人教版二次根式单元 期末复习测试提优卷试卷
人教版二次根式单元提优专项训练试卷
人教版二次根式单元提优专项训练试卷一、选择题1.下列各式计算正确的是( )A.235+= B .2222+= C .236⨯= D .1222= 2.下列计算正确的是( )A .2×3=6B .2+3=5C .8=42D .4﹣2=2 3.当0x =时,二次根式42x -的值是( )A .4B .2C .2D .04.下列根式中,与3是同类二次根式的是( )A .12B .23C .18D .295.下列各式中,正确的是( )A .32 >23B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 2 6.当119942x +=时,多项式()20193419971994x x --的值为( ). A .1B .1-C .20022D .20012- 7.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( ) 123256722310A .210B .41C .52D .51 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣1 9.若|x 2﹣4x+4|23x y --x+y 的值为( )A .3B .4C .6D .9 10.若3235a =++,2610b =+a b 的值为( ) A .12 B .14 C 23+ D 610+ 11.下列运算正确的是( )A 826=B 222=C 3515=D 2739=12.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题13.==________.14.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).15.已知,n=1的值________.16.已知1<x <2,171x x +=-_____.17.若a 、b 为实数,且b =7a ++4,则a+b =_____.18.化简:=_____.19. (a ≥0)的结果是_________.20.已知2x =243x x --的值为_______.三、解答题21.解:设x222x =++2334x =+,x 2=10∴x =10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6,x 2=14∴x =.0,∴x .【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】 分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+-- =42(2)(2)(2)(2)x x x x x +-+-+- =2(2)(2)x x x -+-=12 x-+点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1) 72;(2)8. 【分析】 计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =2,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.26.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】 先把分式化简,然后将x 、y 的值代入化简后的式子求值即可.【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==. 【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.观察下列各式.====…… 根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.28.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.29.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.30.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=,故选项D错误.2故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.2.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.3.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.4.A解析:A根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A =BC 不是同类二次根式,不合题意;D 故选:A .【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.5.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.6.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.∵11994x+=,()2 211994 x∴-=,即24419930x x--=,()() 322 41997199444199344199311 x x x x x x x∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.7.B解析:B【解析】【分析】由图形可知,第n行最后一个数为()11232n nn++++=,据此可得答案.【详解】由图形可知,第n行最后一个数为()1 1232n nn++++=,∴第8行最后一个数为89362⨯==6,则第9行从左至右第5个数是36541+=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为()12n n+.8.C解析:C【解析】依据二次根式有意义的条件即可求得k的范围.解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.解析:A【解析】根据题意得:|x 2–4x ,所以|x 2–4x +4|=0,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .10.B解析:B【分析】将a 乘以可化简为关于b 的式子, 从而得到a 和b 的关系, 继而能得出a b 的值【详解】解:44b a ==== 14a b ∴= 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.11.C解析:C【分析】根据二次根式的减法法则对A 进行判断;根据二次根式的加法法则对B 进行判断;根据二次根式的乘法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A =,所以A 选项错误;B =B 选项错误;C =C 选项正确;D 3=,所以D 选项错误.故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.12.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.16.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2=4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变. 解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.19.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键. 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x=243x x--计算即可求解.【详解】x=解:当2243--x x((2=---2423=--+4383=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级初二数学下学期二次根式单元 期末复习测试提优卷试题
一、选择题1.对于所有实数a ,b ,下列等式总能成立的是( )A .()2b a b a +=+B .22222(b a b )a +=+C .22b a b a +=+D .2(b)a b a +=+ 2.下列各式成立的是( )A .2(3)3-=B .633-=C .222()33-=-D .2332-= 3.下列运算正确的是( ) A .235+=B .322-=3C .2(2)-=﹣2D .24322÷= 4.计算12718483--的结果是( ) A .1 B .﹣1 C .32-- D .23-5.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .(8﹣3cm 2B .(4﹣3cm 2C .(16﹣3cm 2D .(﹣3)cm 2 6.下列二次根式是最简二次根式的是( )A 12B 3C 0.01D 127.下列各式中,正确的是( )A .23B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 28.化简二次根式 22a a +-) A 2a --B 2a --C 2a -D 2a -9.下列计算正确的是( )A 366=±B .422222=C .83266=D a b ab =(a≥0,b≥0) 10.下列计算正确的是( )A 235=B 236=C 2434=D ()233-=-二、填空题11.设42-的整数部分为 a,小数部分为 b.则1a b- = __________________________. 12.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.14.)230m m --≤,若整数a 满足52m a +=a =__________.15.把31a-根号外的因式移入根号内,得________ 16.计算:652015·652016=________. 17.已知4a 2(3)|2|a a +--=_____.181262_____.19.如果0xy >2xy -.20.下列各式:2521+n ③24b 0.1y 是最简二次根式的是:_____(填序号) 三、解答题21.阅读下面问题:阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++- (55252(52)(52)==-++-. 应用计算:(176+ (211n n ++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(12 归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+98+,(+98+,++99-,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式22]-322]-4=4-23+3-4=3-23【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.计算123-(2)263;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==2(2)-=22=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.