一次函数应用题的解题方法

合集下载

一次函数的应用

一次函数的应用
(2)设 CD 段的函数解析式为 y=kx+b,将 C(2.5,80),D(4.5,300) 两点的坐标代入,运用待定系数法即可求解;
(3)设货车从甲地出发 x 小时后再与轿车相遇,根据轿车(x-4.5)小时 行驶的路程+货车 x 小时行驶的路程=300 千米列出方程,解方程即可.
考点聚焦
归类探究
回归教材
例 1 [2013·山西] 某校实行学案式教学,需印制若干份数学 学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用 y(元)与印刷份数 x(份)之间的关系如图 11-1 所示:
考点聚焦
归类探究
回归教材
(1)填空:甲种收费方式的函数关系式是__y_甲__=__0_.1_x_+___6; 乙种收费方式的函数关系式是___y_乙_=__0_._1_2_x.
段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段 函数的分界点;(2)针对每一段函数关系,求解相应的函数解析式; (3)利用条件求未知问题.
考点聚焦
归类探究
回归教材
探究三 利用一次函数解决其他生活实际问题
命题角度: 函数图象在实际生活中的应用.
例 3 甲、乙两地相距 300 千米,一辆货车和一辆轿车先后 从甲地出发向乙地,如图 11-3,线段 OA 表示货车离甲地距 离 y(千米)与时间 x(小时)之间的函数关系;折线 BCD 表示轿车 离甲地距离 y(千米)与 x(小时)之间的函数关系.请根据图象解 答下列问题:
度上升和下降阶段 y 与 x 之间的函数关 系式.
图 11-4
考点聚焦
归类探究
回归教材
解:(1)由图象知,服药后 3 小时血液中药物浓度最高. (2)当 0≤t≤3 时,函数为正比例函数,设关系式为 y=kx(k≠0),

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方‎程应用题归‎类汇集一、列方程解应‎用题的一般‎步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表‎示本题含义‎的相等关系‎(找出等量关‎系).(2)设—设出未知数‎:根据提问,巧设未知数‎.(3)列—列出方程:设出未知数‎后,表示出有关‎的含字母的‎式子,然后利用已‎找出的等量‎关系列出方程.(4)解——解方程:解所列的方‎程,求出未知数‎的值.(5)答—检验,写答案:检验所求出‎的未知数的‎值是否是方‎程的解,是否符合实‎际,检验后写出‎答案.(注意带上单‎位)二、一般行程问‎题(相遇与追击‎问题)1.行程问题中‎的三个基本‎量及其关系‎:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基‎本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙‎地,某人步行比‎乘公交车多‎用3.6小时,已知步行速‎度为每小时‎8千米,公交车的速‎度为每小时‎40千米,设甲、乙两地相距‎x千米,则列方程为‎。

解:等量关系步行时间-乘公交车的‎时间=3.6小时列出方程是‎:2、某人从家里‎骑自行车到‎学校。

若每小时行‎15千米,可比预定时‎间早到15‎分钟;若每小时行‎9千米,可比预定时‎间晚到15‎分钟;求从家里到‎学校的路程‎有多少千米‎?解:等量关系⑴速度15千‎米行的总路‎程=速度9千米‎行的总路程‎⑵速度15千‎米行的时间‎+15分钟=速度9千米‎行的时间-15分钟提醒:速度已知时‎,设时间列路‎程等式的方‎程,设路程列时‎间等式的方‎程。

方法一:设预定时间‎为x小/时,则列出方程‎是:15(x-0.25)=9(x+0.25)方法二:设从家里到‎学校有x千‎米,则列出方程‎是:3、一列客车车‎长200米‎,一列货车车‎长280米‎,在平行的轨‎道上相向行‎驶,从两车头相‎遇到两车车‎尾完全离开‎经过16秒‎,已知客车与‎货车的速度‎之比是3:2,问两车每秒‎各行驶多少‎米?提醒:将两车车尾‎视为两人,并且以两车‎车长和为总‎路程的相遇‎问题。

一次函数应用题(讲义及答案). (1)

一次函数应用题(讲义及答案). (1)

