抛物型方程

合集下载

抛物型方程的galerkin有限元方法

抛物型方程的galerkin有限元方法

抛物型方程的Galerkin有限元方法一、引言抛物型方程是一类常见的偏微分方程,具有广泛的应用。

在数值解中,Galerkin有限元方法是一种常用且有效的方法。

本文将介绍抛物型方程的基本概念,并详细讲解Galerkin有限元方法在求解抛物型方程中的应用。

二、抛物型方程的基本概念抛物型方程是指具有二阶时间导数和二阶空间导数的偏微分方程。

一般形式为:∂u−Δu=f∂t其中,u为未知函数,t为时间变量,Δ为Laplace算子,f为给定的函数。

抛物型方程的一个重要特点是初始条件和边界条件对解的影响非常大。

合适的初始条件和边界条件能够唯一确定方程的解。

三、Galerkin有限元方法Galerkin有限元方法是一种利用函数空间进行近似的数值计算方法。

它基于以下思想:将问题的解表示为函数空间中的一个函数,通过求解一组代数方程组来近似求解原始方程。

1. 函数空间的选择在应用Galerkin有限元方法求解抛物型方程时,需要选择合适的函数空间。

常用的函数空间有有限维函数空间和无限维函数空间。

具体的选择需要根据问题的特点和计算的要求来确定。

2. 弱形式的推导对于抛物型方程,我们可以将其转化为弱形式。

弱形式是通过将方程两边乘以一个测试函数,并进行积分得到的。

这样可以减小对解的要求,并使得问题更容易求解。

3. 数值离散和代数方程的建立接下来,需要对时间和空间进行离散。

通常使用网格来进行离散,将时间和空间分割为有限个小区域。

然后,通过选择适当的基函数,在每个小区域上近似原方程的解。

最终得到一组代数方程组。

求解代数方程组是Galerkin有限元方法的最后一步。

可以使用常用的数值方法,如迭代法、直接法等,来求解代数方程组。

根据计算要求和问题特点,选择合适的求解方法。

四、应用案例以一维热传导方程为例,展示Galerkin有限元方法在求解抛物型方程中的应用。

热传导方程是一个典型的抛物型方程,描述了物体内部的温度分布随时间变化的规律。

抛物型方程的差分方法

抛物型方程的差分方法

抛物型方程的差分方法抛物型方程是描述物理现象中的薄膜振动、热传导、扩散等过程的方程,具有非常重要的应用价值。

差分方法是一种常用的数值计算方法,用于求解微分方程,对于抛物型方程的数值求解也是非常有效的方法之一、本文将介绍抛物型方程的差分方法,并具体讨论用差分方法求解抛物型方程的一些具体问题。

首先,我们来介绍一下抛物型方程的一般形式。

抛物型方程一般可以表示为:∂u/∂t=α(∂^2u/∂x^2+∂^2u/∂y^2)其中,u(x,y,t)是待求函数,t是时间,x和y是空间变量,α是常数。

这个方程描述的是物理过程中的扩散现象,如热传导过程、溶质的扩散过程等。

差分方法的基本思想是将求解区域离散化为一个个网格点,然后在每个网格点处用近似的方式来计算待求函数的值。

差分方法的求解步骤主要包括以下几个方面:1.选择适当的网格和步长。

在求解抛物型方程时,需要确定空间变量x和y所在的网格点以及步长,同时也需要确定时间变量t所在的网格点和步长。

通常,我们会选择均匀网格,步长选择合适的值。

2.建立差分格式。

差分格式是差分方法的核心部分,它包括对方程进行近似处理和离散化。

对于抛物型方程,常用的差分格式有显式差分格式和隐式差分格式等。

其中,显式差分格式的计算速度快,但是有一定的稳定性限制,而隐式差分格式的稳定性较好,但是计算量较大。

因此,在具体问题中需要根据实际情况选择适当的差分格式。

3.编写计算程序。

在建立差分格式后,需要编写计算代码来求解离散方程。

具体编写的过程包括定义初始条件、建立迭代计算过程、以及计算结果的输出等。

4.计算结果的验证与分析。

求解方程后,需要对计算结果进行验证和分析,主要包括对数值解和解析解的比较、对误差的估计和控制等。

在具体求解抛物型方程时,还会遇到一些问题,例如边界条件的处理、稳定性和收敛性的分析等。

下面将对其中一些问题进行详细讨论。

1.边界条件的处理。

边界条件对差分格式的求解结果有着重要的影响,常见的边界条件包括固定端(Dirichlet)边界条件和自由端(Neumann)边界条件等。

10_抛物型方程的有限差分方法

10_抛物型方程的有限差分方法

10_抛物型方程的有限差分方法抛物型方程是一类常见的偏微分方程,广泛应用于自然科学和工程学的领域中。

有限差分方法是一种常用的数值求解抛物型方程的方法之一、本文将介绍抛物型方程的有限差分方法(II)。

有限差分方法主要基于离散化的思想,将偏微分方程转化为差分方程,进而求解差分方程的数值解。

对于抛物型方程,其一般形式可以表示为:∂u/∂t=Δu+f(x,t)其中,u(x, t)是未知函数,表示空间位置x和时间t上的解,Δu表示Laplace算子作用于u的结果,f(x, t)是已知函数。

有限差分方法的基本思想是将空间和时间域进行离散化,将连续的空间和时间划分为有限个网格点,然后使用差分近似代替偏导数,得到差分方程。

假设空间域被划分为Nx个网格点,时间域被划分为Nt个网格点,对于每个网格点(i,j),可以表示为(x_i,t_j),其中i=0,1,...,Nx,j=0,1,...,Nt。

在有限差分方法中,我们使用中心差分近似来代替偏导数。

对于时间导数,可以使用向前差分或向后差分,这里我们使用向前差分,即:∂u/∂t≈(u_i,j+1-u_i,j)/Δt对于空间导数,可以使用中心差分,即:∂^2u/∂x^2≈(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2将上述差分近似代入抛物型方程中,可以得到差分方程的离散形式:(u_i,j+1-u_i,j)/Δt=(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2+f_i,j其中,f_i,j=f(x_i,t_j)。

重排上式,可以得到递推关系式:u_i,j+1=αu_i-1,j+(1-2α)u_i,j+αu_i+1,j+Δt*f_i,j其中,α=Δt/Δx^2通过设置初始条件和边界条件,可以利用以上递推关系式得到抛物型方程的数值解。

总结来说,抛物型方程的有限差分方法(II)是一种常用的数值求解抛物型方程的方法。

它基于离散化的思想,将偏微分方程转化为差分方程,然后利用中心差分近似代替偏导数,得到差分方程的离散形式。

《抛物型方程的高精度时空有限体积元方法》范文

《抛物型方程的高精度时空有限体积元方法》范文

《抛物型方程的高精度时空有限体积元方法》篇一一、引言抛物型方程是一类重要的偏微分方程,广泛应用于物理学、工程学和金融学等多个领域。

为了解决这类方程的数值解问题,本文提出了一种高精度的时空有限体积元方法。

该方法在时间和空间上均采用离散化处理,能够有效地捕捉到抛物型方程的动态变化过程,并提高解的精度。

二、抛物型方程的描述抛物型方程通常描述了热量传导、扩散等现象。

其基本形式为:u_t = a u_xx + f(x,t)其中,u表示因变量,t表示时间,x表示空间坐标,a为扩散系数,f(x,t)为源项。

三、时空有限体积元方法本节将详细介绍抛物型方程的时空有限体积元方法。

1. 空间离散化处理空间离散化是将连续的空间划分为有限个离散的空间单元。

在每个空间单元上,抛物型方程的解可以近似表示为该空间单元的平均值。

通过对空间单元进行适当的剖分,可以得到一个离散的空间网格。

2. 时间离散化处理时间离散化是将连续的时间划分为有限个离散的时间步长。

在每个时间步长内,可以采用合适的数值方法来近似求解抛物型方程。

为了获得较高的解精度,本方法采用高阶的时间离散化技术。

3. 有限体积元的构建在空间和时间离散化处理的基础上,可以构建有限体积元。

每个体积元都包含一定的空间和时间范围,可以用于近似求解抛物型方程。

通过合理选择体积元的形状和大小,可以有效地提高解的精度。

四、高精度求解策略为了提高解的精度,本文采用以下策略:1. 采用高阶的空间离散化技术,以减小空间误差;2. 采用高阶的时间离散化技术,以减小时间误差;3. 优化有限体积元的构建过程,以提高近似解的精度;4. 采用迭代法或自适应网格法等数值优化技术,进一步提高解的精度。

