高中物理模型法解题-滑板-木块模型

合集下载

34.物理建模:滑块—木板模型

34.物理建模:滑块—木板模型

【备选训练2】 如图示,光滑水平面上静止放着长L=4 m,质量为M=3 kg的
木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M
之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10 m/s2)
(1)为使两者保持相对静止,F不能超过多少?
(2)如果F=10 N,求小物体离开木板时的速度?
滑块 —— 木板模型
1.模型特点 2.典例剖析 3.规律方法 4.备选训练 5.高考模拟演练
物思理·谢
1.模型特点
物思理·谢
1.模型特点 涉及两个发生相对滑动的物体. 两种位移关系 滑块由滑板的一端运动到另一端的过程中 若滑块和滑板同向运动,位移之差等于板长; 若滑块和滑板反向运动,位移之和等于板长.
设板长为L,滑块位移x1,滑板位移x2
运动演示
同向运动时:
x1=L+x2
反向运动时:
L
x2
L=x1+x2
x1 x2
物思理·谢
2.模型应用 滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多 次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求 较高,故频现于高考试卷中。另外,常见的子弹射击木板(如图b)、圆 环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-滑板模 型类似。
物思理·谢
3. 思 维 模 板
2.典例剖析
角度1 水平面上的滑块——木板模型【真题示例3】 (2013·全国卷Ⅱ,25)一长木板在水平地面上运动,在 t=0时刻将一相对于地面静止的物块轻放到木板上,以 后木板运动的速度—时间图象如图6所示。已知物块与 木板的质量相等,物块与木板间及木板与地面间均有摩 擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且 物块始终在木板上。取重力加速度的大小g=10 m/s2, 求: (1)物块与木板间、木板与地面间的动摩擦因数; (2)从t=0时刻到物块与木板均停止运动时,物块相对 于木板的位移的大小。

高中物理滑块-板块模型(解析版)

高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

(完整版)高中物理滑块-板块模型(解析版)

(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。

【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。

薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。

已知物块与薄板的质量相等。

它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。

求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。

(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

高考物理专题滑块-木板模型(含多种变型题)最新PPT

高考物理专题滑块-木板模型(含多种变型题)最新PPT

s1=0.8 m.
变式题 : 物体 A的质量 m =1kg ,静止在光滑水平面
1
上的木板 B的质量为 m =0.5kg 、长L=1m,某时刻 A
2
以v =4m/s 的初速度滑上木板 B的上表面, 为使 A不
0
致于从 B上滑落, 在A滑上B的同时,给 B施加一个水
平向右的拉力 F,若A与B之间的动摩擦因数 μ=0.2,
滑块-木板模型
滑块-木板模型 考点解读
滑块-木板模型作为力学的基本模型经常出现,是对 直线运动和牛顿运动定律有关知识的综合应用.着重 考查学生分析问题、运用知识的能力,这类问题的分 析有利于培养学生对物理情景的想象能力,为后面牛 顿运动定律与能量知识的综合应用打下良好的基础.
例题1:如图所示,有一长度 s=1 m,质量M=10 kg的平板小车,静止在光滑的水平面上,在小车一 端放置一质量 m=4 kg的小物块,物块与小车间的 动摩擦因数 μ=0.25,要使物块在 2 s末运动到小车 的另一端,那么作用在物块上的水平力 F是多少?
(1)经过多少时间小滑块与长木板速度相等?
(2)从小滑块滑上长木板,到小滑块与长木板相 对静止,小滑块运动的距离为多少?
(滑块始终没有滑离长木板)
(1)0.15 s (2)0.135 m
图13
例 2 某电视台娱乐节目在游乐园举行家庭搬运砖块比赛活动.比赛 规则是:如图 7 甲所示向滑动行驶的小车上搬放砖块,且每次只能 将一块砖无初速度(相对地面)地放到车上,车停止时立即停止搬放, 以车上砖块多少决定胜负.已知每块砖的质量 m=0.8 kg,小车的 上表面光滑且足够长,比赛过程中车始终受到恒定牵引力 F=20 N 的作用,未放砖块时车以 v0=3 m/s 的速度匀速前进.获得冠军的 家庭上场比赛时每隔 T=0.8 s 搬放一块砖,从放上第一块砖开始计 时,图中仅画出了 0~0.8 s 内车运动的 v-t 图象,如图乙所示,g 取 10 m/s2.求:

高考备考重点题型——滑块木板模型解题攻略

高考备考重点题型——滑块木板模型解题攻略

高考备考重点题型——滑块木板模型解题攻略滑块木板模型是高考题构建中一个重要插件,也是一个高频的考察模型。

简单的道具为牛顿运动定律、功能关系的应用提供了广阔的舞台。

在备考中理应收到师生的重视。

【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。

两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。

3、通常所说物体运动的位移、速度、都是对地而言。

在相对运动的过程中相互作用的物体之间位移、速度、时间一定存在关联。

它就是我们解决力和运动突破口。

画出运动草图非常关键。

4、求时间通常会用到牛顿第二定律加运动学公式。

5、求位移和速度通常会用到牛顿第二定律加运动学公式或动能定理。

例1:如图所示,质量为M=100kg的平板车放在光滑水平面上,车高为h=1.25m,一个质量为m=50kg的可视为质点的物体放在车上,距左端b=1m,物体与平板车上表面间的动摩擦因数为μ=0.2,取g=10m/s2。

今对平板车施加水平向右的恒力F,当车运动的位移为s=2m时,物体恰从车的左端滑离平板车,求物体着地时距平板车左端多远?例2:如图所示,质量为M的汽车载着质量为m的木箱以速度v运动,木箱与汽车上表面间的动摩擦因数为μ,木箱与汽车前端挡板相距L,若汽车遇到障碍物制动而静止时,木箱恰好没碰到汽车前端挡板,求:(1)汽车制动时所受路面的阻力大小;(2)汽车制动后运动的时间。

尝试练习1、如图所示,在光滑水平面上有一小车A,其质量为0.2=m kg,小车上放一个A物体B,其质量为0.1=m kg,如图(1)所示。

给B一个水平推力F,当F增B大到稍大于3.0N时,A、B开始相对滑动。

如果撤去F,对A施加一水平推力F′,如图(2)所示,要使A、B不相对滑动,求F′的最大值Fm图(1)图(2)2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数 =0.2,小车足够长(取g=l0 m/s 2)。