计算:11(1)÷(233【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=2==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)12a ===,b === 22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定.故选B .2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.C解析:C【解析】解:原式=故选C.5.D解析:D【分析】根据正方形的面积求出边长AB=4cm,BC=()cm,利用四边形ABCD的面积减去两个阴影的面积即可列式求出答案.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm 2,故选:D .【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.6.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC 0.1,故此选项错误;D 故选:A .【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.7.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.8.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a aa a a +-∴+<∴<-a ∴===故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.9.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确;根据同类二次根式的性质,可知C 不正确;=(a≥0,b≥0)可知D 正确.故选:D10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:AA 错误;B=,故B 正确;C==C 错误;D 3=,故D 错误;故选:B .【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.二、填空题11.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=12-故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 13.255 【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.15.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.16.【解析】原式=.故答案为.【解析】原式=20152015=17.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】a,∵4∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.18.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.19.【分析】由,且,即知,,据此根据二次根式的性质化简可得.∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
人教版二次根式单元测试提优卷试题
人教版二次根式单元测试提优卷试题一、选择题1. )A B .C .D .2.若01x <<=( ). A .2xB .2x-C .2x -D .2x3.下列二次根式是最简二次根式的是( )A BCD4的倒数是( )A B .2C .D .2-5.下列运算正确的是( ) A .52223-=y y B .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =6.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤47.下列计算正确的是( )A =B =C 6=-D 1=8.下列运算中错误的是( )A =B =C 2÷=D .2 (3=9.已知:,,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等10.m 的值为( ) A .7B .11C .2D .111.下列运算正确的是( )A =B 2=C =D 9=12.与根式- )A.B.x-C.D二、填空题13.化简并计算:+=_____...___.(结果中分母不含根式)14.甲容器中装有浓度为a,乙容器中装有浓度为b,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为_________.15.下面是一个按某种规律排列的数阵:≥且n是整根据数阵排列的规律,第5行从左向右数第3个数是,第n(n3-个数是(用含n的代数式表示).数)行从左向右数第n216.若实数x,y,m满足等式()2+-=m+4的算术平方根为23x y m________.17.===据上述各等式反映的规律,请写出第5个等式:___________________________.y,那么y x=_______________________.18.如果219.若a、b为实数,且b+4,则a+b=_____.20.x的取值范围是_____三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积、、,则此三角形的面积为:的公式,若三角形三边为a b c1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c+++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+-∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析:原式2221222x x x x x x --=÷=⋅-- 222x x x x x -=⋅⋅-=- 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.25.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲 0 1 0 2 2 0 3 1 2 4 乙23112111请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.26.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】=-(1)原式22=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.29.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.30.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先计算二次根式乘法,再合并同类二次根式即可. 【详解】原式= 故选:A . 【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.2.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+--=11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.3.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】解:ABC 0.1,故此选项错误;D 2故选:A . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.4.B解析:B 【分析】根据倒数的定义,即可得到答案. 【详解】2,2; 故选:B. 【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题.5.D解析:D 【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案. 【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.6.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x ≥0,x-4≥0时,可得x 无解,不符合题意;当1-x ≥0,x-4≤0时,可得x ≤1时,原式=1-x-4+x=-3;当1-x ≤0,x-4≥0时,可得x ≥4时,原式=x-1-x+4=3;当1-x ≤0,x-4≤0时,可得1≤x ≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x ≤4时,多项式等于2x-5,故选B .【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A 选项错误;===B 选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B .【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A 错误;当m=11时==B 错误;当m=1时=故D 错误;当m=2时=故C 正确; 故选择C.【点睛】本题考查了同类二次根式的定义.11.C解析:C【分析】根据二次根式的减法法则对A 进行判断;根据二次根式的加法法则对B 进行判断;根据二次根式的乘法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.12.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-x-=故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式===故答案为220400x x x -. 【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.15.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.16.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.17.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.18.【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版二次根式单元达标测试提优卷