五、算法实现与结果分析本节将通过具体的数值实验来验证所提方法的有效性。

首先,给出具体的算法实现步骤;然后,通过与其它数值方法进行比较,分析所提方法的优越性;最后,给出具体的数值结果,并进行分析和讨论。

六、结论本文提出了一种高精度的时空有限体积元方法来求解抛物型方程。

扩散方程是抛物型方程吗

扩散方程是抛物型方程吗

扩散方程是抛物型方程吗
扩散方程通常被认为是一种抛物型方程。

抛物型方程是偏微分
方程的一种,它描述了某些物理现象中的扩散过程。

在一维情况下,扩散方程通常采用形式为∂u/∂t = D∂^2u/∂x^2 的方程,其中
u 是待求函数,t 是时间,x 是空间变量,D 是扩散系数。

这个方
程描述了随时间和空间的变化而发生的扩散现象。

抛物型方程具有一些特征,其中包括在二阶导数项的协同作用下,通常存在一个与时间有关的项。

在扩散方程中,二阶空间导数
项和时间导数项的存在使得它们符合抛物型方程的定义。

这种类型
的方程通常涉及到初始条件和边界条件,因此在数学和物理上都具
有重要的意义。

此外,扩散方程还可以通过变换转化为标准的热传导方程,而
热传导方程也是典型的抛物型方程。

因此,从数学和物理的角度来看,扩散方程通常被认为是抛物型方程的一种特殊情况。

总的来说,扩散方程可以被视为抛物型方程,因为它们满足抛
物型方程的定义和特征,同时在数学和物理上也具有类似的性质和
行为。

pde 方程

pde 方程

pde 方程抛物型偏微分方程及其应用引言:偏微分方程(Partial Differential Equation,简称PDE)是数学中的一个重要分支,它描述了自然界中的许多现象和规律。

本文将重点介绍一类常见的PDE方程——抛物型偏微分方程,以及它在物理、工程等领域中的应用。

一、抛物型偏微分方程的定义和特点抛物型偏微分方程是指具有一阶时间导数和二阶或更高阶空间导数的偏微分方程。

其一般形式可以表示为:∂u/∂t = a∂²u/∂x² + bu + c其中,u代表未知函数,t和x分别表示时间和空间变量,a、b和c 为常数。

抛物型偏微分方程具有以下特点:1. 方程中包含时间导数,因此描述的是随时间变化的系统或现象。

2. 方程中包含二阶或更高阶空间导数,因此描述的是具有扩散、传导等特性的系统或现象。

3. 方程中的系数a、b和c可以是常数,也可以是与时间和空间变量有关的函数。

二、抛物型偏微分方程的应用抛物型偏微分方程在物理、工程等领域中具有广泛的应用。

以下是其中几个典型的应用:1. 热传导方程热传导方程是抛物型偏微分方程的一个重要应用。

它描述了物体内部的温度分布随时间的变化规律。

热传导方程在热学、材料科学等领域中有广泛的应用,如研究材料的热稳定性、热传导性能等。

2. 扩散方程扩散方程也是抛物型偏微分方程的一种应用。

它描述了物质在空间中的扩散过程,如溶质在溶液中的扩散、气体的扩散等。

扩散方程在化学反应、生物学、环境工程等领域中有重要的应用价值。

3. 粘弹性流体方程粘弹性流体方程是一类描述粘弹性流体流动行为的抛物型偏微分方程。

它在流体力学、工程领域中有广泛的应用,如石油工程中的油藏模拟、地下水流动模拟等。

4. 扩散反应方程扩散反应方程是描述物质在扩散和反应过程中的变化规律的抛物型偏微分方程。

它在化学动力学、生物学等领域中有重要的应用,如描述化学反应速率、生物体内物质传输等。

三、抛物型偏微分方程的数值解法由于抛物型偏微分方程的解析解往往难以求得,因此需要采用数值方法进行求解。

热传导方程--抛物型偏微分方程和基本知识

热传导方程--抛物型偏微分方程和基本知识

1. 热传导的基本概念1.1温度场一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导,即产生热流。

因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。

温度场:在任一瞬间,物体或系统内各点的温度分布总和。

因此,温度场内任一点的温度为该点位置和时间的函数。

〖说明〗若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳态的导热状态。

若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态的导热状态。

若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为一维稳态温度场。

1.2 等温面在同一时刻,具有相同温度的各点组成的面称为等温面。

因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。

1.3 温度梯度从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交的任一方向移动,温度发生变化,即有热量传递。

温度随距离的变化程度沿法向最大。

温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。

〖说明〗温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。

稳定的一维温度场,温度梯度可表示为:grad t = dt/dx2. 热传导的基本定律——傅立叶定律物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。

傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。

定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比:q = dQ/ds = -λ·dT/dX式中:q 是热通量(热流密度),W/m2dQ是导热速率,WdS是等温表面的面积,m2λ是比例系数,称为导热系数,W/m·℃dT / dX 为垂直与等温面方向的温度梯度“-”表示热流方向与温度梯度方向相反3. 导热系数将傅立叶定律整理,得导热系数定义式:λ= q/(dT/dX)物理意义:导热系数在数值上等于单位温度梯度下的热通量。

抛物型对流扩散方程

抛物型对流扩散方程

抛物型对流扩散方程
抛物型对流扩散方程是水力学中一个重要的基本方程,它描述了液体中湍流运
动的数学表达形式。

抛物型对流扩散方程公式可由下式得到:
∂u∂t+u⋅∇u=−g⋅∇h+(∇⋅Δ)u-k∇2η,其中u是几何位移,t是时间,g是重力
加速度,h是重力场,Δ是拉普拉斯算子,k是拉格朗日运动等弦水动力系数,η
是密度。

抛物型对流扩散方程的应用很广泛,它可以用来分析流体的动态特性,并有助
于求解海洋涡场、各种湍流模式、源汇问题等。

举例来说,该方程可用来研究气候变化中河流流动物理过程,也可用来研究表面温带对于对流层等层结构、平流变化等关键过程中的影响。

此外,它还能够提供关于机械装置的流动特性的精确模拟。

抛物型对流扩散方程的求解不是一件容易的事情,它要求求解方法具有较高的
计算效率和求解准确度,尤其是人工网格的定义。

现阶段,多流变技术和网格技术均在快速发展,为使抛物型对流扩散方程能够尽可能反映实际环境中湍流流动特性,给求解方法提供更多可能。

总之,抛物型对流扩散方程是一个非常重要的基础性方程,它可以帮助我们深
入探究水力过程的机制,为水力学的研究和设计提供更为丰富的软件工具,从而满足现代水力学研究题目的需要。

数学学习中的常见偏微分方程和调和分析问题解析

数学学习中的常见偏微分方程和调和分析问题解析

数学学习中的常见偏微分方程和调和分析问题解析偏微分方程是数学中的一个重要分支,它在各个学科领域中都有广泛的应用。

而调和分析则是研究调和函数和调和函数的性质的数学分析学科。

本文将重点讨论数学学习中的常见偏微分方程和调和分析问题的解析方法。

一、常见偏微分方程的解析1. 抛物型偏微分方程抛物型偏微分方程是一类非常常见的偏微分方程,其形式通常为:∂u/∂t = a∇²u + b∇u + cu + f(x, t)其中,u表示未知函数,t表示时间,x表示空间坐标,a、b、c都是常数,f(x, t)是给定的函数。

抛物型方程可以用来描述热传导、扩散等过程。

常见的抛物型方程包括热方程和扩散方程。

2. 椭圆型偏微分方程椭圆型偏微分方程是另一类常见的偏微分方程,其形式通常为:∇·(α∇u) + β·∇u + γu = f(x)其中,u表示未知函数,x表示空间坐标,α、β、γ都是常数,f(x)是给定的函数。

椭圆型方程可以用来描述稳定状态下的物理现象,如静电场、气体静力学平衡等。

3. 双曲型偏微分方程双曲型偏微分方程是另一类常见的偏微分方程,其形式通常为:∂²u/∂t² = a∇²u + b∇u + cu + f(x, t)其中,u表示未知函数,t表示时间,x表示空间坐标,a、b、c都是常数,f(x, t)是给定的函数。

双曲型方程可以用来描述波动现象,如声波传播、电磁波传播等。

二、调和分析问题的解析调和函数是指满足拉普拉斯方程的函数。

调和函数在物理和工程领域中具有广泛的应用。

调和函数的性质有许多重要的解析结果,如下所示:1. 调和函数的均值性质调和函数具有平均值性质,即在某个区域内,调和函数的值等于它在该区域边界上的平均值。

这个性质在物理上有很多应用,例如根据均值性质可以推导出热力学中的平衡温度分布。

2. 调和函数的极值性质调和函数的极值性质指的是对于任何调和函数,其在区域的内部只能取得极小值或者极大值。

抛物型方程

抛物型方程

抛物型方程
抛物型方程是一个有关抛物线的函数,用于描述物体沿着抛物线运行的轨迹。

它的一般形式为y=ax²+bx+c(a≠0)。

其中,a是方程的系数,通过它可以控制抛物线的开口向上或向下;b是系数,控制抛物线的拐点位置;c是系数,控制抛物线的顶点位置。

如果a为正,则抛物线开口向上,如果a为负,则抛物线开口向下。

抛物型方程有许多应用,比如在物理学中,可以用它来描述物体发射或自由落体的轨迹,如子弹发射,行星运行等。

在数学中,可以用来描述由多个维度构成的平面曲线。

它还可以用于宏观经济学研究中的投资组合、外汇交易和风险管理等。

各类抛物型微分方程的解法

各类抛物型微分方程的解法

各类抛物型微分方程的解法抛物型微分方程是一类常见的微分方程,在数学和物理学中具有重要意义。

本文将介绍一些常见的抛物型微分方程,并探讨它们的解法。

热传导方程热传导方程描述了热量在物体中的传导过程,它的一般形式为:$$\frac{\partial u}{\partial t} = k \cdot \frac{\partial^2 u}{\partialx^2}$$其中,$u$ 是温度分布函数,$t$ 是时间变量,$x$ 是空间变量,$k$ 是热传导系数。