高中物理模型法解题-滑板-木块模型

高中物理模型法解题-滑板-木块模型

高中物理模型法解题——滑板木块模型【模型概述】滑块-滑板问题往往涉及两个物体,并且常常是叠放在一起的,有时也成为“叠放问题”。

两个物体间由某种力联系在一起,并且存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。

既可单独考其中单个知识点,也可以出综合性的大题。

分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和学习的难点。

鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。

因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。

【知识链接】一、滑板-滑块模型1)解题思路:分析滑块和滑板的受力情况——应用牛顿第二定律分别求出速度——对二者进行运动情况分析——找出位移关系或速度关系建立方程并求解。

2)位移关系:滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。

3)速度关系:当滑块和滑板的速度相同,二者距离往往最大或最小。

4) 何时开始运动:判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。

5) 何时开始相对运动:二者加速度相同是发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。

6) 摩擦力做功问题:A )叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如下图所示),A 、B 之间无摩擦力作用.B )如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s 相.二、 运动学相关知识1) 匀速直线运动:匀速直线运动指速度大小和方向均不变的直线运动叫做匀速直线运动,涉及的公式是 。

2024届高考物理微专题:“滑块-木板”模型问题

2024届高考物理微专题:“滑块-木板”模型问题

微专题24“滑块-木板”模型问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fm m.假设两物体同时由静止开始运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.如图所示,静止在水平地面上的木板(厚度不计)质量为m 1=1kg ,与地面间的动摩擦因数为μ1=0.2,质量为m 2=2kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v 0=4m/s 的水平初速度从左端滑上木板,经过t =0.6s 滑离木板,g 取10m/s 2,以下说法正确的是()A .木板的长度为1.68mB .小物块离开木板时,木板的速度为1.6m/sC .小物块离开木板后,木板的加速度大小为2m/s 2,方向水平向右D .小物块离开木板后,木板与小物块将发生碰撞答案D 解析由于μ2m 2g >μ1(m 1+m 2)g ,对木板,由牛顿第二定律得μ2m 2g -μ1(m 1+m 2)g =m 1a 1,解得a 1=2m/s 2,即物块在木板上以加速度大小a 2=μ2g =4m/s 2向右减速滑行时,木板以加速度大小a 1=2m/s 2向右加速运动,在0.6s 时,物块的速度v 2=1.6m/s ,木板的速度v 1=1.2m/s ,B 错误;物块滑离木板时,物块位移为x 2=v 0+v 22t =1.68m ,木板位移x 1=v 12t =0.36m ,两者相对位移为x =x 2-x 1=1.32m ,即木板长度为1.32m ,A 错误;物块离开木板后,木板做减速运动,加速度大小为a 1′=μ1g =2m/s 2,方向水平向左,C 错误;分离后,物块在地面上的加速度大小为a 2′=μ2g =4m/s 2,在地面上物块会滑行x 2′=v 222a 2′=0.32m ,木板会滑行x 1′=v 122a 1′=0.36m ,所以两者会相碰,D 正确.2.(多选)如图a ,一长木板静止于光滑水平桌面上,t =0时,小物块(可视为质点)以速度v 0滑上长木板左端,最终小物块恰好没有滑出长木板;图b 为物块与木板运动的v -t 图像,图中t 1、v 0、v 1已知.重力加速度大小为g .由此可求得()A .木板的长度B .物块的质量C .物块与木板的质量之和D .物块与木板之间的动摩擦因数答案AD 解析根据最终小物块恰好没有滑出长木板,由图像可求出木板的长度为L =v 1+v 02t 1-v 12t 1=v 02t 1,故A 符合题意;物块的质量不能求出来,也无法求出木板的质量,故不能求出物块与木板的质量之和,故B 、C 不符合题意;对物块,根据图像可以求出物块匀减速阶段的加速度大小,即a =v 0-v 1t 1,由牛顿第二定律可知a =F f m =μmg m=μg ,联立解得物块与木板之间的动摩擦因数为μ=v 0-v 1gt 1,故D 符合题意.3.(多选)一长轻质薄硬纸片置于光滑水平地面上,其上放质量均为1kg 的A 、B 两物块,A 、B 与薄硬纸片之间的动摩擦因数分别为μ1=0.3,μ2=0.2,水平恒力F 作用在A 物块上,如图所示.已知最大静摩擦力等于滑动摩擦力,g 取10m/s 2.下列说法正确的是()A .若F =1.5N ,则A 物块所受摩擦力大小为1.5NB .若F =8N ,则B 物块的加速度大小为2.0m/s 2C .无论力F 多大,A 与薄硬纸片都不会发生相对滑动D .无论力F 多大,B 与薄硬纸片都不会发生相对滑动答案BC 解析A 与硬纸片间的最大静摩擦力为F f A =μ1m A g =0.3×1×10N =3N ,B 与硬纸片间的最大静摩擦力为F f B =μ2m B g =0.2×1×10N =2N .当B 刚要相对于硬纸片滑动时静摩擦力达到最大值,由牛顿第二定律得F f B =m B a 0,得a 0=2m/s 2.对整体,有F 0=(m A +m B )×a 0=2×2N =4N ,即F ≥4N 时,B 将相对纸片运动,此时B 受到的摩擦力F B =2N ,则对A 分析,A 受到的摩擦力也为2N ,所以A 的摩擦力小于最大静摩擦力,故A 和纸片间不会发生相对运动;则可知,当拉力为8N 时,B 与纸片间的摩擦力即为滑动摩擦力为2N ,此后增大拉力,不会改变B 的受力,其加速度大小均为2m/s 2,由于轻质薄硬纸片看作没有质量,故无论力F 多大,A 和纸片之间不会发生相对滑动,故B 、C 正确,D 错误;F =1.5N<4N ,所以A 、B 与纸片保持相对静止,整体在F 作用下向左匀加速运动,对A 根据牛顿第二定律得F -F f =m A a ,所以A 物块所受摩擦力F f <F =1.5N ,故A 错误.4.如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板的加速度a 的大小可能是()A .μgB.13μgC.23μg D.F 2m -14μg 答案D 解析若物块和木板之间不发生相对滑动,物块和木板一起运动,对木板和木块组成的整体,根据牛顿第二定律可知:F -14μ·2mg =2ma ,解得:a =F 2m -14μg ;若物块和木板之间发生相对滑动,对木板,水平方向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -14μ·2mg =ma ,解得:a =12μg ,故A 、B 、C 错误,D 正确.5.