一次函数应用题(讲义)➢课前预习1. 一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B 两村相距10 km;②出发1.25 h 后两人相遇;③出发2 h 后甲到达C 村庄;④甲每小时比乙多骑行8km.其中正确的个数是()A.1 个B.2 个C.3 个D.4 个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际1➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400 米,先到终点的人原地休息.已知甲先出发4 分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60 米/分;②甲走完全程用了40 分钟;③乙用16 分钟追上甲;④乙走完全程用了30 分钟;⑤乙到达终点时,甲离终点还有300 米.其中正确的结论是.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y 与x 之间的函数关系,结合图象解答下列问题:(1)求线段AB 所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a 的值;(3)出发多长时间,两车相距140 千米?3.甲、乙两台机器共同加工一批零件,一共用了6 小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)求y 与x 之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1 分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为米/分,点M 的坐标为;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A 地出发,经过多长时间在返回途中追上乙?5.某工厂安排甲、乙两个运输队各从仓库调运物资300 吨,两队同时开始工作,甲运输队工作3 天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率1降低到原来的;乙运输队在整个运输过程中工作效率保持2不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x(天)的函数图象如图所示,结合图象解答下列问题:(1)a= ,b= .(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50 吨物资时x 的值.6.快、慢两车分别从相距480 千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1 小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为千米/时,a= ;(2)求快车的速度和B 点坐标;(3)两车出发后几小时相距的路程为200 千米?请直接写出答案.⎨ ⎩【参考答案】➢ 课前预习1. D➢ 精讲精练1. ①②④2. (1)线段 AB 所在直线的函数解析式为 y = -140x + 280 ;甲乙两地之间的距离为 280 千米;(2)a 的值为 210;(3)出发 1 h 或 3 h 时,两车相距 140 千米.3. (1)270,20,40;⎧50x (0 < x ≤1) (2) y = ⎪20x + 30(1 < x ≤3);⎪60x - 90(3 < x ≤ 6) (3)在整个加工过程中,甲加工 1.5 小时或 4.5 小时时, 甲与乙加工的零件个数相等.4. (1)240,(6,1200);(2) y = -240x + 2640 ;(3)甲从 A 地出发,经过 8 分钟在返回途中追上乙;5. (1)5,11;(2) y = 25x + 25 (5 ≤ x ≤11) ;(3)乙运输队比甲运输队多运 50 吨物资时,x 的值为 6 或 9.6. (1)60,360;(2) 快车的速度为 120km/h ,B 点的坐标为(4,0);(3) 两车出发14 h , 34 h 或14 h 时,相距的路程为 2009 9 3千米.。

一次函数的题型及解题方法

一次函数的题型及解题方法

一次函数的题型及解题方法
一次函数是数学中常见的一种函数,其形式为 y = kx + b,其中 k 和 b 是
常数,且k ≠ 0。

一次函数在日常生活和科学研究中有着广泛的应用。

一次函数常见的题型包括:
1. 一次函数的图像和性质:这类题目通常要求我们根据给定的k 和b 的值,画出函数的图像,并分析函数的增减性、与坐标轴的交点等性质。

2. 一次函数的解析式:这类题目通常给出一个一次函数的图像或一些点的坐标,要求我们求出函数的解析式。

3. 一次函数的应用题:这类题目通常涉及到生活中的实际问题,如路程、速度、时间等问题,要求我们根据题意建立一次函数模型,并求解。

解题方法:
1. 对于一次函数的图像和性质,我们可以先根据 k 和 b 的值计算出函数的
表达式,然后根据函数的表达式分析其图像和性质。

2. 对于求一次函数的解析式,我们可以使用待定系数法或两点式等方法求解。

3. 对于一次函数的应用题,我们需要仔细审题,理解题意,然后根据题意建立一次函数模型,最后求解模型得出答案。

下面是一个具体的例子:
题目:已知直线 y = kx + b 与 x 轴、y 轴的交点分别为 A(-3,0) 和 B(0,2),求该直线的解析式。

解题方法:
1. 首先,我们可以将点 A(-3,0) 和 B(0,2) 的坐标代入到直线方程 y = kx +
b 中,得到两个方程:
-3k + b = 0
b = 2
2. 解这个方程组,我们可以得到 k = 2/3 和 b = 2。

3. 因此,该直线的解析式为 y = 2x/3 + 2。

一次函数的应用

一次函数的应用

一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。

各种数学思想的渗透和应用。

三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。

一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。

中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。

利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。

思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。

2)解题思路:注意审题。

注意考虑函数的取值范围,能灵活应用所学知识解决问题。

解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。

2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。

今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。

某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。

(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。

例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。

某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。

3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。

方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。

解一次函数应用题的两种策略

解一次函数应用题的两种策略

运 输 时 间 , 费 每 吨 减 少 m 元 ( 0)其 余 路 线 的 运 费 不 变 讨 论 总 运 运 m> . 试
费最小 的调 运方 案. 解 :1列表 如下 . ()
表 1

A ( 4 - 吨 2 0 x)

( 4 吨 一 0)

总计
2 0 吨 0

次 函数 应 用 题 语 言叙 述 较 多 .
数 据 量 较 大 , 同学 们 的 审 题 、 题 带 给 解 来 很 多 不 便 , 造 成 了 较 多 失 误 . 里 也 这
向 同 学 们 介 绍 两 种 处 理 这 类 问 题 的 常 用 策略 , 参 考. 供
策 略一 : 表法 列
980 0≤ 1 O-x ≤ 1 . 2

\ 县 A
白变 量 的 取 值 范 围是
0≤ l 一( 0~ ≤ l 2 1 ) 2,故 0
0≤ ≤ 6. 0 ≤ 6-x≤ 6.
≤ ≤ 6
( ) ( ) 知 ,P 着 的 增 大 而 减 小 , 当 x 6时 , 运 费 最 低 2 由 1可 "随 L i 故 = 总 最
( ) 最 低 总 运 费 , 说 明 总 运 费 最 低 时 的运 送 方 法 . 2求 并 分 析 : 题 中所 给 的信 息量 大 , 据也 较 多 . 梳 理各 个 量 之 问的关 本 数 为 系 , 们 可 以采 用 如 下 的 图 形 整 理 信 息 . 我