热传导方程的解法主要基于分离变量法、傅里叶级数法和格林函数法。

扩散方程扩散方程描述了物质在空间中的扩散过程,它的一般形式为:$$\frac{\partial u}{\partial t} = D \cdot \frac{\partial^2 u}{\partial x^2}$$其中,$u$ 是物质浓度分布函数,$t$ 是时间变量,$x$ 是空间变量,$D$ 是扩散系数。

扩散方程的解法也可以利用分离变量法、傅里叶级数法和格林函数法。

波动方程波动方程描述了波在介质中的传播过程,它的一般形式为:$$\frac{\partial^2 u}{\partial t^2} = c^2 \cdot \frac{\partial^2u}{\partial x^2}$$其中,$u$ 是波函数,$t$ 是时间变量,$x$ 是空间变量,$c$ 是波速。

波动方程的解法可以利用分离变量法、傅里叶级数法和变换法等。

Navier-Stokes方程Navier-Stokes方程是描述流体运动的基本方程之一,它的一般形式为:$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v}$$其中,$\mathbf{v}$ 是流体速度矢量,$t$ 是时间变量,$p$ 是压力函数,$\rho$ 是密度,$\nu$ 是运动粘度。

抛物型偏微分方程

抛物型偏微分方程

抛物型偏微分方程
抛物型偏微分方程(Parabolic Partial Differential Equations,PDEs)是用抛物型方程来描述对一定问题的变化情况,是应用在偏微分方程中的一种重要类型。

它主要用于分析多变量运动、热传导、电磁学、流体动力学以及拓扑和分析联系的数学领域。

抛物型偏微分方程的特点是具有拐点结构,能够描述变量的静态分布形状。

抛物型PDEs的主要形式包括了2维抛物型方程、抛物型系统、常微分方程和无限维抛物型方程等。

由于抛物型方程有自身特定的形式,因此,它能够提供运动流体以及物理传播环境中变量以及流体扰动的完整物理解释。

抛物型偏微分方程具有清晰的语义,能够实现更精确、更准确地处理分析问题。

其中抛物型PDEs的主要实现方式包括有限差分、动力学定义以及自然边界限制等。

这些方法允许抛物型偏微分方程的轻松现实,使得结果更加精确准确。

此外,抛物型偏微分方程还可以有效解决多变量流体动力学和热传导这类
PDEs中非线性性质及问题的复杂性。

抛物型PDEs可以提供用精确的计算方法,
对外动性、内热、变形以及扰动变量的运动特性发挥重要作用。

综上所述,抛物型偏微分方程是处理多变量运动和热传导这类复杂情景的有效分析方法之一。

它拥有清晰的语义,有效减少了模型的复杂性,能够有效的实现不线性、多变量动力学运动和热传导问题的分析。

抛物型偏微分方程

抛物型偏微分方程

抛物型偏微分方程抛物型偏微分方程(Parabolic Partial Differential Equation)是数学分析中重要的一个分支,研究对象主要是关于时间和空间变量的二阶偏微分方程。

在物理、工程和经济等领域中,抛物型偏微分方程有着广泛的应用,比如热传导方程、扩散方程和波动方程等。

1. 定义和形式抛物型偏微分方程是指对于函数 u(x, t) 存在连续二阶偏导数,并满足形式如下的方程:∂u/∂t = a∇²u + bu + f(x, t)其中,a 是常数,∇²u 是 u 关于空间变量 x 的拉普拉斯算子,b 是各项异性系数,f(x, t) 是给定的源项函数。

该方程描述了函数 u 关于时间t 的演化过程,与空间变量 x 的变化有关,反映了物理现象在时间和空间上的动态发展。

2. 物理意义和应用抛物型偏微分方程在物理学领域中有着重要的应用。

其中,热传导方程是抛物型偏微分方程的典型例子,描述了物质内部温度分布随时间变化的规律。

热传导方程在热力学、材料科学和地球物理学等领域中具有广泛的应用,例如预测地球内部热流、分析塑料注塑过程中温度分布等。

此外,扩散方程也是抛物型偏微分方程的重要应用之一。

扩散过程描述了物质在空间中传播的方式,常用于研究化学反应、人口扩散和金融市场中的价格传播等问题。

波动方程则描述了波在空间中传播的规律,例如声波、电磁波和水波等。

3. 解法和数值模拟抛物型偏微分方程的解法可以通过变量分离、变换等方法获得解析解。

然而,在实际问题中,解析解往往难以求得,需要借助数值方法进行近似计算。

常用的数值方法包括有限差分法、有限元法和谱方法等。

有限差分法将方程离散化为差分格式,通过迭代求解差分方程组得到数值解。

有限元法则将求解区域划分为有限单元,通过构建矩阵方程来求解问题的数值解。

此外,谱方法基于傅里叶级数展开,通过选择适当的基函数将方程转化为代数方程组求解。

谱方法在高精度计算和边界层问题的处理上有一定优势。

抛物型偏微分方程的标准形式

抛物型偏微分方程的标准形式

抛物型偏微分方程的标准形式抛物型偏微分方程(PDE)是一种涉及分部微分的非常重要的数学工具,可以用来描述物理系统的运动,例如电磁场、温度流动和地形变化。

抛物型偏微分方程也常用于复杂的物理模型,生物系统和经济活动中,用于解决诸如温度场分布、湍流和气流模型等问题。

抛物型偏微分方程甚至可以用于描述复杂的多体系统,如用于处理重力、粒子碰撞和热力学系统的模型。

抛物型偏微分方程的标准形式是一种通用的数学工具,它能够描述各种坐标空间中的空间变化和时间变化,并具有比较简单的表达方式。

在坐标空间中,抛物型PDE可以表达为:u/t +F(x, t, u,u) = 0其中,u是空间某一点的值,t是时间,F(x, t, u,u)是偏微分方程式中的运动模型,x是坐标空间,u是偏微分方程式中的偏函数。

由此可以看出,抛物型偏微分方程的标准形式是一个统一的描述空间与时间变化的工具。

此外,抛物型偏微分方程的标准形式还具有更多的优点。

它可以用来解决多维空间中的偏微分方程,无论是二维或三维空间。

它可以应用于各种类型的偏微分方程,如偏微分方程组、抛物型、平面型和曲面型等。

它还具有简单的表达形式,可以在实际应用中简单而有效地表示空间和时间的变化。

抛物型偏微分方程的标准形式可以应用于各种物理系统和生物系统中。

例如,它可以用来描述地形变化、电磁场、湍流和气流的模型等问题,并可以用于处理重力、粒子碰撞和热力学系统的模型。

此外,它也可以用于处理经济活动中的变化,进而深入研究经济系统的细节和规律,从而为决策者提供有用的信息。

总之,抛物型偏微分方程的标准形式具有重要意义,可以应用于描述多种物理和生物系统中的变化,它能够更有效地描述空间和时间的变化,为各种复杂的模型和系统提供助力,同时可以为决策者提供有用的信息。

一维热传导方程证明抛物型

一维热传导方程证明抛物型

一维热传导方程证明抛物型抛物型方程在数学和物理学中非常常见,它描述了许多自然现象和物理过程。

其中,一维热传导方程就是一个典型的抛物型方程。

在本文中,我将以一维热传导方程为例,来说明抛物型方程的特点和应用。

热传导是指热量从高温区域传递到低温区域的过程。

一维热传导方程描述了在一维空间中热量的传递方式,它的数学形式为:∂u/∂t = α * ∂²u/∂x²其中,u(x, t)是温度分布随时间和空间的变化函数,α是热扩散系数。

这个方程说明了温度随时间的变化率与温度在空间上的曲率之间的关系。

具体来说,方程右侧的第二个偏导数表示了温度分布的曲率,而左侧的偏导数表示了时间上的变化率。

通过这个方程,我们可以研究温度如何在空间和时间上演化。

在解决一维热传导问题时,我们需要给定初始条件和边界条件。

初始条件是指在初始时刻的温度分布,边界条件是指在空间的两个端点上的温度值。

通过这些条件,我们可以求解出一维热传导方程的解,得到温度随时间和空间的变化规律。

抛物型方程的一个特点是信息的传播速度是有限的。

由于热量的传递是通过分子之间的碰撞来实现的,因此信息的传递速度受限于分子的速度。

这就意味着在边界条件给定的情况下,热量将从高温区域向低温区域传导,直到达到热平衡。

一维热传导方程有许多应用。

例如,在材料科学中,它可以用来研究材料的热传导性能。

通过求解一维热传导方程,可以得到材料中温度的分布情况,从而评估材料的热传导能力。

在工程领域中,一维热传导方程也有广泛的应用。

例如,在建筑物的能耗分析中,可以使用一维热传导方程来模拟建筑物内部的温度分布,从而评估建筑物的节能性能。

一维热传导方程是一个典型的抛物型方程,描述了在一维空间中热量的传递方式。

通过求解这个方程,我们可以研究温度在空间和时间上的演化规律,应用于材料科学和工程领域。

抛物型方程的特点使得信息的传播速度是有限的,这对于理解热传导过程非常重要。

通过深入研究抛物型方程,我们可以更好地理解自然界的现象和物理过程。

数学中的抛物型方程

数学中的抛物型方程

数学中的抛物型方程抛物型方程(parabolic equation)是数学中一类重要的偏微分方程,它在物理学、工程学和社会科学等领域中具有广泛的应用。

本文将从抛物型方程的定义、特征和解法等方面进行论述,以帮助读者更好地理解和应用抛物型方程。

一、抛物型方程的定义在数学中,抛物型方程是一类二维或三维偏微分方程,其形式可以表示为:∂u/∂t = a∇²u + bu + c其中,∂u/∂t 表示函数 u 对时间 t 的偏导数,∇²u 表示函数 u 对空间坐标的拉普拉斯算子,a、b、c 是常数。

