半,则它的顶角为()A、120°B、90°C、100°D、60°7、下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.等腰三角形的底角与顶角的度数之比为2∶1,则顶角为( )。
A. 72°B. 36°C. 36°或72°D. 18°9、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB=10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、6cm ²二、填空题(每题4分,共20分)11、三角形的三条角平分线相交于一点,并且这一点到_____________相等. 12、如图:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_____,∠C=_____。
甘肃省张掖市八年级上学期数学期中考试试卷
甘肃省张掖市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共15分)1. (1分)在□ABCD中,对角线AC,BD相交于O点,AC=10,BD=8,则AD长的取值范围是()A . AD>1B . AD<9C . 1<AD<9D . AD>102. (1分)(2017·河池) 三角形的下列线段中能将三角形的面积分成相等两部分的是()A . 中线B . 角平分线C . 高D . 中位线3. (1分)如图,在△ABC中,=90°,AE平分, CE=6,则点E到AB的距离是()A . 8B . 7C . 6D . 54. (1分) (2020八下·河池期末) 下列图形中,具有稳定性的是A . 正方形B . 长方形C . 直角三角形D . 平行四边形5. (1分) (2019七下·电白期末) 如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有()对.A . 5对B . 4对C . 3对D . 2对6. (1分) (2017九上·安图期末) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .7. (1分) (2019八下·兴平期末) 经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A . 比原多边形多B . 比原多边形少C . 与原多边形外角和相等D . 不确定8. (1分)(2019·石家庄模拟) 证明:平行四边形对角线互相平分。
已知:四边形ABCD是平行四边形,如图所示。
求证:AO=CO,BO=DO.以下是排乱的证明过程,正确的顺序应是①∴∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④△AOB≌△COD.⑤∴OA=OC,OB=ODA . ②-①-③-④-⑤B . ②-③-⑤-①-④C . ②-③-①-④-⑤D . ③-②-①-④-⑤9. (1分) (2015九下·黑龙江期中) 如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为()A . 10°B . 12.5°C . 15°D . 20°10. (1分)(2020·北京模拟) 如图,,点为上一点,以点为圆心、任意长为半径画弧,交于点,交于点.再分别以点,为圆心、大于的长为半径画弧,两弧交于点.作射线,在上取点,连接,过点作,垂足为点.若,则的长可能为A . 1B . 2C .D .11. (1分) (2016八上·宁阳期中) 已知等腰三角形一边是3,一边是6,则它的周长等于()A . 12B . 12或15C . 15D . 18或1512. (1分)如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值是()A .B .C . 5D . 以上都不对13. (1分)(2014·安徽理) 如图,AB交于CD于点O,点O分别是AB与CD的中点,则下列结论中错误的是()A . ∠A=∠BB . AC=BDC . ∠A+∠B=90°D . AC∥BD14. (1分) (2017八上·江夏期中) 如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C 在x轴上运动,则使△ABC为等腰三角形的点C有()个.A . 5B . 4C . 3D . 215. (1分)(2017·重庆模拟) 下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,第③个图形中一共有16个矩形,…,按此规律,第⑧个图形中矩形的个数为()A . 30B . 36C . 41D . 45二、填空题 (共5题;共5分)16. (1分)如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于________cm2 .17. (1分)如图,五边形ABCDE是一块草地.小明从点S出发,沿着这个五边形的边步行一周,最后仍回到起点S处,小明在各拐弯处转过的角度之和是________18. (1分) (2020七下·浦东期末) 一个等腰三角形两边的长分别为2m、5cm.则它的周长为________cm.19. (1分)在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有________ 个.20. (1分)(2019·嘉兴) 如图,在矩形 ABCD中,点 E,F 在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.三、解答题 (共6题;共9分)21. (1分) (2019八下·来宾期末) △ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2 ,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2 ,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.22. (1分) (2020七下·京口月考) 如图,已知∥ ,∠1=3∠2,∠2=25°,求的度数.23. (2分) (2018九上·宁都期中) 如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.24. (1分) (2018八上·南召期中) 如图,在和中,和交于点,,请你添加一个重要条件(不再添加其它线段,不再标注或使用其它字母),使,并给出证明________.你添加的条件是________.25. (2分)(2020·滨江模拟) 如图,在中,,以点为圆心,线段的长为半径画弧,与BC边交于点,连接AD,过点作,交于点 .(1)若,,求的度数.(2)若点是的中点,连接,求证: .26. (2分) (2018八上·肇庆期中) 如图,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P 的运动时间为t(秒).(1)当运动时间为t秒时,AP的长为________厘米,QC的长为________厘米;(用含t的式子表示)(2)当t为何值时,△PBQ是直角三角形?(3)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案一、单选题 (共15题;共15分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共9分)21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。