日 县
解 : i 依 题 意 有 w 3 x 8 6 ) 4 ( 0 ) 5 [ 2 1 一 ] 一 + () = 0 + 0( 一 + 0 1 一 + 0 1 一( 0 ) : 4

一次函数应用题的解题方法

一次函数应用题的解题方法

一次函数应用题的解题方法一次函数应用题的解题方法一、直接代入法直接代入法是将题目中的关键信息转化为代数式,然后根据函数关系列出一次函数的解析式,最后解决问题的方法。

例如,东风商场的一种毛笔售价为25元,一本书法练本售价为5元。

商场制定了甲、乙两种优惠方式:甲为每购买1支毛笔赠送1本书法练本,乙为按照购买金额打9折付款。

某书法小组想购买10支毛笔和x(x≥10)本书法练本。

1)分别列出甲、乙两种优惠方式下的实际付款金额y甲(元)和y乙(元)与x之间的函数关系式。

2)比较不同数量的书法练本时,哪种优惠方式更省钱。

3)商场允许选择一种或两种优惠方式购买,请设计最省钱的购买方案。

1)y甲=10×25+5(x-10)=5x+200(x≥10)y乙=10×25×0.9+5×x×0.9=225×0.9+4.5x2)比较y甲和y乙的大小,得到:当y甲=y乙时,5x+200=225×0.9+4.5x,解得x=50;当y甲>y乙时,5x+200>225×0.9+4.5x,解得x>50;当y甲<y乙时,5x+200<225×0.9+4.5x,解得x<50.因此,当购买50本书法练本时,两种优惠方式的实际付款相同,可以任选一种;当购买的书法练本数量在10到50之间时,选择甲优惠方式更省钱;当购买的书法练本数量大于50时,选择乙优惠方式更省钱。

3)设按照甲优惠方式购买a(0≤a≤10)支毛笔,则可以获赠a本书法练本。

按照乙优惠方式购买10-a支毛笔和(60-a)本书法练本。

总费用为y=25a+25×0.9×(10-a)+5×(60-a)=495-2a。

因此,当a最大(即a=10)时,y最小。

因此,最省钱的购买方案是先按照甲优惠方式购买10支毛笔,然后按照乙优惠方式购买50本书法练本。

一次函数利润问题解题思路

一次函数利润问题解题思路

一次函数利润问题解题思路
利润问题是贯穿整个初中实际应用题的常见类型,每种类型的利润问题解题思路有细微的差别,但所用等量关系式是一定的。

常见的公式有:单件利润=售价-进价、总利润=单件利润×销售量、售价=标价×折扣率等。

在解题时,需要熟练运用各公式。

方案问题一般有两种类型:
-题目中明确各方案,需要通过自己的计算比较各方案所得利润的大小,从而确定方案。

-方案不明确,需要自己设计。

此时,应该先求出一次函数表达式,然后再从题目中得到自变量的取值范围,通过一次函数的增减性得到函数的最大值,从而确定方案。

中考数学总复习训练 一次函数的实际应用含解析

中考数学总复习训练  一次函数的实际应用含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析一次函数应用一、确定解析式的几种方法:1.直接写出一次函数表达式,根据实际意义解决相应问题;(直接法)2.利用待定系数法构建函数表达式,已经明确函数类型;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等式变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题。

一)根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题。

例1:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。

书包每个定价20元,水性笔每支定价5元。

XXX和同学需买4个书包,水性笔若干支(不少于4支)。

1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;直接法:对于第一种优惠方法,每个书包都赠送1支水性笔,所以购买4个书包需要买4支水性笔,总共需要花费4×20+4×5=100元。

因此,y=100.对于第二种优惠方法,购买4个书包和4支水性笔需要花费4×20×0.9+4×5×0.9=82.8元。

因此,y=82.8-0.9x。

2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;当0≤x≤4时,第一种优惠方法更便宜;当x>4时,第二种优惠方法更便宜。

3)XXX和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济。

由于第一种优惠方法总共需要花费100元,而第二种优惠方法的费用函数为y=82.8-0.9x,因此需要求解当x=12时,y 的值为多少。

代入公式得到y=71.4元。

因此,购买4个书包和12支水性笔的最经济方法是选择第二种优惠方法。

例2:某实验中学组织学生到距学校6千米的XXX去参观,学生XXX因事没能乘上学校的校车,于是准备在学校门口改乘出租车去XXX,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则16×3x+16×2x=200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

一次函数实际应用题解题技巧

一次函数实际应用题解题技巧

一次函数实际应用题解题技巧
1、先明确一次函数的定义:一次函数的定义是:一次函数是指具有单调性和可导性的函数,它可以通过一次变换把一个简单函数变换成一个新的函数。