一、选择题1.下列二次根式中是最简二次根式的为( )A .12B .30C .8D .12 2.下列计算正确的是( ) A .2×3=6 B .2+3=5 C .8=42 D .4﹣2=23.下列根式中,与3是同类二次根式的是( )A .12B .23C .18D .294.已知526x =-,则2101x x -+的值为( )A .306-B .106C .1862--D .05.下列运算正确的是( )A .32-=﹣6B .31182-=-C .4=±2D .25×32=5106.下列计算正确的是( )A .822-=B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-= 7.下列计算正确的是( )A .366=±B .422222÷=C .83266-=D .•a b ab = (a≥0,b≥0)8.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.39.已知实数x 、y 满足222y x x =--,则yx 值是( ) A .﹣2 B .4 C .﹣4 D .无法确定10.下列运算中正确的是( )A .27?3767=B ()24423233333=== C 3313939=== D 155315151==二、填空题11.设42-的整数部分为 a,小数部分为 b.则1a b - = __________________________. 12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.已知函数1x f x x ,那么21f _____.16.计算:652015·652016=________. 17.如果332y x x --,那么y x =_______________________.18.化简:3222=_____.19.4x -x 的取值范围是_____. 20.12a 1-能合并成一项,则a =______. 三、解答题21.先阅读材料,再回答问题:因为)21211=2121=+;因为(32321=,所以3232=+(43431=4343=+(1=,=;(2⋅⋅⋅+的值.【答案】(12)9【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.)÷)(a≠b).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b--+-23.先化简,再求值:a,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a=-∴原式=1a a--=21a-当1a=-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1)(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120 (2)1 n −1 n 1+=1+()1n n 1+ (n为正整数). a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.28.已知x²+2xy+y²的值.【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y)²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用最简二次根式定义判断即可.【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;=D2故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.3.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A =BC 不是同类二次根式,不合题意;D 3 故选:A .【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.5.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B1=-,此选项计算正确;2C2=,此选项计算错误;D、,此选项计算错误;故选:B.【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.6.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】====,故本项错误;D. 6故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.7.D解析:D=,故A不正确;6=,故B不正确;根据二次根式的除法,可直接得到2根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D8.B解析:B【详解】A不是同类二次根式,故此选项错误;BC=不是同类二次根式,故此选项错误;D=不是同类二次根式,故此选项错误;10故选B.9.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题11.【分析】根据实数的估算求出a,b,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:1 【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=12-故填:1. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a 和绝对值的性质是解题的关键.14.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.【解析】 原式=.故答案为.【解析】原式=20152015=17.【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】 本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.18.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变. 解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.19.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
人教版八年级数学下《第16章二次根式》单元提优测试题附答案
人教版八年级数学 第16章 《二次根式》 单元提优测试题完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的1.使式子x +3+4-3x 在实数范围内有意义的整数x 有( ) A .5个 B .3个 C .4个 D .2个 2.若a -1+b 2-4b +4=0,则ab 的值等于( ) A .-2 B .0 C .1 D .23.已知(4+7)•a=b ,若b 是整数,则a 的值可能是( ) A .7 B .4+7 C .8-27 D .2-7 4.若n 75是整数,则正整数n 的最小值是( ) A .2 B .3 C .4 D .5 5.若5<a <10,则()24-a +()211-a 的化简结果为( )A .7B .-7C .2a -15D .无法确定 6.实数a ,b 在数轴上的对应点如图所示,化简(b)2+()2a b --||a 的结果是( )A .2aB .2bC .-2bD .-2a7.已知x +y =3+22,x -y =3-22,则x 2-y 2的值为( ) A .4 2 B .6 C .1D .3-2 28.设a=6-2,b=3-1,c=132+,则a 、b 、c 之间的大小关系是( ) A .c >b >a B .a >c >b C .b >a >c D .a >b >c9.用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=33,图中空白的地方是一个正方形,那么这个小正方形的周长为( ) A .23 B .43 C .53 D .63 10.已知 aa 2+22a+a 18=10,则a 值等于( ) A. 4 B. ±2 C. 2 D. ±45分,共20分)11.要使式子x +3x -1有意义,则x 的取值范围为 .12.若a 2=3,b =2,且ab <0,则a -b = . 13.已知xy >0,化简二次根式x 2x y-的正确结果是 . 14.实数a ,b 在数轴上对应的点的位置如图所示,化简2a +2b -()2b a -= .90分)15.计算:(12分)(1)1212-(313+2). (2)(5-3+2) (5-3-2).16.比较211与35的大小.(8分)17.先化简,再求值:(x y x 6+33xy y )-(y xy 4+xy 36),其中x =23,y =27.(10分)18.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长.(10分)19.若a=3-10,求代数式a 2-6a-2的值.(10分)20.已知|2018-a|+2019-a =a ,则a-20182的值.(10分)21.设1313-+的整数部分为a ,小数部分为b ,求2221b ab a ++的值. (10分)22.已知:21211+-=+, 32321+-=+, 43431+-=+,… 利用上面的规律计算:(10分)(211++321++431++…+201720161++201820171+)(1+2018)23.观察下列各式:(10分)2221111++=1+11-21=121;2231211++=1+21-31=161; 2241311++=1+31-41=1121;…请你根据上面三个等式提供的信息,猜想:(1) 2251411++= ; (2)请你按照上面每个等式反映的规律,写出用n (为正整数)表示的等式: ; (3)利用上述规律计算:6414950+(仿照上式写出过程)人教版八年级数学 第16章 《二次根式》 单元提优测试题参 考 答 案完成时间:120分钟 满分:150分姓名 成绩 一、选择题(本大题10小题,每小题4分,共40分。
人教版八年级初二数学第二学期二次根式单元达标提优专项训练试卷
一、选择题1.下列计算正确的是( )A =B .2=C .(26=D ==2.若 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数 3.下列计算正确的是( )AB CD4.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .05.估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 6.下列式子一定是二次根式的是 ( )A B C D 7.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±28.设a b 21b a-的值为( )A 1+B 1+C 1D 19.若a =,2b =+a b 的值为( )A .12B .14CD10.使式子214x -x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.若0a >化成最简二次根式为________.12.已知2216422x x ---=,则22164x x -+-=________. 13.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.若()()22223310x y x y +++-+=,则222516x y +=______.16.已知:x=5+2,则2可用含x 的有理系数三次多项式来表示为:2=_____. 17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____. 18.若实数23a =-,则代数式244a a -+的值为___. 19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2121=-+3232=+4343=+20202324320202019+++++……=___________.三、解答题21.若x ,y 为实数,且y 14x -41x -12.求x y y x ++2-xy y x +-2的值. 2 【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1=,= ; (2⋅⋅⋅+的值. 【答案】(12)9 【分析】 (1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.23.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