抛物型方程通常描述了某一物理现象随时间变化的规律,比如热传导、扩散等。

通过解抛物型方程,我们可以预测和分析这些物理现象。

二、抛物型方程的特征1. 热传导方程抛物型方程在热传导方程中的应用是最常见的。

热传导方程描述了物体内部温度随时间和空间的变化情况。

在一维情况下,热传导方程具有以下形式:∂u/∂t = α∂²u/∂x²其中,u(x, t) 表示在时刻 t 位置为 x 的温度,α 是热扩散系数。

2. 扩散方程抛物型方程在扩散方程中的应用也是非常重要的。

扩散方程描述了物质在浓度梯度驱动下的扩散过程。

在一维情况下,扩散方程具有以下形式:∂u/∂t = D∂²u/∂x²其中,u(x, t) 表示在时刻 t 位置为 x 的物质浓度,D 是扩散系数。

三、抛物型方程的解法对于抛物型方程,我们通常采用偏微分方程的求解方法,如分离变量法、格林函数法等。

1. 分离变量法分离变量法是一种常用的求解抛物型方程的方法。

它的基本思想是将多元函数分解为几个一元函数的乘积,并利用分离后的一元函数满足各自的方程来求解。

以热传导方程为例,我们可以将其分离变量为时间部分和空间部分:u(x, t) = X(x)T(t)代入原方程,得到两个方程:X''(x)T(t)/X(x) = T'(t)/T(t) = -λ²其中,λ² 是常数。

椭圆型与抛物型偏微分方程

椭圆型与抛物型偏微分方程

椭圆型与抛物型偏微分方程椭圆型和抛物型是常见的偏微分方程类型,它们在数学和物理学中有着重要的应用。

本文将对这两类偏微分方程进行介绍和比较。

椭圆型偏微分方程是指具有椭圆型特征的方程。

它的典型形式为:\[ \frac{{\partial^2u}}{{\partial{x^2}}} +\frac{{\partial^2u}}{{\partial{y^2}}} +\frac{{\partial^2u}}{{\partial{z^2}}} = 0 \]其中,\( u \) 是未知函数,\( x \) ,\( y \) 和\( z \) 是自变量。

椭圆型方程在解析几何和调和分析中起着重要的作用。

它们描述了诸如温度分布、电势场和弹性问题等领域中的稳定状态。

椭圆型方程的解通常具有良好的连续性和光滑性。

与之不同,抛物型偏微分方程具有抛物型特征。

典型的抛物型方程是热传导方程,它描述了热量在空间和时间上的传播。

其一维形式为:\[ \frac{{\partial{u}}}{{\partial{t}}} =a^2\frac{{\partial^2u}}{{\partial{x^2}}} \]其中,\( u \) 是未知函数,\( t \) 是时间,\( x \) 是空间。

抛物型方程描述了诸如热传导、扩散和非定常流体力学等过程。

由于抛物型方程涉及时间变化,它们的解在时间上是不稳定的。

椭圆型和抛物型方程的差异导致了不同的数值求解方法。

对于椭圆型方程,通常使用迭代算法(如有限差分法、有限元法和谱方法等)来逼近解。

这些方法基于离散化技术,将连续的偏微分方程转化为离散的代数方程,并通过迭代求解来逼近解。

而对于抛物型方程,除了离散化技术外,还需要考虑时间步长,以保证数值解的稳定性和精确性。

虽然椭圆型和抛物型方程有着不同的特征和求解方法,但它们在实际应用中常常交叉出现。

例如,在流体动力学中,既存在椭圆型的静态流场方程,又存在抛物型的非定常流场方程。

抛物型方程范文

抛物型方程范文

抛物型方程范文抛物型方程是描述一类物理现象的偏微分方程,主要用于描述质点在受力作用下的运动。

常见的抛物型方程包括热传导方程、亥姆霍兹方程和波动方程等。

在这篇文章中,我将从热传导方程和亥姆霍兹方程两个方面来介绍抛物型方程的基本概念、特点和解法。

热传导方程是描述物质热传导过程的方程,其一般形式为:$$\frac{\partial u}{\partial t} = \alpha \cdot\frac{\partial^2 u}{\partial x^2}$$其中,$u(x,t)$表示物质的温度分布,$x$表示空间变量,$t$表示时间变量,$\alpha$表示热扩散系数。

这个方程可以用来描述物体在温度差驱动下的热传导过程。

其特点是,如果初始时刻温度分布和边界条件已知,则可以求解出任意时刻的温度分布。

亥姆霍兹方程是描述波动现象的方程,其一般形式为:$$\frac{\partial^2 u}{\partial x^2} + k^2 u = f$$其中,$u(x)$表示波函数,$x$表示空间变量,$k$表示波数,$f(x)$表示外力源。