2、明确参数:在解一次函数实际应用题时,首先要明确题目中参数的具体含义,以及函数的定义范围。

3、确定函数的性质:根据题目中给出的函数,可以确定函数的单调性、可导性和凹凸性,以及确定它是一次函数。

4、题目的读懂:需要读懂题目,理解题目的意思,确定题目的类型,以及题目所要求的具体内容。

5、利用数学公式:利用初中数学中学习的一次函数公式及其变形,把题目中的参数值带入数学公式,求解出满足条件的一次函数。

6、绘制函数图像:在确定了函数的性质和具体内容后,可以通过函数图像来进一步地分析一次函数。

7、检验结果:经过计算后,把最后得出的函数的值与题目中给出的值进行比较,以确定结果的准确性。

一次函数应用题—行程问题

一次函数应用题—行程问题

一次函数应用题—行程问题一慢车和一快车沿相同路线从A地到相距120千米的B地,所行地路程与时间的函数图象如图所示.试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车比慢车少用小时到达B地;(2)根据图象分别求出慢车和快车路程与时间的解析式.(3)快车用了多少时间追上慢车;此时相距A地多少千米?(2012•义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数(2012•衢州)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?(2012•咸宁)某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A→D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象;(2)求C,E两点间的路程;(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.某企业有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y 与注水时间x之间的函数关系式;(2)求注水多长时间,甲、乙两个蓄水池水的深度相同;(3)求注水多长时间,甲、乙两个蓄水池的蓄水量相同.(2012•随州)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为;问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.在一次远足活动中,小聪由甲地步行到乙地后原路返回,小明由甲地步行到乙地后原路返回,到达途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t(h),两人离甲地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为km;(2)小明由甲地出发首次到达乙地所用的时间是,由乙地到达丙地所用的时间是(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.(2012•南通)甲.乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题(1)线段CD表示轿车在途中停留了 h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.(2012•牡丹江)快车甲和慢车乙分别从A、B 两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A 站即停运休息.下图表示的是两车之问的距离y (千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B 返回 A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.(2011•牡丹江)甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向b地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:(1)求甲、乙两车的速度,并在图中(_______)内填上正确的数:(2)求乙车从B地返回到C地的过程中,y与x之间的函数关系式;(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线A-B-C-D-E表示:从两车出发至快车到达乙地后立即返回到甲地的过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t小时,求t的值;(3)请你直接写出D点的坐标及直线DE的解析式.宁波与台州两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从宁波开往台州.如图所示,OA是第一列动车组列车离开宁波的路程s (单位:km)与运行时间t(单位:h)的函数图象,BC是一列从台州开往宁波的普通快车距宁波的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B横坐标0.5的意义是普通快车的发车时间比第一列动车组列车的发车时间晚h,点B的纵坐标300的意义是(2)若普通列车的速度为100km/h,①求BC 的解析式;②求第二列动车组列车出发后多长时间与普通列车相遇.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间t(h),两车之间的距离为s(km),图中的折线表示s与t之间的函数关系.根据图象进行以下探究:(1)试解释图中点B的实际意义;(2)①求线段BC所表示的s与t之间的函数关系式,并写出自变量t的取值范围;②若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多长时间?一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y 与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为km;图中点C的实际意义为:;慢车的速度为,快车的速度为(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?水利专家为了考察某河流的堤岸的抗洪能力,一组专家乘坐勘测船从甲码头顺流出发,往返于甲、乙码头;另一组专家从甲、乙两码头间的丙码头出发,乘一橡皮艇漂流而下,直至到达乙码头.若两组专家同时出发,船、艇离丙码头的距离y (km)与出发的时间x(h)之间的函数关系如图所示.根据图象信息,解答下列问题:(1)甲、乙两码头的距离为 km,勘测船顺流航行的速度为km/h,勘测船逆流航行的速度为km/h;(2)求艇从丙码头漂流到乙码头所用的时间;(3)船、艇在途中相遇了几次?相遇时,船、艇离丙码头有多远?甲、乙两车分别从A、B两地同时相向而行,匀速开往对方所在地,图(1)表示甲、乙两车离A地的路程y(km)与出发时间x(h)的函数图象,图(2)表示甲、乙两车间的路程y(km)与出发时间x(h)的函数图象.(1)A、B两地的距离为km,h的实际意义是(2)求甲、乙两车离B地的路程y(km)与出发时间x(h)的函数关系式及x的取值范围,并画出图象(不用列表,图象画在备用图中);(3)丙车在乙车出发10分钟时从B地出发,匀速行驶,且比乙车提前20分钟到达A地,那么,丙车追上乙车多长时间后与甲车相遇?(2012•仙桃天门潜江江汉)张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t(0≤t≤32)分钟后师生二人离张勤家的距离分别为S1、S2.S与t之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为50米/分(2)求S2与t之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象;(3)张勤出发多长时间后在途中与李老师相遇?。