人教版二次根式单元 期末复习提优专项训练试题
人教版二次根式单元 期末复习提优专项训练试题一、选择题1.下列二次根式中是最简二次根式的为( ) ABCD2.x 的取值可以是( ) AB .0C .12-D .-13.下列根式中,最简二次根式是( ) ABCD4.有意义,则x 的取值范围是( )A .x≠2B .x >-2C .x <-2D .x≠-25.已知5x =-,则2101x x -+的值为( ) A.-B.C.2-D .06.下列式子一定是二次根式的是 ( ) ABCD7.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2 D=8.已知m 、nm ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是9.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤410.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123A .BC .D11.若|x 2﹣4x+4|x+y 的值为( )A .3B .4C .6D .912.下列运算一定正确的是( ) Aa =B=C .222()a b a b ⋅=⋅ D()0na m=≥ 二、填空题13.设4 a,小数部分为 b.则1a b- = __________________________. 14.把根号外的因式移入根号内,得________ 15.已知|a ﹣2007=a ,则a ﹣20072的值是_____. 16.===据上述各等式反映的规律,请写出第5个等式:___________________________. 17.,3,,,则第100个数是_______.18.已知x=12,y=12,则x 2+xy +y 2的值为______. 19.若a 、b 都是有理数,且2222480a ab b a -+++=. 20.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化.(3)利用所需知识判断:若a =,2b =a b ,的关系是 . (4)直接写结果:)1= .【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a =(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.先阅读下列解答过程,然后再解答:,a b ,使a bm +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
29人教版八年级数学下《第16章二次根式》单元提优测试题69
人教版八年级数学下《第16章二次根式》单元提优测试题一、选择题1. 以下运算错误的是( ) A .3535⨯=⨯ B .169169+=+C .2222⨯=D .2342a b ab b =2. 如图,数轴上点P 表示的数可能是( )A .7B .7-C . 3.2-D .10-3. 化简)22(28+-得( )A .—2B .22-C .2D . 224-4. 使2x -有意义的x 的取值范围是 ( )A 、x ≥2B 、x >2C 、x ≤2D 、x 取一切实数5. 若2a =-a,则实数a 在数轴上的对应点一定在( )A.原点左侧。
B.原点右侧。
C.原点或原点左侧。
D.原点或原点右侧。
6. 式子34x x --中,x 的取值范围是( ) A .x≤3 B.x≥3 C.x>3 D .x≥3且x≠47. 若方程084=--+-m y x x 则0 y 时,m 的取值范围( )A 、10 mB 、2≥mC 、2 mD 、2≤m二、填空题1. 当3 x 时,6692--+-x x x =____________.2. ()0,03010>>•y x xy xy =_______________。
3. 若8-x +2-y =0,则x =___________,y =_________________.4. 化简:(7-52)2000·(-7-52)2001=______________.5. 两个无理数的和是5,则这两个无理数可能是____________6. 已知2-x +5y +=0,则x+y=_______。
7. 计算:________; 22512+_________.8. 如图,在数轴上,A B ,两点之间表示整数的点有_____个.三、解答题1. 计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅. 2. 比较23-和32-的大小3. 当x 为何值时,x 31-是二次根式.4. 观察下列等式:①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)利用你观察到的规律,化简:11321+(2)计算:1031......231321211++++++++ 5. 已知a-1a =15,求a+1a 的值。
人教版二次根式单元 期末复习测试提优卷试卷
人教版二次根式单元 期末复习测试提优卷试卷一、选择题1.下列计算正确的是( )A .=1212⨯B .4-3=1C .63=2÷D .8=2±2.下列根式是最简二次根式的是( )A .4B .21x +C .12D .40.53.下列运算结果正确的是( )A .()299-=-B .623÷=C .()222-=D .255=- 4.已知52a =+,52b =-,则227a b ++的值为( )A .4B .5C .6D .7 5.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x 6.若a =3235++,b =2+610-,则a b 的值为( ) A .12 B .14 C .321+ D .1610+ 7.已知2225152x x ---=,则222515x x -+-的值为( )A .3B .4C .5D .6 8.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .69.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.310.下列二次根式中是最简二次根式的是( )A 6B 18C 27D 1211.下列各组二次根式中,能合并的一组是( )A .1a +和1a -B .3和13C .2a b 和2abD .3和18 12.下列计算正确的是( )A .234265+=B .842=C .2733÷=D .2(3)3-=-二、填空题13.已知2215x 19x 2+--=,则2219x 215x -++=________.14.计算(π-3)02-211(223)-4--22--()的结果为_____. 15.已知函数1x f xx ,那么21f _____. 16.把1m m-根号外的因式移到根号内,得_____________. 17.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.18.若3的整数部分是a ,小数部分是b ,则3a b -=______.19.最简二次根式2m 1-与1343n m --是同类二次根式,则mn =________.20.要使4x -有意义,则x 的取值范围是_____三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 5353333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++. 以上这种化简的方法叫分母有理化.(1)请用不同的方法化简5+3: ①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+. 【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题. 22.已知x=23,求代数式(7+3x 2+(23)x 3【答案】23【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可. 试题解析:x 2=(23)2=7﹣3则原式=(37﹣3+(3233=49﹣3323.3222x x x x--x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式22x x ==--== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n=+3)见解析【分析】(1)当n=5=(2(n=+(3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n=+(3=(n==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.27.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.29.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】2÷故选A.2.B解析:B【分析】可以根据最简二次根式的定义进行判断.【详解】A ,原根式不是最简二次根式;BC 2=,原根式不是最简二次根式;D 、=4== 故选B .【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.3.C解析:C【分析】根据二次根式的性质及除法法则逐一判断即可得答案.【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,5=,故该选项计算错误,不符合题意,故选:C .【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.4.B解析:B【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果.【详解】解:∵2a =,2b =,∴227a b ++ 2252527 554547454 25=∴255故选:B .【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键 5.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】即:20x -≥ ,解得:2x ,故选:D ;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.6.B解析:B【解析】【分析】将a可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出a b 的值.【详解】a=b 44=. ∴14a b =. 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.7.C解析:C【解析】2=,2222251510x x =-=--+=,5=.故选C.8.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1,第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:,•=6,故选D9.B解析:B【详解】A18323不是同类二次根式,故此选项错误;B 1333C24=63不是同类二次根式,故此选项错误;D0.3310303不是同类二次根式,故此选项错误;故选B.10.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A6是最简二次公式,故本选项正确;B1832C2733D12=23故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.11.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;B是同类二次根式;3CD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.12.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;=,故选项D错误;D3故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题13.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m =2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.17.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 18.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b 1,∴-b 1)=1.故答案为1.19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案. 【详解】∵最简二次根式与是同类二次根式,∴,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级初二数学第二学期二次根式单元测试提优卷