2015-2016学年新人教版八年级(上)期中数学试卷及答案
2015-2016学年八年级(上)期中数学试卷一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.85.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或1610.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件时,就可得到△ABC≌△FED,依据是(只需填写一个你认为正确的条件).三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm考点:三角形三边关系.分析:根据在三角形中任意两边之和>第三边进行分析即可.解答:解:A、2+3=5,不能组成三角形,故此选项错误;B、5+6>10,不能组成三角形,故此选项正确;C、1+1<3,能组成三角形,故此选项错误;D、3+4<9,不能组成三角形,故此选项错误;故选:B.点评:本题主要考查了三角形的三边关系,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的横坐标互为相反数,纵坐标相等回答即可.解答:解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2).故选:A.点评:本题主要考查的是关于坐标轴对称的点的坐标特点,关于y轴对称点的横坐标互为相反数,纵坐标相等;关于x轴对称点纵坐标互为相反数,横坐标相等.4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.8考点:多边形内角与外角.分析:根据多边形的内角和等于它的外角和的3倍可求得多边形的内角和,然后利用多边形的内角和公式计算即可.解答:解:∵多边形的内角和等于它的外角和的3倍,∴多边形的内角和=360°×3.设多边形的边数为n,根据题意得:(n﹣2)×180°=360°×3.解得n=8.故选:D.点评:本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.5.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度考点:三角形内角和定理.分析:根据题意画出图形,由三角形内角和定理求出∠ABC的度数,由角平分线的定义即可得出结论.解答:解:如图所示,∵在△ABC中,∠A=60°,∠C=50°,∴∠ABC=70°.∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,故选C点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°考点:全等三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.解答:解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.点评:本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.解答:解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.点评:考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个考点:等腰三角形的性质.分析:由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.解答:解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或16考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:因为底边和腰不明确,分两种情况进行讨论.解答:解:(1)当4是腰时,符合三角形的三边关系,所以周长=4+4+6=14;(2)当6是腰时,符合三角形的三边关系,所以周长=6+6+4=16.故选D.点评:注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.10.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°考点:多边形内角与外角;多边形的对角线.分析:首先确定出多边形的边数,然后利用多边形的内角和公式计算即可.解答:解:∵从一个顶点可引对角线3条,∴多边形的边数为3+3=6.多边形的内角和=(n﹣2)×180°=4×180°=720°.故选:C.点评:本题主要考查的是多边形的对角线和多边形的内角和公式的应用,掌握公式是解题的关键.11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②考点:全等三角形的应用.分析:此题可以采用排除法进行分析从而确定最后的答案.解答:解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.点评:此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.考点:剪纸问题.分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是3<x<13.考点:三角形三边关系.分析:由三角形的两边的长分别为8和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.解答:解:根据三角形的三边关系,得:8﹣5<x<8+5,即:3<x<13.故答案为:3<x<13.点评:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.考点:全等三角形的判定与性质.分析:首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.解答:解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.点评:此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.考点:多边形内角与外角;三角形的外角性质.