怎样解一次函数应用题

怎样解一次函数应用题
车路程 范 围. 的 解 : 1 根据 题意 可知y 4 1 ( 2) ( ) = + . 一 , 5
’ . .
3 .x 1( ≥ 2、 - 5+ =1 .
( 依题 意得 7 ≤1 x l 8 , 2) . . +<. 5 5 5
・ . .
≤ x<5 .
二 、 表格 中 寻找 函数 的对应 关 系 在
C D 总 计
( 4 一 吨 2 0 ) 吨
总 计 4 吨 o
( 4 吨 一 0) ( 0 一 吨 3 0 )
20 6 吨
2o 0 吨 30 0 吨
50 O 吨
依 题 意得 2 2 0 ) 2 ( 4 = 5 + 8 3 0 ) 0( 4 一 + 5 一 O) 1x 1 ( 0 一 . 解 得 x 20 = 0.
图像略 . 鹱
嚣 t g % ~ F
2OO8。|2 l
小, 其调 运方 案如 表二 .
三 、 图 像 中 寻 找 有 用 信 息 在



0吨
2 0吨 4
2 0 吨 o
6 0吨
例 3 在平 面直 角 坐标 系 中 , 动 点 P( ) 从 ( , 出发 , 一 , ) , 10)
沿 由 A( 1 1 、 一 , 1 、 1 一 ) D( , 四点组 成 的正方 形 一 , ) B( l 一 ) C( , 1 、 1 1) 边 线 ( 图 1 按一 定方 向运 动 .图 2是 P点 运动 的路程 s与运 动时 如 )
蔬 菜 为 吨.
() 1 请填写下表, 并求两个蔬菜基地调运蔬菜的运费相等时 的值 ;



总 计
2 0吨 0

中考中的一次函数应用题求解策略

中考中的一次函数应用题求解策略

中考中的一次函数应用题求解策略一次函数试题的命题形式多样,从近几年的中考题来看,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶由形求式(单个函数图象、多个函数图象)。

⑷一次函数多种变量及其最值问题。

2 试题例析2.1方案设计问题⑴物资调运例1.(2008年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。

根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x 为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。

其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。

则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?⑵方案比较例2.(2008年盐城)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y (元)。

现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买方式如图2所示。

解答下列问题:⑴方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y 与x的函数关系式为,当x>100时,y与x的函数关系式为。

⑵如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由。

⑶甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?2.2分段函数问题⑴分段价格例3.(2008年襄樊第23题)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(3)求的值,并写出当x>10时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?⑵几何图形中的动点例4.(2008年长沙第25题)在平面直角坐标系中,一动点P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动。

求解一次函数应用题的方法初探

求解一次函数应用题的方法初探

② 解 不 等 式 组 , 3 ≤ 搬≤ 2 得 0 3。 因 为 是 整 数 , 以 只可 取 3 、13 , 应 的 所 O 3 、2 相 (0一 ) 值 是 2 、9 1。 5 的 0 1 、8 所 以, 生产的方案有三种 : 生产 A种产 品 3 件 , 0 B种产 品 2 o件 ; 生产 A种 产 品 3 件 , 1 B种 产品 l 9 件; 生产 A种产品 3 件 , 2 B种产 品 l 8件。 () 2设生产 A种产 品的件数是 , 则生产 口种产 品的件数是 5 。 0一 由题 意 , ,=70 得 , 0 x+10 (0一 = 一50 20 5 ) 0 x+ 6oo 其 中 只能 取 3 、13 ) oo ( 0 3 、2 。 因 为 一 0 0 50< , 所以 Y随 的增大而减小 。 所以当 =3 0时 , Y的值最大 。 因此 , () 按 1 中第一 种生产 方案 安排 生产 , 获得 的总利润最大 , 大的总利 润是 : 最 50 0 OO 4 00 元 ) 0 X3 +6OO= 50 ( 。 说明 : 本题是先利 用不等式 的知识 , 到几种 生 得

பைடு நூலகம்
直 译 法 直 译 法 即 为 将题 中 的 关 键 语 句 “ ” 代 数 式 , 译 成


然后找出函数关 系 , 出一次 函数解析式 , 而解决 列 从
问题的方法。
例 1 东风商场文具部 的某种 毛笔每支售 价 2 5 元, 书法练 习本每 本售价 5元 。该 商场 为促销 制定 了 甲、 乙两种优 惠办法 。 甲: 1 买 支毛笔就赠送 1 本书法练 习本 ; 乙 : 购买金额 的 9折付款 。 按 某校书法兴趣小组打算购买这种毛笔 1 , 0支 这 种 书 法 练 习 本 ( 1) 。 ≥ 0 本 () 1分别写 出按 甲、 乙两种优惠办法 实际付款金 额 , 元)y 元) , 甲( 、 乙( 与 之 间 的 函数 关 系 式 。 () 2 比较 购 买 不 同数 量 的 书 法 练 习 本 时 , 哪 种 按 优惠办法付款最省钱 。 () 3 如果商场允许 既可 以选择 一种 优惠 办法 购 买 , 可以用两种优 惠办 法购买 , 也 请你就购买这种 毛 笔 l 0支和这种书法练习本 6 本 设计一种最 省钱 的 0