(多选)如图所示,在桌面上有一块质量为m 1的薄木板,薄木板上放置一质量为m 2的物块,现对薄木板施加一水平恒力,使得薄木板能被抽出而物块也不会滑出桌面.物块与薄木板、薄木板与桌面间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,则下列说法正确的是()A .物块在薄木板上滑动的时间和在桌面上滑动的时间相等B .拉力越大,物块刚离开薄木板时的速度越大C .薄木板对物块的摩擦力方向与拉力方向相同D .拉力的最小值为μ(2m 1+m 2)g答案AC 解析物块在薄木板上相对滑动过程,从静止加速至速度v 时离开木板,加速度大小为μg ,在桌面上滑动的过程,受桌面滑动摩擦力作用,加速度大小为μg ,从速度v 减速至静止,由对称性可知,物块在薄木板上滑动的时间和在桌面上滑动的时间相等,A 正确;拉力越大,物块在薄木板上滑行时间越短,由v =μgt 可知,物块刚离开薄木板时的速度v 越小,B 错误;物块在薄木板上滑行过程,相对薄木板向左运动,故受到的滑动摩擦力向右,与拉力方向相同,C 正确;物块加速过程的加速度为μg ,薄木板的临界加速度为μg ,整体由牛顿第二定律可得F -μ(m 1+m 2)g =(m 1+m 2)μg ,解得F =2μ(m 1+m 2)g .为使薄木板能抽出,故拉力的最小值应大于2μ(m 1+m 2)g ,D 错误.6.如图甲所示,一质量为M 的长木板静置于光滑水平面上,其上放置一质量为m 的小滑块.木板受到水平拉力F 作用时,用传感器测出长木板的加速度a 与水平拉力F 的关系如图乙所示,重力加速度g =10m/s 2,下列说法正确的是()A .小滑块的质量m =3kgB .小滑块与长木板之间的动摩擦因数为0.1C .当水平拉力F =7N 时,长木板的加速度大小为3m/s 2D .当水平拉力F 增大时,小滑块的加速度一定增大答案C 解析由a -F 图像可知,小滑块的最大加速度为2m/s 2,对小滑块分析有μmg =ma m ,解得μ=0.2,B 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F-μmg =Ma ,整理得a =1M F -μmg M .由a -F 图像可知图像的斜率为k =1M ,代入数据解得1M=k =26-41,解得M =1kg.由a -F 图像可知,外力小于6N 时,两物体有共同加速度,外力等于6N 时,两物体加速度为2m/s 2,对整体分析有F =(M +m )a ,解得M +m =3kg ,则有m =2kg ,A 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,相对滑动后小滑块的加速度不随外力的增大而改变,D 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F -μmg =Ma ′,当水平拉力F =7N 时,代入数据得长木板的加速度大小为3m/s 2,C 正确.7.(多选)如图所示,有一倾角θ为37°、下端固定一弹性挡板的光滑斜面,挡板与斜面垂直.一长木板质量为M ,下端距挡板的距离为L ,上端放有一质量为m 的小物块,长木板由静止自由下滑,与挡板每次发生碰撞后均以原速率弹回,且每次碰撞的时间极短,小物块和木板的运动始终与斜面平行.已知m ∶M =1∶2,长木板上表面与小物块之间的动摩擦因数为μ=0.5,取sin 37°=0.6,cos 37°=0.8,重力加速度为g ,不计空气阻力.则下列说法正确的有()A.长木板第一次与挡板碰撞后的瞬间,小物块的加速度大小为0.2gB.长木板第一次与挡板碰撞后的瞬间,长木板的加速度大小为0.8gC.若长木板的长度为10L,则第三次碰撞前小物块已从长木板上滑落D.若长木板的长度为10L,则第三次碰撞前小物块仍没有从长木板上滑落答案ABD解析长木板第一次与挡板碰撞后的瞬间,对木板,有Mg sinθ+μmg cosθ=Ma1,a1=0.8g.对物块,有mg sinθ-μmg cosθ=ma2,a2=0.2g,选项A、B正确;木板从开始下滑到与挡板第一次碰撞v02=2gL sinθ,碰后木板与挡板往复碰撞,加速度不变,相邻两次碰撞的时间为t=2v00.8g=5v02g.若木板足够长,物块一直向下加速,加速度不变,则木板第一次与挡板碰撞到第二次碰撞的过程,两者相对位移x1=2v0t-12(a1-a2)t2=25v028g,物块的速度为v=v0+0.2gt=1.5v0.木板第二次与挡板碰撞到第三次碰撞的过程,两者相对位移x2=(1.5v0+v0)t-12 (a1-a2)t2=35v028g,则第三次碰前,两者的相对位移为x1+x2=15v022g=9L.木板长10L,故第三次碰撞前小物块仍没有从长木板上滑落,故C错误,D正确.8.如图所示,在光滑水平面上一质量为M=3kg的平板车以v0=1.5m/s的速度向右匀速滑行,某时刻(开始计时)在平板车左端加一大小为8.5N、水平向右的推力F,同时将一质量为m=2kg的小滑块(可视为质点)无初速度地放在小车的右端,最终小滑块刚好没有从平板车上掉下来.已知小滑块与平板车间的动摩擦因数μ=0.2,重力加速度g=10m/s2,求:(1)两者达到相同速度所需要的时间t;(2)平板车的长度l.答案(1)3s(2)2.25m解析(1)小滑块相对平板车滑动时,设小滑块和平板车的加速度大小分别为a1、a2,根据牛顿第二定律有μmg=ma1,F-μmg=Ma2解得a1=2m/s2,a2=1.5m/s2又a1t=v0+a2t解得t =3s.(2)两者达到相同速度后,由于F m +M=1.7m/s 2<a 1,可知它们将一起做匀加速直线运动.从小滑块刚放在平板车上至达到与平板车相同速度的过程中,滑块向右的位移大小为x 1=12a 1t 2平板车向右的位移大小为x 2=v 0t +12a 2t 2又l =x 2-x 1解得l =2.25m.9.如图所示,在倾角为θ=37°的足够长斜面上放置一质量M =2kg ,长度L =1.5m 的极薄平板AB ,在薄平板上端A 处放一质量m =1kg 的小滑块(可视为质点),将小滑块和薄平板同时无初速度释放,已知小滑块与薄平板之间的动摩擦因数为μ1=0.25,薄平板与斜面之间的动摩擦因数为μ2=0.5,sin 37°=0.6,cos 37°=0.8,取g =10m/s 2,求:(1)释放后,小滑块的加速度大小a 1和薄平板的加速度大小a 2;(2)从释放到小滑块滑离薄平板经历的时间t .答案(1)4m/s 21m/s 2(2)1s 解析(1)设释放后,滑块会相对于平板向下滑动,对滑块:由牛顿第二定律有mg sin 37°-F f1=ma 1其中F N1=mg cos 37°,F f1=μ1F N1解得a 1=g sin 37°-μ1g cos 37°=4m/s 2对薄平板,由牛顿第二定律有Mg sin 37°+F f1′-F f2=Ma 2其中F N2=(m +M )g cos 37°,F f2=μ2F N2,F f1′=F f1解得a 2=1m/s 2a 1>a 2,假设成立,即滑块会相对于平板向下滑动.(2)设滑块滑离时间为t ,由运动学公式,有x 1=12a 1t 2,x 2=12a 2t 2,x 1-x 2=L 解得:t =1s .。