分析:根据∠CNE为△CDN的外角,得到∠CNE=∠C+∠D,根据∠FMN为△ABM的外角,得到∠FMN=∠A+∠B,由四边形内角和为360°,所以∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°.解答:解:如图,∵∠CNE为△CDN的外角,∴∠CNE=∠C+∠D,∵∠FMN为△ABM的外角,∴∠FMN=∠A+∠B,∵四边形内角和为360°,∴∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.点评:本题考查了多边形的内角与外角,解决本题的关键是运用三角形的一个外角等于和它不相邻的两个内角和,将已知角转化在同一个四边形中,再根据四边形内角和为360°求解.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是30°.考点:多边形内角与外角.分析:由多边形的内角和公式求得多边形的边数,然后根据任意多边形的外角和是360°求解即可.解答:解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°=1800°.解得:n=12.360÷12=30°.故答案为:30°.点评:本题主要考查的是多边形的内角和和外角和,由多边形的内角和公式求得多边形的边数是解题的关键.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的稳定性.考点:三角形的稳定性.分析:根据三角形的稳定性解答即可.解答:解:加固后构成三角形的形状,利用了三角形的稳定性.故答案为:稳定性.点评:本题考查了三角形的稳定性,是基础题.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=80°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠DBC+∠DCB的度数,进而可得出∠BDC的度数.解答:解:∵∠ABD=20°,∠ACD=25°,∠A=35°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣35°=100°,∴∠BDC=180°﹣100°=80°.故答案为:80°.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件AB=EF时,就可得到△ABC≌△FED,依据是SAS(只需填写一个你认为正确的条件).考点:全等三角形的判定.专题:开放型.分析:先证出BC=FD,由SAS即可证明△ABC≌△EFD.解答:解:添加条件:AB=EF;依据是SAS;理由如下:∵BD=FC,∴BC=FD.在△ABC和△EFD中,,∴△ABC≌△EFD(SAS);故答案为:AB=EF,SAS.点评:本题考查了三角形全等的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:利用基本作图,作出∠MON的平分线和AB的中垂线,那么它们的交点为所求的P 点.解答:解:∠MON的角平分线和线段AB的垂直平分线相交于点P,这点P为所求.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.考点:多边形内角与外角.分析:已知一个多边形的内角和与外角和的差为1080°,外角和是360度,因而内角和是1440度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得(n﹣2)•180=1080+360,解得:n=10.故这个多边形的边数是十.点评:考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为解方程的问题解决.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.考点:线段垂直平分线的性质;等腰三角形的性质.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°∴∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,利用线段垂直平分线的性质是解答此题的关键.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.解答:证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C.在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.点评:本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.考点:三角形的面积;三角形的角平分线、中线和高;三角形的外角性质.分析:(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可得:E到BC边的距离为EF的长,然后过A作BC边的垂线AG,再根据三角形中位线定理求解即可.解答:解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.点评:本题考查了三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.添加适当的辅助线是解题的关键.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.考点:角平分线的性质.分析:连接OA,作OE⊥AB于E,OF⊥AC与F,根据角平分线的性质求出OE、OF的长,根据△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积计算即可.解答:解:连接OA,作OE⊥AB于E,OF⊥AC与F,∵OB,OC分别平分∠ABC,∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OE=OD=2,△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积=AB•OE+AC•OF+CB•OD=×(AB+AC+BC)×2=24.答:△ABC的面积是24.点评:本题主要考查平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意辅助线的作法要正确.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.解答:解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBA,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2015-2016学年甘肃省张掖四中八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分).1.(3分)4的平方根是()A.2 B.±2 C.﹣2 D.42.(3分)不在直线y=﹣2x﹣3上的点是()A.(0,﹣3)B.