一次函数应用题的解题方法

一次函数应用题的解题方法

一次函数应用题的解题方法一.使用直译法求解一次函数应用题所谓直译法就是将题中的关键语句“译”成代数式,然后找出函数关系、列出一次函数解析式,从而解决问题的方法;例题1.东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元;该商场为促销制定了甲、乙两种优惠办法;甲:买1支毛笔就赠送1本书法练习本;乙:按购买金额打9折付款;某校书法兴趣小组打算购买这种毛笔10支,这种书法练习本xx>=10本;1分别写出按甲、乙两种优惠办法实际付款金额y甲元、y乙元与x之间的函数关系式;2比较购买不同数量的书法练习本时,按哪种优惠办法付款最省钱;3如果商场允许既可以选择一种优惠办法购买,也可以用两种优惠办法购买,请你就购买这种毛笔10支和这种书法练习本60本设计一种最省钱的购买方案;分析:只需根据题意,按要求将文字语言翻译成符号语言,再列出一次函数关系式即可;解:1y甲=10×25+5x-10=5x+200x>=10y乙=10×25×+5××x=+225x>=102由1有:y甲-y乙=若y甲-y乙=0 解得x=50若y甲-y乙>0 解得x>50若y甲-y乙<0 解得x<50当购买50本书法练习本时,按两种优惠办法购买实际付款一样多,即可任选一种优惠办法付款;当购买本数不小于10且小于50时,选择甲种优惠办法付款省钱;当购买本数大于50时,选择乙种优惠办法付款省钱;3设按甲种优惠办法购买a0<=a<=10支毛笔,则获赠a本书法练习本;则需要按乙种优惠办法购买10-a支毛笔和60-a支书法练习本;总费用为y=25a+25××10-a+5××60-a=495-2a;故当a最大为10时,y最小;所以先按甲种优惠办法购买10支毛笔得到10本书法练习本,再按乙种优惠办法购买50本书法练习本,这样的购买方案最省钱;说明:本题属于“计算、比较、择优”型,它运用了一次函数、方程、不等式等知识,解决了最优方案的设计问题;二.使用列表法求解一次函数应用题列表法就是将题目中的各个量列成一个表格,从而理顺它们之间的数量关系,以便于从中找到函数关系的解题方法;例题2.某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品,共50件;已知:生产一件A种产品需用甲种原料9kg、乙种原料3kg,可获利润700元;生产一件B种产品需用甲种原料4kg、乙种原料10kg,可获利润1200元;1若安排A、B两种产品的生产,共有哪几种方案请你设计出来;2设生产A、B两种产品获得的总利润是y元,其中一种产品的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明1中的哪种生产方案可以获得最大总利润;最大的总利润是多少分析:本题中共出现了9个数据,其中涉及甲、乙两种原料的质量,生产A、B两种产品的总件数及两种产品所获得的利润等;为了清楚地整理题目所涉及的各种信息,我们可采用列表法;解:1设安排生产A种产品x件,则生产B种产品是50-x件产品每件产品需要甲种原料kg每件产品需要乙种原料kg每件产品利润元件数A 9 3 700 xB 4 10 1200 50-x根据题意得:解不等式组,得30<=X<=32因为x是整数,所以x只可取30、31、32,相应的50-x的值是20、19、18;所以,生产的方案有三种:生产A种产品30件,B种产品20件;生产A种产品31件,B种产品19件;生产A种产品32件,B种产品18件;2设生产A种产品的件数是x,则生产B种产品的件数是50-x;由题意得:y=700x+120050-x=-500x+60000其中x只能取30、31、32因为-500<0所以y随x的增大而减小,当x=30时,y的值最大因此,按1中第一种生产方案安排生产,获得的总利润最大最大的总利润是:-500×30+60000=45000元说明:本题是先利用不等式的知识,得到几种生产方案,再利用一次函数性质得出最佳生产方案;三.使用图示法求解一次函数应用题所谓图示法就是用图形来表示题中的数量关系,从而观察出函数关系的解题方法;此法对于某些一次函数问题非常有效,解题过程直观明了;例题3.某市的C县和D县上个月发生水灾,急需救灾物资10t和8t;该市的A县和B县伸出援助之手,分别募集到救灾物资12t和6t,全部赠给C县和D县;已知A、B两县运资到C、D两县的每吨物资的运费如下表所示:A县B县C县40 30D县50 801设B县运到C县的救灾物资为xt,求总运费w元关于xt的函数关系式,并指出x的取值范围;2求最低总运费,并说明总运费最低时的运送方案;分析:本题的信息量大,数据也较多,为梳理各个量之间的关系,我们可以采用如下的图示整理信息;解:(1)w=30x+806-x+4010-x+5012-10-x=-40x+980自变量x的取值范围是:0<=x<=62由1可知,总运费w随x的增大而减小,所以当x=6时,总运费最低;最低总运费为-40×6+980=740元;此时的运送方案是:把B县的6t全部运到C县,再从A县运4t到C县,A县余下的8t全部运到D县;说明:本题运用函数思想得出了总运费w与x的一次函数关系;一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x时,两车之间的距离为y千米,图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.1根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;2已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;3若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. 温馨提示:请画在答题卷相对应的图上2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y 人与售票时间x 分钟的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口规定每人只购一张票. 1求a 的值.2求售票到第60分钟时,售票听排队等候购票的旅客人数.3若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x h 后,与.B .港的距离....分别为1y 、2y km,1y 、2y 与x 的函数关系如图所示.1填空:A 、C 两港口间的距离为 km, a ; 2求图中点P 的坐标,并解释该点坐标所表示的实际意义;3若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完. ⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润此时如何分配加工时间5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地甲 乙小时)直达A 地,图16是甲、乙两车间的距离y 千米与乙车出发x 时的函数的部分图像 1A 、B 两地的距离是 千米,甲车出发 小时到达C 地;2求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;3乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y 升与行驶时间t 小时之间的关系如图所示.请根据图象回答下列问题:1汽车行驶 小时后加油,中途加油 升; 2求加油前油箱剩余油量y 与行驶时间t 的函数关系式;3已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用 请说明理由.170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. 1请你帮助学校设计所有可行的租车方案;2如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,为此,,商场所获利润w元利润=售价-进价1请分别求出y与x和w与x的函数表达式;2若商场决定购进每种家电不少于30台,则有几种进货方案若商场想获得最大利润,应该怎样安排进货若这100台家电全部售出,政府需要补贴多少元钱。