一、选择题1.a 的值可能是( ) A .2-B .2C .32D .82.下列二次根式中,是最简二次根式的是( )A BC D3.x 的取值范围是( ) A .13x ≥B .13x >C .13x ≤ D .13x <4.下列式子一定是二次根式的是 ( )A B C D 5.下列计算正确的是( )A =B 1-=C =D 6==6.若a,b =,则a b 的值为( )A .12 B .14C .321+D7.下列各式计算正确的是( )A +=B .26=(C 4=D =8.下列二次根式中是最简二次根式的是( )AB CD9.2的结果是( ) A .±3B .﹣3C .3D .910.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题11.比较实数的大小:(1)______ ;(2_______12 12.已知112a b +=,求535a ab ba ab b++=-+_____.13.已知,-1,则x 2+xy +y 2=_____.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,.现对72进行如下操作:72[72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11233第行 13 1541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________. 19.下列各式:2521+n ③24b0.1y 是最简二次根式的是:_____(填序号)20.4x -x 的取值范围是_____三、解答题21.2-+1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】2-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算:(1﹣(2)(3)24 4x-﹣12x-.【答案】(1)2(3)-12 x+【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.32331+一样的式子,其实我5353333⨯==⨯2236333⨯==⨯,22(3(33131(31)(31)(3)1===++--;以上这种化简的步骤叫做分母有理化31+还可以用以下方法化简:(223131313131313131===-=++++(153+2)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=. 考点:分母有理化.27.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】AB10不是最简二次根式,故本选项不符合题意;C2,不是最简二次根式,故本选项不符合题意;D【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.3.C解析:C 【分析】根据二次根式的性质:被开方数大于或等于0,列不等式求解. 【详解】 解:依题意有当130x -≥时,原二次根式有意义; 解得:13x ≤; 故选:C . 【点睛】本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.4.A解析:A 【分析】根据二次根式的定义,直接判断得结论. 【详解】A A 正确;B 、0a <B 错误;C 是三次根式,故C 错误;D 、0a <D 错误; 故选:A . 【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.5.A解析:A 【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果. 【详解】=D. 6===,故本项错误; 故选:A . 【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.6.B解析:B 【解析】 【分析】 将a可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出a b 的值. 【详解】 a=b 44=.∴14a b =. 故选:B . 【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.7.D解析:D 【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C==D==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.8.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.9.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 12.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n nn n n n n n++===+=+-+++;∴...S=1111111112231n n=+-++-++-+…+111nn=+-+.221n nn+=+故答案为:221n nn++【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n=-++的理解.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 19.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
人教版八年级数学下册第十六章《二次根式》单元测试卷附答案
第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。
人教版二次根式单元 期末复习提优专项训练试卷
一、选择题1.下列计算正确的是( )A 5B =2y Ca = D =2.下列计算正确的是( )A 1BCD ±3.下列计算正确的是( )A =B .2=C .1=D =4.)5=( )A .5+B .5+C .5+D .5.下列式子一定是二次根式的是 ( )A B C D6.已知m 、n m ,n )为( )A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是7.已知44220,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10D .118.若化简的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤49.下列运算中错误的是( )A =B =C 2÷=D .2 (3=10.2的结果是( )A .±3B .﹣3C .3D .9二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.计算(π-3)0-21-2()的结果为_____.13.3=,且01x <<=______.14.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.15.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16222a a ++的最小值是______.17.已知整数x ,y 满足20172019y x x =+--,则y =__________. 18.11882. 19.3x -x 的取值范围是______. 20.如果332y x x --,那么y x =_______________________.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 2.【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将21x =22= 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.1524-45-656【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.23.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.26.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断.【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;C=,所以C 选项正确;D D 选项错误.故选:C .【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A【解析】2÷故选A.3.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB 、无法计算,故此选项错误;C 、D ,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.6.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.7.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握. 8.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x ≥0,x-4≥0时,可得x 无解,不符合题意;当1-x ≥0,x-4≤0时,可得x ≤1时,原式=1-x-4+x=-3;当1-x ≤0,x-4≥0时,可得x ≥4时,原式=x-1-x+4=3;当1-x ≤0,x-4≤0时,可得1≤x ≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x ≤4时,多项式等于2x-5,故选B .【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C .【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】 根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.13..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.14.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】=和绝对值的性质是解题的关a键.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器解析:5【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),∴m故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