(0.5,﹣4) C.(2,﹣7)D.(﹣1,﹣5)3.(3分)下列数中是无理数的是()A. B.C.0 D.4.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠A﹣∠B=∠CC.a2﹣b2=c2D.a:b:c=7:24:255.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.(3分)已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<17.(3分)直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a>1),那么所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a2倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案沿纵向拉长为a倍8.(3分)点P在x轴的下侧,y轴的左侧,距离每个坐标轴都是3个单位长度,则点P的坐标为()A.(3,3) B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)9.(3分)点M(﹣3,4)离原点的距离是多少单位长度()A.3 B.4 C.5 D.710.(3分)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A. a B.(1+)a C.3a D.a二、填空题(本大题共10小题,每小题4分,共40分)11.(4分)的算术平方根是.12.(4分)若点A(a,b)在第三象限,则点C(﹣a+1,b﹣2)在第象限.13.(4分)已知点A(x,2)和B(3,y)关于x轴对称,则x+y=.14.(4分)若一正数的平方根是2a﹣1与﹣a+2,则a=.15.(4分)的相反数是;﹣2的绝对值是;﹣0.5的倒数是.16.(4分)有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米.17.(4分)若有意义,则a的取值范围是.18.(4分)一次函数y=﹣x+3的图象与x轴的交点坐标是,与y轴的交点坐标是.19.(4分)当k=时,函数y=(k+3)x﹣5是关于x的一次函数.20.(4分)在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简﹣|c﹣a﹣b|的结果.三、解答题1(本大题共3小题,共20分)21.(8分)化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.22.(6分)函数y=kx+b的图象平行于直线y=2x,且经过点(0,3),求此函数的解析式.23.(6分)若x、y都是实数,且y=++8,求x+3y的立方根.四、解答题2(本大题共3小题,共24分)24.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=6cm,BC=8cm.求:①AB的长;②斜边AB上的高CD的长.25.(8分)在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.26.(8分)如图,四边形ABCD中,AB=4,BC=13,CD=12,DA=3,∠A=90°,求四边形ABCD的面积.五、解答题3(本大题共2小题,共16分)27.(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.28.(8分)如果y+3与x﹣2成正比例,且x=1时,y=1.(1)写出y与x之间的函数关系式;(2)画出(1)中函数的图象;(3)求当x=0时,y的值和y=0时,x的值.六.探究题(本大题共2小题,共20分)29.(10分)如图,直线AB与y轴,x轴的交点为A,B两点,点A,B的纵坐=3?若存在,求出P点标、横坐标如图所示.在x轴上是否存在一点p,使S△PAB的坐标,若不存在,说明理由.30.(10分)观察下列勾股数:第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1;…观察以上各组勾股数的组成特点,你能求出第七组的a,b,c各应是多少吗?第n组呢?2015-2016学年甘肃省张掖四中八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分).1.(3分)4的平方根是()A.2 B.±2 C.﹣2 D.4【解答】解:4的平方根是±2.故选:B.2.(3分)不在直线y=﹣2x﹣3上的点是()A.(0,﹣3)B.(0.5,﹣4) C.(2,﹣7)D.(﹣1,﹣5)【解答】解:A、当x=0时,y=﹣3,即(0,﹣3)在直线y=﹣2x﹣3上,故本选项不符合题意;B、当x=0.5时,y=﹣4,即(0.5,﹣4)在直线y=﹣2x﹣3上,故本选项不符合题意;C、当x=2时,y=﹣7,即(2,﹣7)在直线y=﹣2x﹣3上,故本选项不符合题意;C、当x=﹣1时,y=﹣1,(﹣1,﹣5)不在直线y=﹣2x﹣3上,故本选项符合题意.故选:D.3.(3分)下列数中是无理数的是()A. B.C.0 D.【解答】解:,0,是有理数;是无理数.故选:B.4.(3分)满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠A﹣∠B=∠CC.a2﹣b2=c2D.a:b:c=7:24:25【解答】解:∠A:∠B:∠C=3:4:5,设∠A、∠B、∠C分别为3x、4x、5x,则3x+4x+5x=180°,解得,x=15°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;∠A﹣∠B=∠C,则∠A=∠B+∠C,∠A=90°,△ABC是直角三角形;a2﹣b2=c2则a2=b2+c2△ABC是直角三角形;72+242=252,△ABC是直角三角形,故选:A.5.(3分)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间【解答】解:∵9<11<16,∴3<<4,即的值在3与4之间.故选:C.6.(3分)已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<1【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.7.(3分)直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a>1),那么所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a2倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案沿纵向拉长为a倍【解答】解:图案上各个点的横坐标和纵坐标分别乘以正数a得到的图案与原图案是以原点为位似中心,位似比为a2的位似图形,故选A.8.