一次函数的应用题分类总结整理

一次函数的应用题分类总结整理

一、明确函数类型,利用待定系数法构建函数表达式;特点:所给问题中已经明确告知为一次函数....关系或者给出函数的图像为直线或直线的一部分时,就等于告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b ,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。

常见题型:销售问题中售价与销量之间常以表格形式给出的有规律的变化,蕴含着一次函数关系;行程问题中的路程与时间的关系常给出函数的图像(多是直线或折线);【典型例题赏析】1.(2010 江苏连云港)(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.售价…70 90 …x(元)销售…3000 1000 …量y(件)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?2.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回.图2是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图像。

(1)求甲车在行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇.求乙车的速度。

3.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶。

设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像。

【经典例题】一次函数讲解

【经典例题】一次函数讲解

自变量 x 的取值范围是 -3 ≤ x≤
6,相应函数值的取值范围是 -5
≤ y≤ -2 ,则这个函数的解析式

.
[ 分析 ] 本题分两种情况讨论: ①当 k>0 时,y 随 x 的增大而增大,
则有:当 x=-3 ,y=-5 ;当 x=6 时, y=-2 ,把它们代入 y=kx+b 中可得
5 3k b, 2 6k b,
∴当 3000≤ x≤5000 时,甲方案付款少,故采用甲方案.
③当 y 甲 >y 乙时,有 9x> 8x+5000,
∴ x> 5000.
∴.当 x> 500O时,乙方案付款少,故采用乙方案.
解法 2:图象法, 作出 y 甲=9x 和 y 乙=8x+5000 的函数图象, 如图 11
- 24 所示,由图象可得:当购买量大于或等于
y=kx(k 为常
数,且 k≠ 0) 即可.
解:( 1) y 是 x 的一次函数.
∵ y+a 与 x+b 是正比例函数, ∴设 y+a=k(x+b) ( k 为常数,且 k≠0) 整理得 y=kx+ (kb-a ). ∵ k≠ 0, k, a,b 为常数, ∴ y=kx+(kb-a) 是一次函数. ( 2)当 kb-a=0 ,即 a=kb 时, y 是 x 的正比例函数. 例 9 某移动通讯公司开设了两种通讯业务: “全球通”使用者先交 50 元月租费,然后每通话 1 分,再付电话费 0. 4 元;“神州行”使用 者不交月租费,每通话 1 分,付话费 0. 6 元(均指市内通话)若 1 个 月内通话 x 分,两种通讯方式的费用分别为 y1 元和 y 2 元. ( 1)写出 y 1, y 2 与 x 之间的关系; ( 2)一个月内通话多少分时,两种通讯方式的费用相同? ( 3)某人预计一个月内使用话费 200 元,则选择哪种通讯方式较 合算? [分析] 这是一道实际生活中的应用题,解题时必须对两种不同 的收费方式仔细分析、比较、计算,方可得出正确结论. 解:( 1) y1=50+0. 4x (其中 x ≥ 0,且 x 是整数) y 2=0. 6x(其中 x≥ 0,且 x 是整数) (2) ∵两种通讯费用相同, ∴ y 1=y2, 即 50+0. 4x=0. 6x. ∴ x= 250. ∴一个月内通话 250 分时,两种通讯方式的费用相同. ( 3)当 y 1=200 时,有 200=50+0. 4x, ∴ x=375(分). ∴“全球通”可通话 375 分. 当 y 2=200 时,有 200=0. 6x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数应用题的解题方法一.使用直译法求解一次函数应用题所谓直译法就是将题中的关键语句“译”成代数式,然后找出函数关系、列出一次函数解析式,从而解决问题的方法。