人教版八年级初二数学第二学期二次根式单元测试提优卷试卷
一、选择题1.下列计算正确的是( )A =B 3=C =D .21=2.已知5x =-,则2101x x -+的值为( )A.-B .C .2- D .0 3.下列各式中,正确的是( )A .B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 2 4.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .①B .①②C .①③D .①②③5.若2x -有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠26.已知实数x ,y 满足(x y )=2008,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .17.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数 8.下列计算正确的是( )A =B .2-=C .22=D 3=9.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .63C .18D .192 10.与根式1x x --的值相等的是( ) A .x - B .2x x -- C .x -- D .x - 二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去……. ⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13222a a ++的最小值是______.14.若2x ﹣3x 2﹣x=_____.15.把1a- 16.已知2,n=1222m n mn +-的值________.17.已知1<x <2,171x x +=-11x x --_____. 18.36,3,2315,,则第100个数是_______. 19.已知4a 2(3)|2|a a +--=_____.20.2121=-+3232=+=++……=___________. 三、解答题21.解:设x222x =++2334x =+,x 2=10∴x =10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6,x 2=14∴x =.0,∴x .【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2 =;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).23.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用24.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n ++++=12. 考点:分母有理化.25.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.26.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.27.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算下列各题:(1-.(2)2【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;=--+(2)原式22(5=---525=--2【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.2.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.3.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.4.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.5.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.6.D解析:D【解析】由(x y)=2008,可知将方程中的x,y对换位置,关系式不变,那么说明x=y是方程的一个解由此可以解得,或者则3x2-2y2+3x-3y-2007=1,故选D.7.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.8.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.9.A解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-x-=故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题11.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
人教版二次根式单元 期末复习提优专项训练
人教版二次根式单元 期末复习提优专项训练一、选择题1.下列计算正确的是( )A 1BCD ±2.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .3.下列运算错误的是( )A =B .=C .)216=D .)223=4.x 的取值可以是( )A B .0C .12-D .-15.下列二次根式是最简二次根式的是( )AB C D6.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5-8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列说法中正确的是( )A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.10.若式子22(1)m m +-有意义,则实数m 的取值范围是( ) A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠111.下列二次根式中,最简二次根式是( ) A .23aB .13 C . 2.5D .22a b -12.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题13.已知()230m m --≤,若整数a 满足52m a +=,则a =__________.14.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a cb=___________ 15.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____.16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.3x-x 的取值范围是______. 18.20n n 的最小值为___ 19.25523y x x =--,则2xy 的值为__________.20.4x -x 的取值范围是_____三、解答题21.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.先将32222x xx x x-÷--化简,然后选一个你喜欢的x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析: 原式2221222x x x x x x --=÷=⋅-- 222x x x x x -=⋅⋅-=- 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=223.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.24.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.28.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.29.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.30.计算下列各题:(1(2)2-.【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】2÷故选A.2.C解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.4.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.5.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=C、当0x<D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.6.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x 的取值范围为:1≤x≤4故选B .【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】 255=,故A 选项错误;0ππ-+=,故B 选项错误; -3的立方根为3333-=-,故C 选项错误;22-a b 是最简二次根式,故D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.D解析:D【分析】根据二次根式有意义的条件即可求出答案.【详解】由题意可知:2010m m +≥⎧⎨-≠⎩, ∴m ≥﹣2且m ≠1,故选D .【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.11.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式12.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题13.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.14.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b<0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0=当b <0=故答案为:2020a b b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形. 详解:∵|a ﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a ,=2007,两边同平方,得:a ﹣2008=20072,∴a ﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy=-2×52×3=-15.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级数学下《二次根式》期末专题复习附答案【提优首选】