(3分)点P在x轴的下侧,y轴的左侧,距离每个坐标轴都是3个单位长度,则点P的坐标为()A.(3,3) B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)【解答】解:∵点P在x轴的下侧,y轴的左侧,∴点P在第三象限,∵点P距离每个坐标轴都是3个单位长度,∴点P的坐标为(﹣3,﹣3).故选:C.9.(3分)点M(﹣3,4)离原点的距离是多少单位长度()A.3 B.4 C.5 D.7【解答】解:设原点为O(0,0),根据两点间的距离公式,∴MO===5,故选:C.10.(3分)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A. a B.(1+)a C.3a D.a【解答】解:将正方体展开,连接A、B,根据两点之间线段最短,AB==a.故选:D.二、填空题(本大题共10小题,每小题4分,共40分)11.(4分)的算术平方根是.【解答】解:∵=6,故的算术平方根是.故填.12.(4分)若点A(a,b)在第三象限,则点C(﹣a+1,b﹣2)在第四象限.【解答】解:∵点A(a,b)在第三象限,∴a<0,b<0.∴﹣a+1>0,b﹣2<0.∴点C在第四象限.故答案为:四.13.(4分)已知点A(x,2)和B(3,y)关于x轴对称,则x+y=1.【解答】解:∵点A(x,2)和B(3,y)关于x轴对称,∴x=3,y=﹣2则x+y=3﹣2=1.故答案为:1.14.(4分)若一正数的平方根是2a﹣1与﹣a+2,则a=1或﹣1.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.15.(4分)的相反数是;﹣2的绝对值是2;﹣0.5的倒数是﹣2.【解答】解:的相反数是;﹣2的绝对值是2;﹣0.5的倒数是﹣2.故答案为:;2;﹣2.16.(4分)有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米.【解答】解:∵正方形的对角线长==,∴圆形盖半径至少为米.故答案为:.17.(4分)若有意义,则a的取值范围是a≥﹣.【解答】解:由题意得:4a+1≥0,解得:a≥﹣,故答案为:a≥﹣.18.(4分)一次函数y=﹣x+3的图象与x轴的交点坐标是(3,0),与y 轴的交点坐标是(0,3).【解答】解:当y=0时,﹣x+3=0,解得x=3,所以一次函数与x轴的交点坐标是(3,0).当x=0时,y=﹣0+3,解得y=3,所以一次函数与y轴的交点坐标是(0,3).故答案为(3,0);(0,3).19.(4分)当k=3时,函数y=(k+3)x﹣5是关于x的一次函数.【解答】解:∵函数y=(k+3)x﹣5是关于x的一次函数,∴k2﹣8=1,且k+3≠0.解得k=3.故答案是:3.20.(4分)在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简﹣|c﹣a﹣b|的结果2c﹣2b.【解答】解:∵a+c>b,∴a﹣b+c>0,∵a+b>c,∴c﹣a﹣b<0,∴﹣|c﹣a﹣b|=a﹣b+c﹣a﹣b+c=2c﹣2b,故答案为:2c﹣2b.三、解答题1(本大题共3小题,共20分)21.(8分)化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.【解答】解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2﹣3+4=4﹣1.22.(6分)函数y=kx+b的图象平行于直线y=2x,且经过点(0,3),求此函数的解析式.【解答】解:∵函数y=kx+b的图象平行于直线y=2x,∴k=2,将(0,3)代入y=2x+b得:3=b,∴函数解析式为:y=2x+3.23.(6分)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.四、解答题2(本大题共3小题,共24分)24.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=6cm,BC=8cm.求:①AB的长;②斜边AB上的高CD的长.【解答】解:①∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm).答:AB的长是10cm;②∵CD⊥AB,∴CD===4.8(cm).答:CD的长是4.8cm25.(8分)在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.【解答】解:(1)如图,是四边形;(2)面积=×1×3+×(3+4)×3,=+,=12;(3)由勾股定理得,=,所以,周长=2+4+4=2+8.26.(8分)如图,四边形ABCD中,AB=4,BC=13,CD=12,DA=3,∠A=90°,求四边形ABCD的面积.【解答】解:连接BD,在Rt△ABD中,AB=4,AD=3,根据勾股定理得:BD==5,在△BCD中,BC=13,CD=12,BD=5,∴BD2+CD2=BC2,∴△BCD为直角三角形,=S△ABD+S△BCD=×4×3+×12×5=6+30=36.则S四边形ABCD五、解答题3(本大题共2小题,共16分)27.(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.28.(8分)如果y+3与x﹣2成正比例,且x=1时,y=1.(1)写出y与x之间的函数关系式;(2)画出(1)中函数的图象;(3)求当x=0时,y的值和y=0时,x的值.【解答】解:(1)设y+3=k(x﹣2),把x=1,y=1代入得k•(1﹣2)=1+3,解得k=﹣4,所以y+3=﹣4(x﹣2),所以y与x之间的函数关系式为y=﹣4x﹣5;(2)如图,(3)当x=0时,y=﹣4x﹣5=﹣5;当y=0时,﹣4x﹣5=0,解得x=﹣.六.探究题(本大题共2小题,共20分)29.(10分)如图,直线AB与y轴,x轴的交点为A,B两点,点A,B的纵坐标、横坐标如图所示.在x轴上是否存在一点p,使S=3?若存在,求出P点△PAB的坐标,若不存在,说明理由.=3,【解答】解:在x轴上存在一点P,使S△PAB=3,理由:如图所示:当BP=3,则S△PAB此时P(7,0),当BP′=3,=3,则S△P′AB此时P′(1,0).综上所述:符合题意的点的坐标为:(1,0),(7,0).30.(10分)观察下列勾股数:第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1;…观察以上各组勾股数的组成特点,你能求出第七组的a,b,c各应是多少吗?第n组呢?【解答】解:∵第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第四组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第七组勾股数是a=2×7+1=15,b=2×7×(7+1)=112,c=2×7×(7+1)+1=113,即15,112,113;第n组勾股数是2n+1,2n(n+1),2n(n+1)+1.。