例题1.东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

该商场为促销制定了甲、乙两种优惠办法。

甲:买1支毛笔就赠送1本书法练习本;乙:按购买金额打9折付款。

某校书法兴趣小组打算购买这种毛笔10支,这种书法练习本x(x>=10)本。

(1)分别写出按甲、乙两种优惠办法实际付款金额y甲(元)、y乙(元)与x之间的函数关系式。

(2)比较购买不同数量的书法练习本时,按哪种优惠办法付款最省钱。

(3)如果商场允许既可以选择一种优惠办法购买,也可以用两种优惠办法购买,请你就购买这种毛笔10支和这种书法练习本60本设计一种最省钱的购买方案。

分析:只需根据题意,按要求将文字语言翻译成符号语言,再列出一次函数关系式即可。

解:(1)y甲=10×25+5(x-10)=5x+200(x>=10)y乙=10×25×0.9+5×0.9×x=4.5x+225(x>=10)(2)由(1)有:y甲-y乙=0.5x-25若y甲-y乙=0 解得x=50若y甲-y乙>0 解得x>50若y甲-y乙<0 解得x<50当购买50本书法练习本时,按两种优惠办法购买实际付款一样多,即可任选一种优惠办法付款;当购买本数不小于10且小于50时,选择甲种优惠办法付款省钱;当购买本数大于50时,选择乙种优惠办法付款省钱。

(3)设按甲种优惠办法购买a(0<=a<=10)支毛笔,则获赠a本书法练习本。

则需要按乙种优惠办法购买10-a支毛笔和(60-a)支书法练习本。

总费用为y=25a+25×0.9×(10-a)+5×0.9×(60-a)=495-2a。

故当a最大(为10)时,y最小。

所以先按甲种优惠办法购买10支毛笔得到10本书法练习本,再按乙种优惠办法购买50本书法练习本,这样的购买方案最省钱。

说明:本题属于“计算、比较、择优”型,它运用了一次函数、方程、不等式等知识,解决了最优方案的设计问题。

二.使用列表法求解一次函数应用题列表法就是将题目中的各个量列成一个表格,从而理顺它们之间的数量关系,以便于从中找到函数关系的解题方法。

例题2.某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B 两种产品,共50件。

已知:生产一件A种产品需用甲种原料9kg、乙种原料3kg,可获利润700元;生产一件B种产品需用甲种原料4kg、乙种原料10kg,可获利润1200元。

(1)若安排A、B两种产品的生产,共有哪几种方案?请你设计出来。

(2)设生产A、B两种产品获得的总利润是y元,其中一种产品的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案可以获得最大总利润。

最大的总利润是多少?分析:本题中共出现了9个数据,其中涉及甲、乙两种原料的质量,生产A、B两种产品的总件数及两种产品所获得的利润等。

为了清楚地整理题目所涉及的各种信息,我们可采用列表法。

解:(1)设安排生产A种产品x件,则生产B种产品是(50-x)件产品每件产品需要甲种原料(kg)每件产品需要乙种原料(kg)每件产品利润(元)件数A 9 3 700 xB 4 10 1200 50-x根据题意得:解不等式组,得30<=X<=32因为x是整数,所以x只可取30、31、32,相应的(50-x)的值是20、19、18。

所以,生产的方案有三种:生产A种产品30件,B种产品20件;生产A种产品31件,B种产品19件;生产A种产品32件,B种产品18件。

(2)设生产A种产品的件数是x,则生产B种产品的件数是50-x。

由题意得:y=700x+1200*(50-x)=-500x+60000(其中x只能取30、31、32)因为-500<0所以y随x的增大而减小,当x=30时,y的值最大因此,按(1)中第一种生产方案安排生产,获得的总利润最大最大的总利润是:-500×30+60000=45000(元)说明:本题是先利用不等式的知识,得到几种生产方案,再利用一次函数性质得出最佳生产方案。

三.使用图示法求解一次函数应用题所谓图示法就是用图形来表示题中的数量关系,从而观察出函数关系的解题方法。

此法对于某些一次函数问题非常有效,解题过程直观明了。

例题3.某市的C县和D县上个月发生水灾,急需救灾物资10t和8t。

该市的A县和B县伸出援助之手,分别募集到救灾物资12t和6t,全部赠给C县和D县。

已知A、B两县运资到C、D两县的每吨物资的运费如下表所示:A县B县C县40 30D县50 80(1)设B县运到C县的救灾物资为xt,求总运费w(元)关于x(t)的函数关系式,并指出x的取值围;(2)求最低总运费,并说明总运费最低时的运送方案。

分析:本题的信息量大,数据也较多,为梳理各个量之间的关系,我们可以采用如下的图示整理信息。

解:(1)w=30x+80(6-x)+40(10-x)+50[12-(10-x)]=-40x+980 自变量x的取值围是:0<=x<=6(2)由(1)可知,总运费w随x的增大而减小,所以当x=6时,总运费最低。

最低总运费为-40×6+980=740(元)。

此时的运送方案是:把B县的6t全部运到C县,再从A县运4t到C县,A县余下的8t全部运到D县。

说明:本题运用函数思想得出了总运费w与x的一次函数关系。

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? ⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?甲 乙小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行,乙车每辆最多能载30人和20件行.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴为此,商场所获利润w 元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。

相关文档
最新文档