1鼎盛-高中物理最经典-滑块—木板模型问题的分析和技巧

1鼎盛-高中物理最经典-滑块—木板模型问题的分析和技巧

滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x 相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.模型二 传送带模型例2 如图所示,传送带与水平面之间的夹角为θ=30°,其上A 、B 两点间的距离为l =5 m ,传送带在电动机的带动下以v =1 m/s 的速度匀速运动.现将一质量为m =10 kg 的小物体(可视为质点)轻放在传送带上的A 点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A 点传送到B 点的过程中,求:(g 取10 m/s 2)(1)传送带对小物体做的功;(2)电动机做的功.【解析】 (1)小物体刚开始运动时,根据牛顿第二定律有μmg cos θ-mg sin θ=ma解得小物体上升的加速度为a =g 4=2.5 m/s 2 当小物体的速度为v =1 m/s 时,位移为x =v 22a=0.2 m 然后小物体以v =1 m/s 的速度做匀速运动到达B 点.由功能关系得W =ΔE k +ΔE p =12m v 2+mgl sin θ=255 J. (2)电动机做功使小物体的机械能增加,同时小物体与传送带间因摩擦产生热量Q ,由v =at 得t =v a=0.4 s 相对位移x ′=v t -v 2t =0.2 m 摩擦产生的热量Q =μmgx ′cos θ=15 J故电动机做的功为W电=W+Q=270 J.【答案】(1)255 J(2)270 J传送带问题的分析流程和技巧1.分析流程2.相对位移一对相互作用的滑动摩擦力做功所产生的热量Q=F f·x相对,其中x相对是物体间相对路径长度.如果两物体同向运动,x相对为两物体对地位移大小之差;如果两物体反向运动,x相对为两物体对地位移大小之和.3.功能关系(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.[高考真题]1.(2016·四川卷,1)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功 1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】由动能定理可知,ΔE k=1 900 J-100 J=1 800 J,故A、B均错.重力势能的减少量等于重力做的功,故C正确、D错.答案 C2.(2014·山东卷,20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面,“玉兔”在h 高度的引力势能可表示为E p =GMmh R (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )A.mg 月R R +h(h +2R ) B .mg 月R R +h (h +2R ) C.mg 月R R +h (h +22R ) D .mg 月R R +h(h +12R ) 【解析】 设玉兔在h 高度的速度为v ,则由万有引力定律得,G Mm (R +h )2=m v 2R +h,可知玉兔在该轨道上的动能为E k =12GMm (R +h ),由功能关系可知对玉兔做的功为:W =E k +E p =12GMm (R +h )+GMmh R (R +h ),结合在月球表面:G Mm R 2=mg 月,整理可知W =mg 月R R +h(h +12R ),故正确选项为D.【答案】 D3.(2014·广东卷,16)如图所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板, 楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能【解析】 由于楔块与弹簧盒、垫板间有摩擦力,即摩擦力做负功,则机械能转化为内能,故A 错误,B 正确;垫板动能转化为内能和弹性势能,故C 错误;而弹簧弹性势能也转化为动能和内能,故D 错误.【答案】 B[名校模拟]4.(2018·宁夏银川一中模拟)如图所示,水平传送带两端点A 、B 间的距离为L ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度逆时针匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是( )A .W 1=W 2,P 1<P 2,Q 1=Q 2B .W 1=W 2,P 1<P 2,Q 1>Q 2C .W 1>W 2,P 1=P 2,Q 1>Q 2D .W 1>W 2,P 1=P 2,Q 1=Q 2【解析】 当传送带不运动时,拉力做功W 1=FL ,物体从A 运动到B 的时间t 1=L v 1,因摩擦而产生的热量Q 1=fL .当传送带运动时,拉力做功W 2=FL ,物体从A 运动到B 的时间t 2=L v 1+v 2<t 1,因摩擦而产生的热量Q 2=f v 1t 2.拉力做功功率P 1=W 1t 1,P 2=W 2t 2,比较可知W 1=W 2,P 1<P 2.又v 1t 2<v 1t 1,v 1t 1=L ,得Q 1>Q 2,故选B.【答案】 B5.(2018·山东临沂高三上学期期中)如图所示,一质量为m 的小球用两根不可伸长的轻绳a 、b 连接,两轻绳的另一端分别系在竖直杆的A 、B 两点上,当两轻绳伸直时,a 绳与杆的夹角为30°,b 绳水平,已知a 绳长为2L ,当竖直杆以自己为轴转动,角速度ω从零开始缓慢增大过程中,下列说法正确的是( )A .从开始至b 绳伸直但不提供拉力时,绳a 对小球做功为0B .b 绳伸直但不提供拉力时,小球的向心加速度大小为33gC .从开始至b 绳伸直但不提供拉力时,小球的机械能增加了⎝⎛⎭⎫2-536mgL D .当ω= g 3L时,b 绳未伸直 【解析】 细绳对球的拉力方向与球的位移方向不垂直,故一定对球做正功,使其机械能增大,A 错;ma =mg tan 30°,a =33g ,B 对;m v 2L =mg tan θ,E k =12m v 2=36mgL ,A 球ΔE =E k +E p =36mgL +mg (2L -3L )=⎝⎛⎭⎫2-536·mgL ,C 对;令mLω2=mg tan 30°,得ω=3g 3L,D 对. 【答案】 BCD6.(2018·江苏南通高三模拟)如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22 D .环减少的机械能大于重物增加的机械能【解析】 环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.【答案】 B课时作业(十七)[基础小题练]1.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )A .变大B .变小 C.不变 D .不能确定【解析】 人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A 正确.【答案】 A2.如图所示,A 物体用板托着,细绳跨过轻质光滑定滑轮与A 、B 相连,绳处于绷直状态,已知A 、B 的质量分别为2m 和m .现将板抽走,则A 下落一段距离的过程中( )A .A 物体减少的机械能大于B 物体增加的机械能B .A 物体减少的机械能等于B 物体增加的机械能C .悬挂滑轮的绳子对天花板的拉力大于3mgD .悬挂滑轮的绳子对天花板的拉力小于3mg【解析】 对A 、B 组成的系统,没有机械能与其他形式能的转化,因此系统的机械能守恒,A 物体减少的机械能等于B 物体增加的机械能,A 错误,B 正确;对滑轮受力分析,根据平衡条件得F =2F T ,对A 、B 整体受力分析,根据牛顿第二定律得2mg -mg =3ma ,对B 物体受力分析得F T -mg =ma ,联立得F =83mg ,C 错误,D 正确. 【答案】 BD3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能【解析】 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误.【答案】 B4.悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m 的运动员刚入水时的速度为v ,水对他的阻力大小恒为F ,那么在他减速下降深度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)( )A .他的动能减少了(F -mg )hB .他的重力势能减少了mgh -12m v 2 C .他的机械能减少了FhD .他的机械能减少了mgh【解析】 合力做的功等于动能的变化,合力做的功为(F -mg )h ,A 正确;重力做的功等于重力势能的减少量,故重力势能减小了mgh ,B 错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh ,C 正确,D 错误.【答案】 AC5.如图所示,在光滑斜面上的A 点先后水平抛出和静止释放两个质量相等的小球1和2,不计空气阻力,最终两小球在斜面上的B 点相遇,在这个过程中( )A .小球1重力做的功大于小球2重力做的功B .小球1机械能的变化大于小球2机械能的变化C .小球1到达B 点的动能大于小球2的动能D .两小球到达B 点时,在竖直方向的分速度相等【解析】 重力做功只与初、末位置的高度差有关,与物体经过的路径无关,所以重力对1、2两小球所做的功相等,A 错误;1、2两小球从A 点运动到B 点的过程中,只有重力对其做功,所以它们的机械能均守恒,B 错误;由动能定理可得,对小球1有:mgh =E k1-E k0,对小球2有:mgh =E k2-0,显然E k1>E k2,C 正确;由上面的分析可知,两小球到达B 点时,小球1的速度大于小球2的速度,且小球1的速度方向与竖直方向的夹角小于小球2速度方向与竖直方向的夹角,因此,小球1在竖直方向上的速度大于小球2在竖直方向上的速度,D 错误.