这个方程可以用来描述各种波动现象,如声波、光波等。

其特点是,如果已知边界条件和外力源,则可以求解出任意位置的波函数。

下面我们来具体介绍一些解抛物型方程的方法。

对于热传导方程,最常用的求解方法是分离变量法。

这种方法假设温度分布可以表示为一个时间函数和空间函数的乘积形式,然后将原方程代入得到两个常微分方程,再求解这两个方程得到温度分布。

但是这种方法只适用于一些简单的边界条件和外力源。

对于亥姆霍兹方程,常用的求解方法是格林函数法。

这种方法是先求解格林函数的方程,再利用格林函数和外力源的卷积来得到波函数。

格林函数可以看作是在单位脉冲作用下产生的响应波函数,因此利用外力源的线性叠加性质,可以得到任意外力源下的波函数。

此外,还有一些其他的数值方法可以用来求解抛物型方程,如有限差分法、有限元法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言抛物型方程解的估计及其应用1前言数学物理方程主要指从物理学及其它各门自然科学、技术科学中所产生的偏微分方程(有时也包括积分方程、微分方程等),它们反映了有关的未知变量关于时间的导数和关于空间变量的导数之间的制约关系.连续介质力学、电磁学、量子力学等等方面的基本方程属于数学物理方程的范围.它以具有物理背景的偏微分方程(组)作为研究的主要对象.它与其他数学分支及物理、化学等自然科学和工程技术的很多领域都有着广泛的联系,因此,无论在历史上还是在今天的现实生活中,它对于推动数学理论的发展,加强理论与实际的联系,帮助人们认识世界和改造世界都起着重要大的作用.微积分产生以后,人们就开始把力学中的一些问题,归结为偏微分方程进行研究.早在18世纪初,人们已经将弦线振动问题归结为弦振动方程,并探讨了它的解法.随后,人们又陆续了解了流体的运动、弹性体的平衡和振动、热传导、电磁相互作用、原子核和电子的相互作用、化学反应过程等等自然现象的基本规律,把它们写成偏微分方程的形式,并且求出了典型问题的解答,从而能通过实践,验证这些基本规律的正确性,显示了数学物理方程对于认识自然界基本规律的重要性.有了基本规律,人们还要利用这些基本规律来研究复杂的自然现象和解决复杂的工程技术问题,这就需要求出数学物理方程中许多特定问题的解答,随着计算机的出现及计算技术的发展,即使是相当复杂的问题,也可以计算出足够精确的数值来,这对于预测自然现象的变化(如气象预报)和进行各种工程设计(如机械强度的计算)都有着很重要的作用.在研究数学物理方程的同时,人们对偏微分方程的性质也了解得越来越多、越来越深入,形成数学中的一门重要分支——偏微分方程理论.它既有悠久的历史,又不断地更新着它的对象、内容和方法.它直接联系着众多自然现象和实际问题,不断地提出或产生需要解决的新课题和新方法.它所面临的数学问题多样而复杂,不断地促进着许多相关数学分支(如泛函分析、复变函数、微分几何、计算数学等)的发展,并从它们之间引进许多有力的解决问题的工具.因此,数学物理方程又是纯粹数学的抛物型方程解的估计及其应用许多分支和自然科学各部门及工程技术等领域之间的一个重要的桥梁.2 选题背景2.1 题目类型及来源题目类型:研究论文题目来源:专题研究2.2研究目的和意义数学物理方程将数学与物理紧密地结合在一起,用精微的数学思想和方法应用于实际的物理研究中,通过物理过程建立数学模型(偏微分方程),通过求解和分析模型,对实际物理过程进一步深入理解,提出解决实际问题的途径和方法.而抛物型方程是偏微分方程中的一类,且在研究热传导、扩散等物理现象时都会遇到,具有巨大的理论价值,同时,抛物型方程的概念和性质也决定了它在工程数学,物理等方向的巨大实用价值.研究抛物型方程解的估计及其应用,有助于我们更好的理解和掌握偏微分方程理论,并在认识和了解抛物型方程广泛的使用价值的基础上,能够探索抛物型方程更广泛的应用.随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛.从数学自身的角度看,抛物型方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.2.3国内外现状和发展趋势与研究的主攻方向自18世纪以来,偏微分方程理论在得到广泛应用的同时,也得到不断发展和完善,内容也越来越丰富,它直接联系着众多自然现象和实际问题,不断地提出或产生需要解决的新课题和新方法.它所面临的数学问题多样而复杂,不断地促进着许多相关数学分支的发展,如泛函分析、复变函数、微分几何、计算数学等,并从它们之中引进许多有力的解决问题的方法.关于抛物型方程的解,有经典解、广义解、数值解等方面的研究.经典解在求解区域中具有方程中所出现的连续偏导数,并按通常意义满足方程与定解条件,也就是热传导方程的一些知识说,将解代入方程及定解条件后即可使其化为恒等式.求经典解的方法有分离变量法、Fourier变换法.经典解容易理解,且应用方便,但实际求解抛物型方程的定解问题时,往往不一定能得到经典解.于是就提出了广义解[1]的理论,即先寻求一个正则性较低的函数(广义解),它按较弱的意义满足方程与定解条件,然后再进一步证明这个函数实际上就是原来问题的经典解.广义解可按逼近过程来定义,也可按分部积分的方法来定义.由于抛物型方程的广义解是在“较差”的函数类中寻求相应定解问题按拓广意义下的解,因而又提出了广义函数的概念、性质、应用等方面的研究.在实际求解抛物型方程的定解条件时,除了一些特殊的情况下可以方便地求得其精确解外,在一般的情况下,当方程或定解条件具有比较复杂的形式,或求解区域具有比较复杂的形状时,往往求不到或不易求到其精确解,我们就只得去寻求抛物型方程定解问题的近似解,特别是数值近似解,于是就有了抛物型方程数值解的理论研究.求抛物型数值解的方法主要有:有限差分法、有限元素法.随着社会文明的发展,我国与其它国家的文化交流沟通很全面,偏微分方程的研究方向基本上也是一致的.在微分方程定性理论中有着重要应用的时滞积分不等式以及在差分方程定性理论中有重要应用的时滞离散不等式和关于时间尺度的动力方程理论,在研究了抛物型方程及抛物型方程系统、双曲型方程及双曲型方程系统的强迫振动性理论以及某些时滞脉冲偏微分方程在特定边值条件下解的振动的若干充要条件和多时滞脉冲抛物型微分方程系统解的强迫振动性,推广了已有的结果,建立了若干新定理,促进了偏泛函微分方程理论的发展,并主要创新提出并建立了偏泛函微分方程系统的强迫振动性理论以及具有连续分布变元的双曲型偏泛函微分方程系统和抛物型偏泛函微分方程系统的振动性理论;获得了变系数抛物型偏泛函微分方程解的振动的若干充分必要条件和时滞脉冲抛物型微分方程解的振动的若干充分必要条件和多时滞脉冲抛物型微分系统解的强迫振动性;研究了时滞积分不等式理论和关于时间尺度的动力不等式理论.这些理论的建立,为偏泛函微分方程理论和积分不等式理论的进一步发展起到了非常大的促进作用.3热传导方程的一些知识3.1 热传导方程的导出若物体内各点的温度不相同,则其热量就会从温度较高的地方向温度较低的地方抛物型方程解的估计及其应用传递,这就是常说的热传导现象.由于热量的传递,所以物体内温度随时间和点的位置不同而不同,因此热传导问题可归结为研究物体内部的温度分布情况.下面我们考察一个均匀的、各向同性的物体G 在Ω内部的温度变化规律. 设以(),,u x y z 表示物体G 在Ω内任一点(),,M x y z 处在时刻t 的温度.在Ω内任取一小块区域V ,使V -⊂Ω,并且其边界Γ是光滑的闭曲面,Γ上面积元素的单位外法向量记作n .根据传热学中的傅里叶实验定律[2],物体在无穷小时段dt 内,从V 内经过dS 流出的热量dQ 与时间dt ,流经面积dS 以及温度沿dS 的外法向量的方向导数un∂∂成正比,即udQ k dSdt k u ndSdt n∂=-=-∇⋅∂其中0k >是物体的热传导系数,,,x y z ⎛⎫∂∂∂∇= ⎪∂∂∂⎝⎭.上式中的负号表示热流的方向与温度梯度的方向相反(因为热量总是由温度高处流向温度低处),因此从时刻1t 到时刻2t 经过Γ流入V 内的全部热量 211t t Q dt k u ndsdt Γ=∇⋅⎰⎰⎰若物体Ω内有热源,且热源强度为(),,,F x y z t (即在时刻t 点(),,x y z 处的单位面积在单位时间内发出的热量),则在[]12,t t 内,V 从热源上吸收的热量为 ()212,,,t t VQ F x y z t dxdydzdt =⎰⎰⎰⎰另一方面,在[]12,t t 内,V 内温度从()1,,,u x y z t 升高到()1,,,u x y z t 所需吸收的热量为 ()()321,,,,,,VQ c u x y z t u x y z t dxdydz ρ=-⎡⎤⎣⎦⎰⎰⎰其中为c 物体的比热,ρ为物体的密度. 根据能量守恒,有热传导方程的一些知识123Q Q Q +=若(),,,u x y z t 关于,,x y z 具有二阶连续偏导数,则由高斯公式得 22111t t t t VQ dt k u ndsdt k udxdydzdt Γ=∇⋅=∆⎰⎰⎰⎰⎰⎰⎰这里 ∆ 是laplace 算子,222222x y z∂∂∂∆=++∂∂∂若(),,,u x y z t 关于t 具有一阶连续偏导数,则由Newton-Leibniz 公式有 213t t t VQ dt c u dxdydz ρ=⎰⎰⎰⎰因此有()2211t t t t t VVdt c u dxdydz dt k u F dxdydz ρ=∇+⎰⎰⎰⎰⎰⎰⎰⎰由于时间段[]12,t t 及区域V 是任意取定的,并且被积函数是连续的,则 2t u a u f -∆= 其中2k a c ρ=,Ff c ρ=,并且当0f ≥时,表示Ω内有热源;当0f ≤时,表示Ω内有冷源(即热汇).在适当情况下,方程中描述空间坐标的独立变量的数目还可以减少.例如当物体是均匀细杆时,假如它的侧面是绝热的,也就是说不产生热交换,又假定温度的分布在同一截面是相同的,则温度函数u 仅与坐标x 及时间t 有关,我们就得到一维热传导方程222u u a t x∂∂=∂∂ 同样,如考虑薄片的热传导,薄片的侧面绝热,可得二维热传导方程22222u u u a t x y ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭抛物型方程解的估计及其应用3.2 定解问题的提法方程描述的是同类物理现象的共性,但是每一具体的物理现象都是处在各自特定条件之下的,这就需要我们把它所处的特定条件也用数学形式表达出来,我们称这些特定条件为定解条件.定解条件分为初始条件和边界条件.