八年级数学下册二次根式期末专题培优复习一、选择题: 1、在函数y =中,自变量x 的取值范围是( )A.x >2B.x ≠2C.x <2D.x ≤2 2、下列二次根式中,不能与合并的是( ) A.B.C.D.3、在根式① ② ③ ④中,最简二次根式是( )A.① ②B.③ ④C.① ③D.① ④ 4、下列运算中,错误的有( ). (1)A.1个B.2个C.3个D.4个 5、若有意义,则满足条件的a 的个数为( )A.1B.2C.3D.4 6、在数轴上实数a ,b 的位置如图所示,化简|a+b|+的结果是( )A.﹣2a ﹣bB.﹣2a+bC.﹣2bD.﹣2a 7、下列计算正确的是( ). A. B.C. D.8、计算的结果是( )A.1B.-1C.2x-5D.5-2x 9、已知a=25+,b=25-,则722++b a 的值为( ) A.3 B.4 C.5 D.6 10、按如图所示的程序计算,若开始输入的n 值为,则最后输出的结果是( )A.14B.16C.8+5D.14+11、△ABC 的三边长分别是1、k 、3,则化简的结果为( )A.﹣5B.19﹣4kC.13D.1 12、设a 为﹣的小数部分,b 为﹣的小数部分.则﹣的值为( ) A.+-1 B.﹣+1 C.﹣﹣1 D.++1二、填空题: 13、计算 .14、函数y=的自变量x 的取值范围是 .15、如果,那么= .16、当时,代数式的值为______. 17、已知﹣1<a <0,化简得 .18、已知直角三角形的两边长为x ,y ,且满足065422=+-+-y y x ,则第三边长为三、计算题: 19、 20、;四、解答题: 21、如果最简二次根式与是同类二次根式,求的值。
22、若的整数部分是,小数部分是,求的值.23、已知,求的值.24、阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.25、先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数,使,,即,,那么便有:.例如:化简:.解:首先把化为,这里,,由于,,即,,所以.根据上述方法化简:.参考答案1、D2、C3、C4、A5、A6、D7、D.8、D9、C10、C11、D12、B13、答案为:14、答案为:x>1.15、答案为:-1;16、答案为:17、答案为:﹣.18、答案为:2,或.19、0,20、原式=21、解:由题意得:解得:故22、(1);(2)10;23、.24、(1)-;(2)-;(3)-9;25、解:根据题意,可知,由于,所以.。
人教版八年级初二数学第二学期二次根式单元测试提优卷试题
一、选择题1.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2x B .2x - C .2x - D .2x2.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1 3.下列各式中,无意义的是( ) A .23- B .()333- C .()23- D .310-4.下列式子中,是二次根式的是( )A .2B .32C .xD .x5.下列各式计算正确的是( ) A .6232126()b a b a b a ---⋅= B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 6 6.在函数y=2x +中,自变量x 的取值范围是( ) A .x≥-2且x≠3 B .x≤2且x≠3C .x≠3D .x≤-2 7.下列运算正确的是( ) A .32-=﹣6B .31182-=-C .4=±2D .25×32=510 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2 B .﹣3≤k ≤3 C .﹣1≤k ≤1 D .k ≥﹣19.下列计算正确的是( ) A 235=B 236= C 2434= D ()233-=- 10.下列各式成立的是( ) A ()222- B ()255-=- C 2x x D ()266-=-二、填空题11.322+=___________.12.已知3x x +=,且01x <<,则2691x x x =+-______. 13.若实数x ,y ,m 满足等式 ()23532322x y m x y m x y x y +--++-=+----,则m+4的算术平方根为________.14.化简二次根式2a 1a a +-的结果是_____. 15.已知:x=5+2,则2可用含x 的有理系数三次多项式来表示为:2=_____. 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.已知2,n=1222m n mn +-的值________.18.若0xy >,则二次根式2y x -________. 19.20n n 的最小值为___20.若a 、b 都是有理数,且2222480a ab b a -+++=ab .三、解答题 21.先阅读下列解答过程,然后再解答:2m n +,a b ,使a b m +=,ab n =,使得22)a b m +=a b n =22())m n a b a b a b ±=±=>743+743+7212+7,12m n ==,由于437,4312+=⨯=,即:22(4)(3)7+=,4312=27437212((43)23+=+=+=+。
人教版八年级初二数学下学期二次根式单元达标测试提优卷试卷
一、选择题1.下列计算正确的为( ).A .2(5)5-=-B .257+=C .6432+=+D .3622= 2.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣13.已知526x =-,则2101x x -+的值为( ) A .306-B .106C .1862-D .0 4.2020x -x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 20205.下列式子一定是二次根式的是 ( ) A 2a B a C 3a D a 6.下列各式计算正确的是( ) A 2+3=5B .43-33=1 C .2333=63D 123=27.若a b >3a b - )A .ab --B .-abC .a abD .-ab8.已知实数x 、y 满足222y x x =--,则yx 值是( ) A .﹣2B .4C .﹣4D .无法确定 9.23(2,1(2(3,1,2x x y y x x x x y >+=-->++中,二次根式有( )A .2个B .3个C .4个D .5个10.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 318二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.计算(π-3)0-21-2()的结果为_____.13.3=,且01x <<=______.14.+的形式(,,a b c 为正整数),则abc =______.15.若6x ,小数部分为y ,则(2x y 的值是___.16.化简:17.把18.使式子2x +有意义的x 的取值范围是______.19.3y =,则2xy 的值为__________.20.n 为________.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.25.先化简,再求值:2443(1)11m mmm m-+÷----,其中2m=.【答案】22mm-+1.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=221 mm--()÷(31m-﹣211mm--)=221 mm--()÷2 41m m--=221 mm--()•122mm m--+-()()=﹣22m m -+ =22m m -+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A 5=,故A 选项错误;B B 选项错误;C =,故C 选项错误;D 2=,正确, 故选D .【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小3.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.6.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.7.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∴a>0,b<0=-,a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.8.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.9.B解析:B【解析】解:当y=﹣2时,y+1=﹣2+1=﹣1,∴y=-2)无意义;当x>0无意义;x>0共3个.故选B.10.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;B是同类二次根式;3CD故选B.本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.13..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.14.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a,b,c的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a,b,c的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2,y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2,y=4-,所以(2xy=(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.16.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析: 【解析】根据二次根式的性质,化简为:故答案为 ; 17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a ≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.18.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 20.7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
人教版二次根式单元测试提优卷试卷