【答案】 C6.如图所示,水平传送带AB 长为21 m ,以6 m/s 的速度顺时针匀速转动,台面与传送带平滑连接于B 点,半圆形光滑轨道半径R =1.25 m ,与水平台面相切于C 点,BC 长x =5.5 m ,P 点是圆弧轨道上与圆心O 等高的一点.一质量为m =1 kg 的物块(可视为质点),从A 点无初速度释放,物块与传送带及台面间的动摩擦因数均为0.1,则关于物块的运动情况,下列说法正确的是( )A .物块不能到达P 点B .物块能越过P 点做斜抛运动C .物块能越过P 点做平抛运动D .物块能到达P 点,但不会出现选项B 、C 所描述的运动情况【解析】 物块从A 点释放后在传送带上做加速运动,假设到达台面之前能够达到传送带的速度v ,则由动能定理得,μmgx 1=12m v 2,得x 1=18 m <21 m ,假设成立.物块以6 m/s 冲上台面,假设物块能到达P 点,则到达P 点时的动能E k P 可由动能定理求得,-μmgx -mgR =E k P -12m v 2,得E k P =0,可见,物块能到达P 点,速度恰为零,之后从P 点沿圆弧轨道滑回,不会出现选项B 、C 所描述的运动情况,D 正确.【答案】 D[创新导向练]7.生活娱乐——蹦床娱乐中的能量转化问题在儿童乐园的蹦床项目中,小孩在两根弹性绳和蹦床的协助下实现上下弹跳.如图所示,某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点,不计空气阻力.下列说法正确的是( )A .从A 运动到O ,小孩重力势能减少量大于动能增加量B .从O 运动到B ,小孩动能减少量等于蹦床弹性势能增加量C .从A 运动到B ,小孩机械能减少量小于蹦床弹性势能增加量D .若从B 返回到A ,小孩机械能增加量等于蹦床弹性势能减少量【解析】 从A 运动到O 点,小孩重力势能减少量等于动能增加量与弹性绳的弹性势能的增加量之和,选项A正确;从O运动到B,小孩动能和重力势能的减少量等于弹性绳和蹦床的弹性势能的增加量,选项B错误;从A运动到B,小孩机械能减少量大于蹦床弹性势能增加量,选项C错误;若从B返回到A,小孩机械能增加量等于蹦床和弹性绳弹性势能减少量之和,选项D错误.【答案】 A8.物理与生物——以“跳蚤”弹跳为背景考查能量问题在日常生活中,人们习惯于用几何相似性放大(或缩小)的倍数去得出推论,例如一个人身体高了50%,做衣服用的布料也要多50%,但实际上这种计算方法是错误的.若物体的几何线度为L,当L改变时,其他因素按怎样的规律变化?这类规律可称之为标度律,它们是由量纲关系决定的.在上例中,物体的表面积S=kL2,所以身高变为1.5倍,所用的布料变为1.52=2.25倍.以跳蚤为例:如果一只跳蚤的身长为2 mm,质量为0.2 g,往上跳的高度可达0.3 m.可假设其体内能用来跳高的能量E∝L3(L为几何线度),在其平均密度不变的情况下,身长变为2 m,则这只跳蚤往上跳的最大高度最接近()A.0.3 m B.3 mC.30 m D.300 m【解析】根据能量关系可知E=mgh,由题意可知E=kL3,则mgh=kL3;因跳蚤的平均密度不变,则m=ρL3,则ρgh=k,因ρ、g、k均为定值,故h不变,则这只跳蚤往上跳的最大高度最接近0.3 m,故选A.【答案】 A9.就地取材——利用“弹弓”考查功能关系问题弹弓是80后童年生活最喜爱的打击类玩具之一,其工作原理如图所示,橡皮筋两端点A、B固定在把手上,橡皮筋ABC恰好处于原长状态,在C处(AB连线的中垂线上)放一固体弹丸,一手执把,另一手将弹丸拉至D点放手,弹丸就会在橡皮筋的作用下迅速发射出去,打击目标,现将弹丸竖直向上发射,已知E是CD的中点,则()A.从D到C,弹丸的动能一直在增大B.从D到C的过程中,弹丸在E点的动能一定最大C.从D到C,弹丸的机械能先增大后减少D.从D到E弹丸增加的机械能大于从E到C弹丸增加的机械能【解析】在CD连线中的某一处,弹丸受力平衡,但是此点不一定是E点,所以从D到C ,弹丸的速度先增大后减小,弹丸的动能先增大后减小,故A 、B 错误;从D 到C ,橡皮筋对弹丸做正功,弹丸机械能一直在增加,故C 错误;从D 到E 橡皮筋作用在弹丸上的合力大于从E 到C 橡皮筋作用在弹丸上的合力,两段长度相等,所以DE 段橡皮筋对弹丸做功较多,即机械能增加的较多,故D 正确,故选D.【答案】 D10.综合应用——能量转化与守恒定律的实际应用如图所示,倾角θ=37°的光滑斜面上粘贴有一厚度不计、宽度为d =0.2 m 的橡胶带,橡胶带的上表面与斜面位于同一平面内,其上、下边缘与斜面的上、下边缘平行,橡胶带的上边缘到斜面的顶端距离为L =0.4 m ,现将质量为m =1 kg 、宽度为d 的薄矩形板上边缘与斜面顶端平齐且从斜面顶端静止释放.已知矩形板与橡胶带之间的动摩擦因数为0.5,重力加速度大小为g =10 m/s 2,不计空气阻力,矩形板由斜面顶端静止释放到完全离开橡胶带的过程中(此过程矩形板始终在斜面上),sin 37°=0.6,cos 37°=0.8,下列说法正确的是( )A .矩形板受到的摩擦力大小为4 NB .矩形板的重力做功为3.6 JC .产生的热量为0.8 JD .矩形板的上边缘穿过橡胶带下边缘时其速度大小为2355m/s 【解析】 当矩形板全部在橡胶带上时摩擦力为F f =μmg cos 37°=4 N ,此时摩擦力最大,其他情形摩擦力均小于4 N ,故A 错误;重力对矩形板做功W G =mgh =mg (L +d )sin 37°=3.6 J ,B 正确;从滑上橡胶带到完全离开橡胶带,因矩形板受到的摩擦力与位移的变化为线性关系,则产生的热量Q =0+μmg cos 37°2×2d =0.8 J ,C 正确;从释放到完全离开橡胶带,对矩形板由动能定理有mg (L +d )sin 37°-0+μmg cos 37°2×2d =12m v 2,代入可得v =2355m/s ,D 正确.【答案】 BCD[综合提升练]11.如图所示,A 、B 间是一个风洞,水平地板AB 延伸至C 点,通过半径r =0.5 m 、圆心角为θ的光滑圆弧CD 与足够长的光滑斜面DE 连接,斜面倾角为θ.可以看成质点、质量m =2 kg 的滑块在风洞中受到水平向右的恒定风力F =20 N ,滑块与地板AC 间的动摩擦因数μ=0.2.已知x AB =5 m ,x BC =2 m ,如果将滑块在风洞中A 点由静止释放,已知sin θ=0.6,cos θ=0.8,重力加速度g 取10 m/s 2.求(计算结果要求保留3位有效数字):(1)滑块经过圆弧轨道的C 点时对地板的压力大小及在斜面上上升的最大高度;(2)滑块第一次返回风洞速率为零时的位置;(3)滑块在A 、C 间运动的总路程.【解析】 (1)滑块在风洞中A 点由静止释放后,设经过C 点时速度为v 1,由动能定理得Fx AB -μmgx AC =12m v 21 在C 点由牛顿第二定律有F N C -mg =m v 21r代入数据解得F N C =308 N ,由牛顿第三定律知滑块经过C 点时对地板的压力为308 N 滑块由C 点上滑过程中,机械能守恒12m v 21=mgr (1-cos θ)+mgh 代入数据解得h =3.50 m.(2)滑块返回风洞时,风力与摩擦力皆为阻力,设滑块运动到P 点时速率为零,由能量守恒得12m v 21=μmg (x BC +x PB )+Fx PB 代入数据解得x PB =83m ≈2.67 m 滑块第一次返回风洞速率为零时的位置在B 点左侧2.67 m 处.(3)整个过程等效为滑块从A 处在风力和滑动摩擦力的共同作用下被推到B 处,然后在足够长水平面上滑行至静止,设总路程为s ,由动能定理得Fx AB -μmgs =0代入数据解得s =25.0 m.【答案】 (1)308 N 3.50 m (2)在B 点左侧2.67 m 处 (3)25.0 m12.如图所示,在竖直方向上A 、B 两物体通过劲度系数为k =16 N/m 的轻质弹簧相连,A 放在水平地面上,B 、C 两物体通过细线绕过轻质定滑轮相连,C 放在倾角α=30°的固定光滑斜面上.用手拿住C ,使细线刚好拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行.已知A 、B 的质量均为m =0.2 kg ,重力加速度取g =10 m/s 2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C 后它沿斜面下滑,A 刚离开地面时,B 获得最大速度,求:(1)从释放C 到物体A 刚离开地面时,物体C 沿斜面下滑的距离;(2)物体C 的质量;(3)释放C 到A 刚离开地面的过程中细线的拉力对物体C 做的功.【解析】 (1)设开始时弹簧的压缩量为x B ,得kx B =mg ①设物体A 刚离开地面时,弹簧的伸长量为x A ,得kx A =mg ②当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B ③由①②③解得h =2mg k=0.25 m .④ (2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有F T -mg -kx A =0⑤对C 有Mg sin α-F T =0⑥由②⑤⑥解得M =4m =0.8 kg.(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v 2m 解得v m =1 m/s对C 由动能定理可得Mgh sin α+W T =12M v 2m解得W T =-0.6 J.【答案】 (1)0.25 m (2)0.8 kg (3)-0.6 J。