初始条件是说明初始状态的条件,边界条件是描述边界状态的条件,边界条件可分为三类,第一类边界条件(又称Dirichlet 边界条件)是直接给出未知函数在研究区域Ω的边界∂Ω上的值;第二类边界条件(又称Neumann 边界条件)是在∂Ω上给出未知函数u 沿∂Ω沿外法方向n 的方向导数;第三类边界条件(又称为Robin 条件)是在边界∂Ω上给出未知函数u 及其沿∂Ω的外法方向导数的某种线性组合的值.从物理学角度来看,如果知道了物体在边界上的温度状况(或热交换状况)和物体在初始时刻的温度,就可以完全确定物体在以后时刻的温度.因此热传导方程最自然的一个定解问题就是在已给的初始条件与边界条件下求解问题的解.初始条件的提法显然为()(),,,0,,u x y z x y z ϕ=其中(),,x y z ϕ为已知函数,表示物体在0t =时的温度分布第一边界条件:在3R 中的有界区域Ω的导热问题中,若Ω的边界∂Ω处于恒温0u 的环境下,则边界条件为0u u ∂Ω|=若边界温度按已知规律(),,,g x y z t 变化,则(),,,u g x y z t ∂Ω|=第二边界条件:若热量在边界曲面∂Ω各点的流速为(),,,G x y z t ,则由Fourier 定律,边界条件可写成(),,,ug x y z t n ∂=∂ 其中Gg k =-,若0G =,则0u n ∂Ω∂=∂,此时称之为绝热边界条件.定解问题的求解第三边界条件:如果物体内部与周围的介质通过边界∂Ω有热量交换,物体外介质的温度为2u ,物体表面的温度为1u ,内外两种介质间的热交换系数为()110k k >,根据Newton 定律,从物体内部流到外部的热量与两介质间的温度差成正比,即有()112dQ k u u dsdt =-另一方面,由Fourier 定律[3],在时间间隔内从边界曲面上面积元流出的热量为udQ k dsdt n∂=-∂从而有()112uk u u dsdt k dsdt n∂-=-∂即(),,,u u g x y z t n σ∂Ω∂⎛⎫+=⎪∂⎝⎭ 其中1k kσ=, ()1,,,u g x y z t σ= 4 定解问题的求解4.1 初值问题的求解我们可以利用傅里叶变换来求解热传导问题的初值问题.其思想是把原函数变换到另一类函数中去,经过变换,使热传导方程变为常微分方程,从而可以找出一个解,再经过Fourier 的逆变换,得到原热传导方程的解.()()()()2,,,,0,t xx yy u a u u f x y t u x y x y ϕ⎧-+=⎪⎨=⎪⎩ (1) 视t 为参数,先求解齐次热传导方程的初值问题()()()2,,0,txx yy u a u u u x y x y ϕ⎧=+⎪⎨=⎪⎩ (2)对,x y 进行Fourier 变换,记()()12,,,,F u x y t U t λλ=⎡⎤⎣⎦,抛物型方程解的估计及其应用()()12,,F x y ϕλλ=Φ⎡⎤⎣⎦在(1)式两边关于,x y 进行Fourier 变换,原问题变为()()()()()()()222121122121212,,,,,,,,0,d U t a i U t i U t dtU λλλλλλλλλλλλ⎧⎡⎤=+⎪⎣⎦⎨⎪=Φ⎩(3) (2)式是带参数12,λλ的常微分方程的柯西问题,它的解为()()()2121212,,,a tU t e λλλλλλ-+=Φ (4)函数()212a teλλ-+的Fourier 逆变换[4]为()()()()()()()2222221212122222112211221221F 21=2a a i x y a t i xa t i xe t ete d d ed ed λλλλλλλλλλλλπλλπ+∞-+-++-∞----+∞+∞-∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰⎰-()222222111122111111+11cos sin =2cos a t i xa ta ta ted exd i exd exd λλλλλλλλλλλλ----+∞+∞+∞-∞-∞-∞∞-=+⎰⎰⎰⎰令()221+110cos a tI x exd λλλ∞-=⎰()()221222211+/111111202sin 1 =sin cos 2 =2a t a t a t I x e xd e x x xe d a t xI x a tλλλλλλλλλ∞-+∞--+∞0=-⎡⎤∣-⎢⎥⎣⎦-⎰⎰ 解得()224x a tI x ce-=又()2212+1+00 a t y I e d e dy λλ∞-∞-===⎰定解问题的求解则有()222222121421F 4x y aa tet e a tλλπ+--+⎡⎤=⎢⎥⎣⎦-由(4)可得初值问题(2)的解为()()()()222421,,,4x y a tu x y t e d d a tξηϕξηξηπ-+--+∞+∞-∞-∞=⎰⎰ (5)再求解非齐次热传导方程具有齐次初始条件的柯西问题()()()2,,,.00t xx yy u a u u f x y t u x y ⎧=++⎪⎨=⎪⎩ (6) 由齐次化原理[5],此柯西问题的解可写为()()0,,,,;tu x y t x y t d ωττ=⎰而(),,;x y t ωωτ=为下述柯西问题的解:()()()2,,,,,t xx yy a t x y f x y ωωωτωττ⎧=+>⎪⎨=⎪⎩于是,利用(5)式,易知柯西问题(6)的解为()()()()()222420,,1,,4x y ta t u x y t ed d d a t ξητϕξητξητπτ-+--+∞+∞--∞-∞=-⎰⎰⎰ (7)由叠加原理[6],由(5)及(7)就得到柯西问题(1)的解为()()()()()()()()222222424201,,,4,,1 4x y a tx y ta t u x y t ed d a t ed d d a t ξηξητϕξηξηπϕξητξητπτ-+--+∞+∞-∞-∞-+--+∞+∞--∞-∞=+-⎰⎰⎰⎰⎰在上面的推导中,由于预先不知道是否满足进行傅里叶变换及有关计算的条件,所得的解还只是形式解.为证明上式确实是柯西问题(1)的解,还得进行验证.抛物型方程解的估计及其应用4.2 初边值问题的求解热传导方程的初边值问题20 t xx u a u -= (8)00x x l u u ==∣=∣= (9) ()0 t u x ϕ=∣= (10) 令()()() ,u x t X x T t = (11)并要求它满足齐次边界条件(9),这里()X x 及()T t 分别表示仅与x 有关及仅与t 有关的特定函数.将(11)代入方程(8)中,得到()()()()///0 X x T t X x T t -= (12) 将上式分离变量,有()()()()///2T t X x a T t X x λ==- (13)由于在(13)式中,左边仅是t 的函数,右边仅是x 的函数,左右两端要相等,只有等于同一个常数才可能.记次常数为λ-(其值待定),就得到()()/2T aT 0t t λ+= (14)()()//0Xx X x λ+= (15)这样方程(13)就被分离为两个常微分方程,其中一个含有自变量t ,另一个仅含有自变量x ,我们可以通过求解这两个方程来决定()T t 及()X x ,从而得到方程(8)的特解(11)为了使此解是满足齐次边界条件(9)的非平凡解,就必须找到方程(8)满足边界条件定解问题的求解()()00,0X X l == (16) 的非平凡解.方程(15)的通解随0λ>,0λ=以及0λ<而不同,下面分三种情况讨论:情形1 当0λ<时,方程(15)的通解可写成 ()12X x C C e =+要使它满足边界条件(16),就必须1200C C e +=⎧⎪⎨+=⎪⎩由于110e≠只能120C C ==.故在0λ<的情况得不到非平凡解.情形2 当0λ=时,方程(15)的通解可以写成 ()12X x C C X =+ 要满足边界条件(16),()X x 也只能恒等于零.情形3 当0λ>时,方程(15)的通解具有如下形式: ()12X x C C =+ 由边界条件()00X =知10C =,再由()20X l C ==可知,为了使20C ≠,就必须sin 0=.于是222(1,2,)k k k lπλλ===⋯这样就找到了一族非零解()sin(1,2,)k k k X x A x k lπ==⋯ 将固有值代入方程(14)中,可得到其通解为()2222(1,2,)a k tl k k T t B ek π-==⋯这样就得到方程(8)的满足齐次边界(9)的下列分离变量形式的特解:()()()2222k ,sin(1,2,)a k tl k k k k u x t X x T t a ex k lππ-===⋯ 现在我们设法作这种特解的适当的线性组合,以得出初边值问题的解,也就是说,要决定常数k a 使()22221,sina k tl k k k u x t a ex lππ∞-==∑ (17) 满足初始条件(10). 故由初始条件(10)应有()1sink k k x a x lπϕ∞==∑ 由于 1,sink x l π⎧⎫⎨⎬⎩⎭在[]0,l 上正交,因此,k a 是在[]0,l 区间中正弦展开的傅里叶级数的系数,即()02sin l k k a d l lπϕξξξ=⎰ (18) 故()()222201,sin sina k tll k k k u x t d ex l lπππϕξξξ∞-==⋅∑⎰ (19) 是用级数形式表示的初边值问题的形式解.为了考察由分离变量法得到的形式解是否是混合问题的经典解,还得进行验证. 当1C ϕ∈,且()()00l ϕϕ==,()x ϕ是有界函数,(18)式确定的函数(),u x t 是混合问题的解.分析:在求解过程中,级数(17)中的每一项都满足方程(8),因此只要证明级数(17)可以逐项求导两次就好了.也就是说,如果证明了级数(17)求导两次后仍是一致收敛的,那么它一定满足方程(8),此时边界条件(9)和初始条件(10)的满足也是显然的推论了.证明:由于式(19)中含有因子2222a k tl eπ-,因此对于任意0δ>,当0t >时,对任意的0p >,级数22221p a k tl k k el ππ∞-=⎛⎫ ⎪⎝⎭∑均是一致收敛的,而由ϕ是有界函数的假设(()x M ϕ<),可得()0sinlk d Ml lπϕξξξ≤⎰故(19)式中列举的所有级数是一致收敛的,因而,由式(19)表示的级数,当0t >时,关于x 及t 是无穷次可导的,并且求导与求和可以交换.