人教版二次根式单元测试提优卷试卷一、选择题1.下列式子中,属于最简二次根式的是( ) A .9 B .13C .20D .72.计算12718483--的结果是( ) A .1B .﹣1C .32--D .23-3.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .04.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .275.下列计算正确的是( ) A .325+=B .2222+=C .2651-=D .822-=6.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 67.下列式子中,属于最简二次根式的是( ) A .4B .3C .12D .208.给出下列结论:①101+在3和4之间;②1x +中x 的取值范围是1x ≥-;③81的平方根是3;④31255--=-;⑤5158->.其中正确的个数为( ) A .1个B .2个C .3个D .4个 9.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣110.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321=11.1272a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .212.与根式1x-- ) A .xB .x x --C .x --D x -二、填空题13.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+----,则m+4的算术平方根为________.14.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.15.计算:652015·652016=________. 16.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.17.已知x ,y 为实数,y =229913x x x ---求5x +6y 的值________.18.函数y 4x-中,自变量x 的取值范围是____________. 19.2m 1-1343m --mn =________. 20.28n n 为________.三、解答题21.先观察下列等式,再回答问题: 2211+2+()1=1+1=2; 2212+2+()212=2 12; 2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2)12.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式=122n++++=.考点:分母有理化.30.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+ 【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.C解析:C 【解析】解:原式=故选C .3.B解析:B 【分析】把x=0 【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.4.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:AB,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.5.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.6.D解析:D【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果.【详解】 A. 2321526()b a b a b a ---⋅=,故选项A 错误; B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误;D. 2x •3x 5=6x 6,正确.故选:D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.B解析:B【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误;故选:B .【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.8.A解析:A【分析】答.【详解】 解:①3104<<,415∴<<,故①错误;x 的取值范围是1x ≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;⑤∵515459288---=,()22459<,∴5158--<,即5158-<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.9.C解析:C【解析】依据二次根式有意义的条件即可求得k的范围.解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.10.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】2与3A选项错误;6626322===B选项正确;23(3)8321-=-=,所以C选项错误;2与3D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.11.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D .【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x 是负数,所以-x x-⋅=- 故选:D .【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x 的符号是负号,这是解题的难点. 二、填空题13.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.14.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为15.【解析】原式=.故答案为.【解析】原式=20152015=16.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.17.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.18.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=2x-,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.20.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.下列计算结果正确的是( ) A .2+5=7 B .3223-= C .2510⨯=D .25105= 3.下列根式中,最简二次根式是( ) A .13 B .0.3 C .3 D .84.下列式子中,为最简二次根式的是( ) A .12B .7C .4D .485.若2019202120192020a =⨯-⨯,2202242021b =-⨯,2202020c =+,则a ,b ,c 的大小关系是( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<6.设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A .621+- B .621-+C .621--D .621++7.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98 B .99C .100D .1018.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a10.下列各式计算正确的是( )A 2+3=5B .43-33=1C .D二、填空题11.2==________.12.已知,-1,则x 2+xy +y 2=_____.13.+的形式(,,a b c 为正整数),则abc =______. 14.已知整数x ,y 满足y =,则y =__________.15.若0xy >,则二次根式________.16.===据上述各等式反映的规律,请写出第5个等式:___________________________.17.如果2y ,那么y x =_______________________.18.已知x ,y ,则x 2+xy +y 2的值为______.19.x 的取值范围是_____20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.)÷)(a≠b).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b--+-222224.计算:(1)+(2(33+-【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误.故选:C.【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C===,故D选项错误,D故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.5.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B . 【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵=()()221n n ++= ()211n n n n ++=+ =111+1n n -+, ∴S=2211112+++2211123+++2211134+++ …+2211199100++ =1111111+11122399100-++-+++- =199+1100-=100-1100, ∴不大于S 的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道()2211111+111n n n n +=+-++是解答本题的基础. 8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A9.A解析:A【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.10.D解析:D【解析】23不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知43333,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.二、填空题11.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.12.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10.故答案为10.13.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.14.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.15.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 16.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.17.【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.18.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 19.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4. 故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。