高三物理专题复习板块模型

高三物理专题复习板块模型

高三物理专题复习板块模型研究必备:物理模型之“滑块-木板”模型滑块-木板”模型是力学的基本模型之一,经常出现在直线运动和牛顿运动定律的复中。

分析这类问题有利于培养学生的想象和思维能力。

此外,这个模型也经常作为高考或模拟考试的压轴题出现,因此同学们需要重视。

这个模型在多个角度下都可以进行命题,例如多过程定性分析、多过程相对运动、相对运动与力与运动图像应用临界问题的分析等。

在解题时,需要注意判断是否相对运动、滑离时的速度、相对运动的时间、相对运动的位移和损失的机械能等问题。

以下是三个“滑块-木板”模型的例题:1.如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面。

若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中,桌布对鱼缸摩擦力的方向向左,鱼缸在桌布上的滑动时间和在桌面上的相等,若猫增大拉力,鱼缸受到的摩擦力将不变,若猫减小拉力,鱼缸有可能滑出桌面。

2.如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上。

A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为μ。

最大静摩擦力等于滑动摩擦力,重力加速度为g。

现对A施加一水平拉力F,则当F2μmg时,A相对B 滑动;无论F为何值,B的加速度不会超过μg。

3.如图所示,一足够长的木板静止在粗糙的水平面上,t=时刻滑块从板的左端以速度v水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。