由于级数的每一项都满足方程(8)及边界条件(9)、(10),从而式(19)式表示的级数在0t >时确实满足方程及边界条件.当加上条件()()00l ϕϕ==时,当0t →时,对任意[]0,x l ∈,由式(19)给出的级数趋于初值()x ϕ,即得到式(19)给出的级数确实是初边值问题(8)~(10)的经典解.5 抛物型方程解的估计及其应用先验估计是偏微分方程理论研究中的一个常用的方法.其特点是在假设定解问题解存在的前提下导出解所应当满足的估计,而常用的估计有最大模估计[7],能量估计[8]等等.一般地,我们可以根据先验估计得到定解问题解的唯一性和稳定性,并且可结合其他一些分析方法推导出解的存在性,此外,作为对解的一种估计,先验估计还可能提供关于解的某种性态(如有界性等)方面的信息.5.1 极值原理考虑热传导方程()()2,,,t xx Lu u a u f x t x t Q ≡-=∈其中(){},0,0Q x t x l t T =<<<≤,Q 的侧边和底边统称为Q 的抛物边界,记作Γ,即(){}(){}(){},0,0,,0,0,0x t x t T x t x l t T x t t x l Γ==<≤⋃=<≤⋃=≤≤在热传导过程中,如果物体内部无热源,则热量总是由温度高处向其它地方扩散,而温度最低处的温度会逐渐上升.因此物体的最高温度和最低温度总是在初始时刻或物体的边界上达到.这就是热传导方程的“极值原理”.定理 1(弱极值原理) 设函数()()()2,1,C u x t Q C Q ∈⋂满足Lu f =. (1) 若0f ≤,则u 在Q 上的最大值必在抛物边界Γ上达到,即 ()()max ,max ,Qu x t u x t Γ=(2) 若0f ≥,则()()min ,min ,Qu x t u x t Γ=(3) 若0f =,则()()max ,max ,Qu x t u x t Γ=, ()()min ,min ,Qu x t u x t Γ=同时成立,这里()2,1C Q 表示在Q 内关于x 二次连续可微,且关于t 一次连续可微的函数全体.证明:(1)不妨先考虑0f <情形. 反设存在点()00,x t Q ∈,使得()()00,max ,Qu x t u x t =则在该点处0x u =,0xx u ≤,0t u ≥(如果0t T <,则0t u =;如果0t T =,则0t u ≥).因此()()()00200,,0t xx x t f x t u a u =-≥,这与0f <的假设相矛盾.故(),u x t 不能在Q 内达到最大值,从而有 ()()max ,max ,Qu x t u x t Γ=当 (),0f x t ≤时,设法将其转化为前面的情形.为此构造辅助函数 ()(),,v x t u x t t ε=- 其中ε是任意小的正数.因为0Lv Lu f εε=-=-< 所以()()max ,max ,Qv x t v x t Γ=于是()()()()max ,max ,max ,max ,QQu x t v x t t v x t T u x t T εεεΓΓ=+≤+≤+⎡⎤⎣⎦令0ε→,得()()max ,max ,Qu x t u x t Γ=(2)若0f ≥,则对u -应用情形(1)的结论即可.(3)结合前面两种情况,若0Lu =,则u 在Q 的上的最大值与最小值都在抛物边界Γ上达到.下面我们将弱极值原理推广到稍一般的热传导方程()()()21,,,t xx x Lu u a u b x t u c x t u f x t ≡-++=定理 2 函数()()2,1u C Q C Q ∈⋂满足10L u f =≤,则u 在Q 上的正最大值必在抛物边界Γ上达到,即()()max ,max ,Qu x t u x t +Γ≤由于其证明与定理1的证明方式类似,这里不再赘述.定理3 设()0,c x t c ≥-,其中0c 为正常数.若函数()()()2,1,u x t C Q C Q ∈⋂满足10L u f =≤,且()max ,0u x t Γ≤,则必有()max ,0Qu x t ≤证明 令()()0,,c t v x t e u x t -=,则(),v x t 满足方程 ()0200c t t xx x v a v bv c c v fe --+++=≤ 由于00c c +≥,根据定理2,得()()()0max ,max ,max ,0c t Qv x t v x t e u x t -++ΓΓ≤≤≤因此结论得证.利用定理3,不难得到下列推论:推论1(比较原理) 设()()00,0c x t c c ≥-≥,又设()()2,1,u v C Q C Q ∈⋂,且11L u L v ≤,u v ΓΓ≤,则对任意的(),x t Q ∈,有()(),,u x t v x t ≤5.2 初边值问题解的最大模估计设Ω是n R 中的有界开集,0T >.记(0,]T Q T =Ω⨯,(){}()[0,)0T T Γ=∂Ω⨯⋃Ω⨯这里的T Γ称为T Q 的抛物边界.我们先在T Q 中研究抛物型方程记 []()()1,,int i x i A u u u b x t uf x t ==-∆+=∑[]()()()1,,,int ix i B u u u b x t uc x t u f x t ==-∆++=∑考察第一初边值问题[]()()()()()()()()[]1,, ,,0 ,, ,0,i nt i x Ti A u u u b x t u f x t x t Q u x x x u x t g x t x t T ϕ=⎧=-∆+=∈⎪⎪⎪=∈Ω⎨⎪=∈∂Ω⨯⎪⎪⎩∑ (20)定理4 设()()2,1T T u C Q C Q ∈⋂是问题(20)的解,则TQ max u FT B ≤+其中sup TQ F f =,()[]{}0,max max ,max T B x g ϕ∂Ω⨯Ω=证明 令v tF B =+,与u ±作比较.因为 [][]A u F f A u =≥±=± ,(),T x t Q ∈ ()()(),0,0v x B x u x ϕ=≥±=± , x ∈Ω v B g u ∂Ω∂Ω∂Ω≥≥±=± , 0t T ≤≤ 由比较原理知,u v FT B ±≤≤+,即 ()TQ max ,u x t FT B ≤+推论 2 第一初边值问题(20)的解在函数类()()2,1T T C Q C Q ⋂中是唯一的,且连续地依赖于f ,ϕ和g .证明 当0f g ϕ==≡时,对应的解u 满足TQ max 0u =,故0u ≡,从而解是唯一的.假设i u 是对应于{},,i i i f g ϕ的解,1,2i =,则12u u -是对应于{}121212,,f f g g ϕϕ---的解.于是[]{}TT121212120,Q Q max max ax max ,max T u u T f f g g ϕϕ∂Ω⨯Ω-≤-+--所以当{}111,,f g ϕ与{}222,,f g ϕ充分接近时,1u 与2u 也充分接近,这说明问题(20)的解连续地依赖于f ,ϕ和g .现在考察第一初边值问题[]()()()()()()()[], ,,0 ,, ,0,TB u f x t x t Q u x x x u x t g x t x t T ϕ⎧=∈⎪⎪=∈Ω⎨⎪=∈∂Ω⨯⎪⎩ (21) 定理5 设()0,c x t c ≥-,()()2,1T T u C Q C Q ∈⋂是问题(21)的解,则 ()0TQ max c T u e FT B ≤+其中sup TQ F f =,()[]{}0,max max ,max T B x g ϕ∂Ω⨯Ω=.证明 不妨认为00c ≥,令()0c t v e FT B =+,与u ±作比较.因为[]()()()()()()[]()00000000, =, ,c t c t c t c t c t c t T B u Fe c e Ft B c x t e Ft B Fe e c c x t Ft B Fe F f B u x t Q =+++++++≥≥≥±=±∈()()(),0,0v x B x u x ϕ=≥±=± , x ∈Ω v B g u ∂Ω∂Ω∂Ω≥≥±=± , 0t T ≤≤由比较原理知,()0c T u v e FT B ±≤≤+,即()()0TQ max , c T u x t e FT B ≤+5.3 初值问题解的最大模估计记[]T D 0,n R T =⨯,[](),t C u u u c x t u =-∆+ 考察初值问题[]()()()(), ,,0 TnC u f x t x tD u x x x Rϕ⎧=∈⎪⎨=∈⎪⎩ (22) 设(),c x t 连续,()()00,0c x t c c ≥->,(),f x t 和()x ϕ有界,记 sup TD F f =, sup nR ϕΦ=如果()()2,1T T u C D C D ∈⋂是初值问题(22)的解,则 ()0sup Tc T D u e FT ≤+Φ证明 令()()0,,c t v x t u x t e -=,则v 满足[]()()()(),,,0 t nD v v v c x t v f x t v x x x R ϕ⎧=-∆+=⎪⎨=∈⎪⎩ (23) 其中()()0,,0c x t c x t c =+≥,()()0,,c t f x t e f x t -=由于解得先验估计方法不能直接用于初值问题,我们希望借助于一个有界区域上的初边值问题进行讨论,任意取定较大的常数L ,记{}](,0,L T D x L T =≤⨯.因为解u 有界,所以存在正常数K 使得u K ≤在D T 上成立,在有界区域,L T D 上考虑辅助函数()()22,2K w x t Ft x nt v L =+Φ++± 直接计算知,在,L T D 上w 满足[]()()()()()()002,22220 ,,0 ,,0c t L T c tx L x L K D w F c Ft x nt e f x t D L K w x x x x LL w x t K u x t e ϕ--==⎧⎧⎫=++Φ++±≥∈⎨⎬⎪⎩⎭⎪⎪=Φ+±≤⎨⎪⎪≥Φ+±>⎪⎩利用比较原理知,(),0w x t ≥在,L T D 上成立对于D T 内的任一点()00,x t ,取L 充分大使得()00,,L T x t D ∈,于是()00,0w x t ≥ 即()()2000002,2K v x t Ft x nt L≤+Φ++ 令L →∞得()000,v x t Ft Ft ≤+Φ≤+Φ从而()()()000000,,c t c T u x t v x t e e Ft =≤+Φ由()00,T x t D ∈的任意性知,估计式(23)成立.推论3 初值问题(23)的解在函数类()()2,1T T C D C D ⋂中是唯一的,且连续地依赖于f ,ϕ.由于其证明与推论3的证明方式类似,这里不再赘述.5.4 初边值问题的能量估计设Ω是n R 中的一个光滑区域,在](0,T Q T =Ω⨯上考察第一初边值问题()()()()()[], ,,0 0 ,0,t T u u f x t x t Q u x x x u x t T ϕ-∆=∈⎧⎪⎪=∈Ω⎨⎪=∈∂Ω⨯⎪⎩ (24) 定理6 设()()1,02,1T T u C Q C Q ∈⋂是问题(23)的解,则存在正常数()C C T =使得()222200max ,2TT t Tux t dx u dxdt C dx f dxdt ϕΩΩΩΩ≤≤⎛⎫+∇≤+ ⎪⎝⎭⎰⎰⎰⎰⎰⎰ (25) 证明 问题(24的方程两边乘以u 并在T Q 上积分,得000tttt uu dxdt u udxdt f udxdt ΩΩΩ-∆=⎰⎰⎰⎰⎰⎰(26)对(26)式左端第一项中关于t 的积分利用分部积分以及初值条件,可知()()22011,22t t uu dt u x t x ϕ=-⎰ (27)对(26)式左端第二项关于x 的积分利用散度定理以及边界条件,推出22u u udx u dS u dx u dx n Ω∂ΩΩΩ∂∆=-∇=-∇∂⎰⎰⎰⎰ (28)将(27)式和(28)式代入(26)式,得2220022ttu dx u dxdt f udxdt dx ϕΩΩΩΩ+∇=+⎰⎰⎰⎰⎰⎰ (29)利用不等式222ab a b ≤+可知 220002t ttf udxdt f dxdt u dxdt ΩΩΩ≤+⎰⎰⎰⎰⎰⎰将上式代入(29)式,得222220002tttu dx u dxdt f dxd u dxdt dx ϕΩΩΩΩΩ+∇≤++⎰⎰⎰⎰⎰⎰⎰⎰ (30)记 ()20tY t u dxdt Ω=⎰⎰,()220t F t f dxd dx ϕΩΩ=+⎰⎰⎰那么不等式蕴含()()()Y t Y t F t '≤+ 利用Gronwall 不等式[9]推出()()()()()()2022001 tt t t ttu dxdtF t Y t Y e e F t e F t e f dxd dx ϕΩΩΩ=≤+-⎛⎫≤=+ ⎪⎝⎭⎰⎰⎰⎰⎰将上式代入(30)式知()22220021tt tu dx u dxdt e f dxd dx ϕΩΩΩΩ⎛⎫+∇≤++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰ 此式两边关于t 在[]0,T 上取上确界,就得到估计式(25).下面我们将讨论一般形式的二阶抛物型初边值问题.设Ω为n R 中的有界区域,且有光滑边界()0,T Q T =Ω⨯,在区域中讨论一般形式的二阶抛物型初边值问题()()()(),11,,,,i j i nnij x x i x i j i u a x t u u b x t u c x t u f x t t ==∂-++=∂∑∑ (31) ()0 t u x x ϕ==∈Ω (32)0T u ∑= (33)解的性质.式中,()0,T T ∑=Γ⨯为区域的侧边界;()12,,n x x x x =∈Ω为方便讨论,作如下假设:(1) 系数ij a 、i b 、c 及右端项f 都是T Q 上的连续函数,并且ij a 在T Q 上还具有一阶连续偏导数. (2) 对一切,1,2,i j n =;ij ji a a =且存在正常数0α>,使得对一切(),T x t Q ∈及任意给定的实向量()12,,,n ξξξ,有:()2,11,nnijiji i j i a x t ξξαξ==≥∑∑成立.对于初边值问题的解,定义能量函数:()212E t u dx Ω=⎰ (34)定理7 若(),u x t 为初边值问题(31)~(33)的解,能量函数()E t 按式(34)定义,则能量估计式:()()200 0t Ct Ct E t E e Ce f dxdt t T Ω≤+≤≤⎰⎰(35)成立.其中,C 为一个不依赖于u 的正常数.证明 用u 乘以式(31),并在Ω上关于x 积分,就得到:()(),11,,i j i n n t ij x x i x i j i u udx a x t u u dx b x t u u cu dx fudx ΩΩΩΩ==⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰⎰⎰ []0,t T ∈ (36) 式左端的第一项可以写成212d u dx dt Ω⎧⎫⎨⎬⎩⎭⎰;当3n ≥时,记12,,,n ααα为侧边界T ∑法向量的方向角,dS 为广义面积微元.令(),1,2,,i ij ij x p a uu i j n ==,固定i ,让1,2,,j n =,利用高维高斯公式[10],并注意边界条件(它隐含着0Tu ∑=),边界积分项为零,可得()()()()()()12121122121212120cos cos cos = = =Ti i i n i ni i in n i i in n i x x i x x in x x i i in x x x x p p p dSp p p dx xx x a u a u a u udx a u a u a u u dxααα∑ΩΩΩ=++⎛⎫∂∂∂+++ ⎪∂∂∂⎝⎭+++++⎰⎰⎰⎰故对固定的i ,有:()()()()()12121212=i i i n i ni x x i x x in x x i i in x x x x a u a u a u udx a u a u a u u dx ΩΩ-+++++⎰⎰(37)成立,对式(37)关于i 从1到n 求和.式(36)左端的第二项可以写成:(),1,1,1i j i j i i n n n ij x x ij x x ij x x i j i j i j a u u dx a u u dx a u u dx ΩΩΩ===⎛⎫⎛⎫⎛⎫-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑⎰⎰⎰ (38)将上式的第二项,连同式右端的第三、四项移至等式右边,并将其和记为(),t Q u u dx Ω⎰则有()()()1,1,,i i i n n ti x ij x x i i j Q u u dx fudx b x t u u cu a u u dx ΩΩΩ==⎛⎫=-++ ⎪⎝⎭∑∑⎰⎰⎰则由于系数的可微性假设(1)可得,对一切0t T ≤≤成立()21,i n t T x i Q u u dx C u u u dx ΩΩ=⎛⎫≤+ ⎪⎝⎭∑⎰⎰ (39)其中T C 为一个不依赖于T 的正常数,但与u 无关.对任意给定的0ε>,有2211122i innnx x i i i nuu dx udx u dx εεΩΩΩ===≤+∑∑∑⎰⎰⎰ (40)取TC αε=,由式(40)就得到()22111,2inntx i i Q u u dx udx C u dx αΩΩΩ==≤+∑∑⎰⎰⎰(41)其中212TT nC C C α=+,将式(41)代入式(36),容易得到2221,11111222i j i n n n ij x x x i j i i dE a u u dx u dx C u dx f dx dt αΩΩΩΩ===⎛⎫⎛⎫+≤+++ ⎪ ⎪⎝⎭⎝⎭∑∑∑⎰⎰⎰⎰ (42) 再注意到由假设(2)有2,11i j i n n ij x x x i j i a u u dx u dx αΩΩ==⎛⎫≥ ⎪⎝⎭∑∑⎰⎰ 就可得到()22dEC E t f dx dtΩ≤+⎰ (43)其中2121C C =+.在式(43)两边乘以2C t e -再对t 积分,,并放大被积函数,即可得 ()()200t Ct Ct E t E e Ce f dxdt Ω≤+⎰⎰定理证毕.5.5 能量不等式的应用5.5.1 初边值问题解的唯一性热传导方程是抛物型方程的典型代表.下面考虑二维热传导方程的初边值问题()2t xx yy u a u u f =++ (44)()0,t u x y ϕ== (45) (),,u x y t μΓ= (46) 这里,Γ表示Ω的边界,应用能量不等式可得如下定理.定理8 若热传导方程的初边值问题的解存在,则其解唯一.证明 设1u ,2u 是该定解问题的两个解,则其差12u u u =-满足相应的齐次方程及齐次初始条件和齐次边界条件.此时的齐次方程满足假设(1)、(2),有(34)式定义的能量函数知,在初始时刻有()00E =,故由能量不等式(35)得:()()22220x y E t u a u u dxdy Ω⎡⎤=++=⎣⎦⎰⎰ 即0x y u u u ===,从而可推出(),,u x y t const =.又由于在初始时刻0u =,故得(),,0u x y t ≡.即12u u =.这样就证明了初边值问题(44)~(46)解的唯一性. 5.5.2 初边值问题解的稳定性为了记号简单起见,对于定义在区域Ω上的函数ϕ和定义在区域上()0,T ⨯Ω的函数f ,常以()2L ϕΩ和()()20,L T f ⨯Ω分别表示()122dxdy ϕΩ⎰⎰和()1220Tf dxdydt Ω⎰⎰⎰.定理9 热传导方程的初边值问题:()2t xx yy u a u u f =++()0,t u x y ϕ== 0u Γ=的解(),,u x y t ,在下述意义下关于初始值ϕ与方程右端项f 是稳定的:对任何给定的0ε>,一定可以找到仅依赖于ε和T 的0η>,只要 ()212L ϕϕηΩ-≤ ()212x xL ϕϕηΩ-≤()212y yL ϕϕηΩ-≤ ()()2120,L T f f η⨯Ω-≤ (47)那么以1ϕ为初值、1f 为右端项的解1u 与以2ϕ为初值、2f 为右端项的解2u 之差在上满足()212L u u εΩ-≤ ()212x xL u u εΩ-≤ ()212y yL u u εΩ-≤ (48)证明 记12u u u =-,12ϕϕϕ=-,1f f f =-,则u 满足()2t xx yy u a u u f =++ (49)()0,t u x y ϕ== (50) 0u Γ= (51) 方程(49)满足假设(1)、(2),从而利用能量不等式(35),可得:()()()()222000tTCt Ct E t E e Ce f dxdydt C E f dxdydt ΩΩ≤+≤+⎰⎰⎰⎰⎰⎰[]0,t T ∈ (52)式中,2C 为一个仅依赖于T 的正常数.记。

相关文档
最新文档