滑块的v-t图像可能是图中的一种。

总之,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动。

和物块施加一个水平方向的拉力F,使得它们一起沿斜面向上运动,求:1)当F=10N时,木板和物块的加速度分别是多少?2)当F逐渐增大时,木板和物块的加速度如何变化?3)当F达到一定值时,物块将会脱离木板而单独向上运动,求这个临界值F4)当F继续增大时,木板的运动情况如何?给出合理的解释。

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题
滑块滑板问题是高考的热点,也是高一上的一个重难点,在高一上的滑块滑板中它主要涉及到受力分析,运动状况分析,以及牛顿运动定律,综合性较强,所以也成为学生学习感到困难的一部分,滑块滑板看似复杂,掌握好受力分析与运动的分析结合牛顿运动定律,再进行分析就比较轻松了。

类型一.“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
类型二.水平传送带问题
滑块在水平传送带上运动常见的三个情景
类型三.倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
总结:处理滑块与滑板类问题的基本思路
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点.方法有整体法隔离法、假设法等.即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的
摩擦力是不是大于最大静摩擦力.。

滑块木板模型-2024届新课标高中物理模型与方法(解析版)

滑块木板模型-2024届新课标高中物理模型与方法(解析版)

2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

高中物理滑块木板模型(经典)

高中物理滑块木板模型(经典)

高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。

动力学之---------“滑板—滑块”模型

动力学之---------“滑板—滑块”模型

高考计算题突破动力学之---------“滑板—滑块”模型(一)[模型概述](1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导](1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路[典例](20分)如图所示,可看成质点的小物块放在长木板正中间,已知长木板质量M=4 kg,长度L=2 m,小物块质量m=1 kg,长木板置于光滑水平地面上,两物体皆静止.现在用一大小为F的水平恒力作用于小物块上,发现只有当F超过2.5 N时,才能让两物体间产生相对滑动.设两物体间的最大静摩擦力大小等于滑动摩擦力大小,重力加速度g=10 m/s2,试求:(1)小物块和长木板间的动摩擦因数;(2)若一开始力F就作用在长木板上,且F=12 N,则小物块经过多长时间从长木板上掉下?规范解答(1)设两物体间的最大静摩擦力为F f,当F=2.5 N作用于小物块时,对整体由牛顿第二定律有F=(M+m)a①(2分)对长木板由牛顿第二定律有F f=Ma②(2分)由①②可得F f=2 N(2分)小物块竖直方向上受力平衡,所受支持力F N=mg,摩擦力F f=μmg得μ=0.2(2分)(2)F =12 N 作用于长木板上时,两物体发生相对滑动,设长木板、小物块的加速度分别为a 1、a 2,对长木板,由牛顿第二定律有F -F f =Ma 1(1分) 得a 1=2.5 m/s 2(2分)对小物块,由牛顿第二定律有F f =ma 2(1分) 得a 2=2 m/s 2(2分)由匀变速直线运动规律,两物体在t 时间内的位移分别为 s 1=12a 1t 2(1分)s 2=12a 2t 2(1分)小物块刚滑下长木板时,有s 1-s 2=12L (1分)解得t =2 s(3分) 答案 (1)0.2 (2)2 s[突破训练]1.质量M =9 kg 、长L =1 m 的木板在动摩擦因数μ1=0.1的水平地面上向右滑行,当速度v 0=2 m/s 时,在木板的右端轻放一质量m =1 kg 的小物块如图所示.小物块刚好滑到木板左端时,物块和木板达到共同速度.取g =10 m/s 2,求:(1)从物块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数μ2.2.(15分)有一项“快乐向前冲”的游戏可简化如下:如图所示,滑板长L =1 m ,起点A 到终点线B 的距离s=5 m.开始滑板静止,右端与A平齐,滑板左端放一可视为质点的滑块,对滑块施一水平恒力F使滑板前进.板右端到达B处冲线,游戏结束.已知滑块与滑板间动摩擦因数μ=0.5,地面视为光滑,滑块质量m1=2 kg,滑板质量m2=1 kg,重力加速度g=10 m/s2,求:(1)滑板由A滑到B的最短时间可达多少?(2)为使滑板能以最短时间到达,水平恒力F的取值范围如何?3.(15分)如图所示,薄板A长L=5 m,其质量M=5 kg,放在水平桌面上,板右端与桌边相齐.在A上距右端s=3 m处放一物体B(可看成质点),其质量m=2 kg.已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数均为μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F持续作用在A上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘.求:(1)B运动的时间;(2)力F的大小.4.如下图所示,质量M=4.0 kg的长木板B静止在光滑的水平地面上,在其右端放一质量m=1.0 kg的小滑块A(可视为质点).初始时刻,A、B分别以v0=2.0 m/s向左、向右运动,最后A恰好没有滑离B板.已知A、B之间的动摩擦因数μ=0.40,取g=10 m/s2.求:(1)A、B相对运动时的加速度a A和a B的大小与方向;(2)A相对地面速度为零时,B相对地面运动已发生的位移大小x;(3)木板B的长度l.5.【2013江苏高考】(16 分)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出, 砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验. 若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ. 重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,,求需所拉力的大小;(3)本实验中m1 =0. 5 kg m2 =0. 1 kg, μ=0. 2,砝码与纸板左端的距离d =0. 1 m,取g =10 m/ s2. 若砝码移动的距离超过l =0. 002 m,人眼就能感知. 为确保实验成功,纸板所需的拉力至少多大?6. (12分)质量M=3kg的滑板A置于粗糙的水平地面上,A与地面的动摩擦因数µ1=0.3,其上表面右侧光滑段长度L1=2m,左侧粗糙段长度为L2,质量m=2kg、可视为质点的滑块B静止在滑板上的右端,滑块与粗糙段的动摩擦因数µ2=0.15,取g=10m/s2,现用F=18N的水平恒力拉动A向右运动,当A、B分离时,B对地的速度v B=1m/s,求L2的值。

专题 滑块—木板模型(板块模型)(课件)(共54张PPT)

专题  滑块—木板模型(板块模型)(课件)(共54张PPT)

1.模型特点 涉及两个发生相对滑动的物体. 两种位移关系 滑块由滑板的一端运动到另一端的过程中 若滑块和滑板同向运动,位移之差等于板长; 若滑块和滑板相向运动,位移之和等于板长.
设板长为L,滑块位移x1,滑板位移x2 x1
同向运动时:
运动演示
L=x1-x2
x2 L=x1+x2
相向运动时:
x1 x2
模型特征 滑块—滑板模型(如图a所示),涉及两个物体间的相对滑动,题目涉及摩擦力 分析、相对运动、摩擦生热、多次相互作用等,属于多物体、多过程问题,综 合性较强,对能力要求较高,频现于高考试卷中。另外,常见的子弹射击木块 (如图b)、圆环在直杆上滑动(如图c)都属于滑块—滑板类问题,处理方法与滑 块—滑板模型类似。
专题 滑块—木板模型 (板块模型)
人教版(2019) 高一上
综合模型 滑块——木快板模型
运动和力观点
功能பைடு நூலகம்点 动量观点
三大
四大
思路
问题
木板+木块
模型
突出----
独立性、规律性、关联性
抓住----
两个加速度 两个位移 三个关系
1、板块用力拉 2、块在板上滑 3、板块相向动 4、弹碰情景加
1.概念:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。 问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定 的关系。 2.模型的特点: 滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板 在摩擦力的相互作用下发生相对滑动。
到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速
度a,得到如图乙所示的a-F图像,已知g取10 m/s2,则 ( )
A.木板B的质量为1 kg B.滑块A的质量为4 kg C.当F=10 N时木板B的加速度为4 m/s2 D.滑块A与木板B间动摩擦因数为0.1

滑块—木板模型专题(附详细参考答案)

滑块—木板模型专题(附详细参考答案)

精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理模型法解题——滑板木块模型【模型概述】滑块-滑板问题往往涉及两个物体,并且常常是叠放在一起的,有时也成为“叠放问题”。

两个物体间由某种力联系在一起,并且存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。

既可单独考其中单个知识点,也可以出综合性的大题。

分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和学习的难点。

鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。

因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。

【知识链接】一、滑板-滑块模型1)解题思路:分析滑块和滑板的受力情况——应用牛顿第二定律分别求出速度——对二者进行运动情况分析——找出位移关系或速度关系建立方程并求解。

2)位移关系:滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。

3)速度关系:当滑块和滑板的速度相同,二者距离往往最大或最小。

4) 何时开始运动:判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。

5) 何时开始相对运动:二者加速度相同是发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。

6) 摩擦力做功问题:A )叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如下图所示),A 、B 之间无摩擦力作用.B )如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s 相.二、 运动学相关知识1) 匀速直线运动:匀速直线运动指速度大小和方向均不变的直线运动叫做匀速直线运动,涉及的公式是 。

2) 匀变速直线运动:匀变速直线运动指加速度不为零,且加速度的大小和方向均不变的直线运动。

匀变速直线运动的常用处理方法如下:a) 一般公式法一般公式法指速度公式、位移公式及推论三式.它们均是矢量式,使用时要注意方向性.b) 平均速度法 定义式t x v ∆∆=对任何性质的运动都适用,而202t t v v v v +==只适用于匀变速直线运动.c) 比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征中的比例关系,用比例法求解.d) 逆向思维法如匀减速直线运动可视为反方向的匀加速直线运动. e)推论法 利用2aT x =∆:其推广式2)(aT n m x x n m -=-,对于纸带类问题用这种方法尤为快捷. f)图像法 利用v-t 或s-t 图线,直观方便快捷的分析物体的运动情况,特别是在追及相遇类问题。

三、 力与平衡1)受力分析 正确规范的受力分析是解决滑板-滑块问题的基础。

按“性质力”的顺序分析.即按重力、已知力、弹力、摩擦力的顺序分析,不要把“效果力”与“性质力”混淆重复分析.2)力的合成与分解 力的合成与分解的根本方法:平行四边形定则. 在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法. 3) 摩擦力的有无及方向判断a) 摩擦力有无的判断由摩擦力产生的条件判断,摩擦力产生的条件为接触面间有弹力、接触面粗糙、有相对运动或相对运动趋势。

只有当这三个条件同时满足时,才会有摩擦力。

根据运动状态判断:选取研究对象,对物体进行受力分析,将除摩擦力之外的其他力分析全面,根据物体的运动状态利用平衡条件或牛顿第二定律来判断摩擦力的有无及方向。

b)摩擦力大小的计算摩擦力分为滑动摩擦力、静摩擦和滚动摩擦力,其中滚动摩擦力情况比较特殊,不作深究。

滑动摩擦力和静摩擦力大小的求解方法存在差异,因此计算前要先判断摩擦力的,也可性质。

如果是滑动摩擦力,可以用公式滑动以结合物体的运动状态,用平衡条件或者牛顿第二定律来求解。

四、牛顿运动定律1)牛顿第一定律任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态。

注意受力分析是解决滑板-滑块问题的前提。

2)牛顿第三定律两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。

注意:不要忽视牛顿第三定律的应用,尤其是在求“小球对轨道压力”时经常用到牛顿第三定律,且均在评分标准中占1-2分,一定不要忘记。

3)牛顿第二定律物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

牛顿第二定律是连接运动和力的桥梁,是分析物体运动情况的关键!注意:①物体受力及加速度一定要一一对应,即相应的力除以相应的质量得到相应的加速度,切不可张冠李戴!②分析运动过程时要区分对地位移和相对位移。

五、功能关系与能量守恒1)合力做功量度物体的动能变化合2)重力做功量度了物体的重力势能的变化:3)弹簧的弹力做功量度了弹性势能的变化:弹弹4)除重力和系统内弹力以外的其他力做功量度了系统的机械能的变化:其他机5)系统内相互作用的摩擦力做功:a.系统内的一对静摩擦力做功:一对静摩擦力对系统做功的代数和为零,其作用是在系统内各物体间传递机械能;b.系统内的一对滑动摩擦力做功:其作用是使系统部分机械能转化为系统的内能,相对6)电场力做功量度了电势能的变化:7)安培力做功量度了电能的变化:安培力做正功,电能转化为其他形式能;克服安培力做功,其他形式能转化为电能。

【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F 作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习1】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。

已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。

取重力加速度的大小g =10 m/s 2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t =0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小。

【答案】(1)0.20 0.30 (2)1.125 m【解析】(1)从t =0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止。

由图可知,在t 1=0.5 s 时,物块和木板的速度相同。

设t =0到t =t 1时间间隔内,物块和木板的加速度大小分别为a 1和a 2,则 111v a t =①0121v v a t -=② 式中v 0=5 m/s 、v 1=1 m/s 分别为木板在t =0、t =t 1时速度的大小。

设物块和木板的质量为m ,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得μ1mg =ma 1③(μ1+2μ2)mg =ma 2④联立①②③④式得μ1=0.20⑤μ2=0.30⑥(2)在t 1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向。

设物块与木板之间的摩擦力大小为f ,物块和木板的加速度大小分别为a 1′和a 2′,则由牛顿第二定律得f =ma 1′⑦2μ2mg -f =ma 2′⑧假设f <μ1mg ,则a 1′=a 2′;由⑤⑥⑦⑧式得 f =μ2mg >μ1mg ,与假设矛盾。

相关文档
最新文档