理论力学-平面汇交力系和平面力偶理论

合集下载

第二章平面汇交力系及平面力偶系

第二章平面汇交力系及平面力偶系
一、几何法合成(作图法)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至

终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基

第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα


Fy=a’ b’= - Fcosα

静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)

理论力学23-平面汇交力系与平面力偶系

理论力学23-平面汇交力系与平面力偶系

平衡方程的解法
通过代入法或消元法求解 平衡方程,得到各个力的 具体数值。
平面汇交力系的实例分析
实例一
分析一个固定在墙上的梯子的受力情 况,梯子受到的重力和人对梯子的推 力在同一直线上,可以合成一个合力 ,合力方向与重力方向相反。
实例二
分析一个水平放置的杠杆的受力情况 ,杠杆受到的重力和人对杠杆的压力 在同一直线上,可以合成一个合力, 合力方向与重力方向相反。
理论力学23-平面汇交力 系与平面力偶系
目录 CONTENT
• 平面汇交力系 • 平面力偶系 • 平面汇交力系与平面力偶系的联
系 • 习题与解答 • 总结与展望
01
平面汇交力系
平面汇交力系的合成
1 2
平面汇交力系合成的基本原理
根据力的平行四边形法则,将两个或多个力合成 一个合力。
力的三角形法则
解答4
根据力矩的平行四边形法则, 求出平面力偶系的总力矩。
05
总结与展望
总结
定义:作用在物体上的力,其作用线都在同一平面内且相交于一点。 平衡条件:合力为零。
总结
• 解题方法:利用力的合成与分解,将汇交力系简化为单一 的力或力的合成。
总结
定义
作用在物体上的力偶,其力偶矩 矢量都在同一平面内。
04
习题与解答
习题
题目1
题目2
题目3
题目4
求平面汇交力系的合力
求平面汇交力系的合力 矩
求平面力偶系的合力矩
求平面力偶系的总力矩
解答
01
02
03
04
解答1
根据力的平行四边形法则,求 出平面汇交力系的合力大小和
方向。
解答2
根据合力矩定理,求出平面汇 交力系的合力矩。

平面汇交力系和平面力偶系

平面汇交力系和平面力偶系

平面汇交力系和平面力偶系
平面汇交力系和平面力偶系是平面力学中的两个重要概念。

平面汇交力系是指各力的作用线在同一平面内且汇交于一点的力系。

在平面汇交力系中,力的大小和方向可以通过力的矢量表示。

平面汇交力系的合成可以通过力的多边形法则来进行,即将各个力按照首尾相接的顺序连接起来,形成一个封闭的多边形,合力则为这个多边形的封闭矢量。

平面力偶系是指由若干个力偶组成的力系,其中力偶是由大小相等、方向相反且不共线的两个力组成的力矩对。

在平面力偶系中,力偶的作用效果是产生旋转,而不是平移。

平面力偶系的合成可以通过力偶矩的代数和来进行。

平面汇交力系和平面力偶系在工程和物理学中有广泛的应用。

在结构分析、机械设计和力学问题中,常常需要考虑和分析平面汇交力系和平面力偶系的作用效果。

总的来说,平面汇交力系和平面力偶系是平面力学中的重要概念,它们的合成和平衡条件对于理解和解决平面力学问题至关重要。

第二章-1 平面汇交力系与平面力偶系

第二章-1  平面汇交力系与平面力偶系

第二章-1 平面汇交力系与平面力偶系一、判别题(正确和是用√,错误和否×,填入括号内。

)2-1 平面汇交力系平衡的充分与必要的几何条件是:力多边形自行封闭。

(√)2-2 力在某一固定面上的投影是一个代数量。

(×)2-3 两个力F1、F2大小相等,则它们在同一轴上的投影也相等。

(×)2-4 一个力不可能分解为一个力偶;一个力偶也不可能合成一个力。

(√)2-5 力偶无合力、不能用一个力来等袒代替,也不能用一个力来平衡;(√)2-6 力偶无合力,也就是说力偶的合力等于零。

(×)2-7 力偶矩和力对点之矩本质上是二样的,讲的是一回事。

(×)2-8 力偶的作用效果取决于力偶矩的大小和转向。

(√)2-9 只要两力偶的力偶矩代数值相等,就是等效力偶。

(√)2-10 力偶中的两个力对同平面内任一点之矩的代数和等于力偶矩。

(√)2-11 力偶只能用力偶来平衡。

(√)2-12 平面力偶系可简化为一个合力偶。

(√)2-13 力偶可任意改变力的大小和力偶臂的长短。

(×)2-14 力偶的两力在其作用面内任意轴上的投影的代数和都等于零。

(√)2-15 若两个力F1、F2在同一轴上的投影相等,则这两个力相等,即F1 = F2。

(×)2-16 若两个力F1、F2大小相等,则在同一轴Ox上投影相等,即F1x = F2x。

(×)2-17 若两个力F1、F2大小、方向、作用点完全相同,则这两个力在任一轴上的投影相等。

(√)2-18 若两个力大小相等、方向相反,则在任一轴Ox上的投影大小相等。

(√)2-19 若两个力平行,则它们在任一轴上的投影相等。

(×)2-20 若两个力在某轴上的投影均为零,则该两力平行。

(√)2-21 图示为分别作用在刚体上A、B、C、D点的4个共面力,它们所构成的力多边形自行封闭且为平行四边形。

由于力多边形自行封闭,所以是平衡的。

理论力学第二章汇交力系与平面力偶系

理论力学第二章汇交力系与平面力偶系

FBC= 224.23 kN 代入(3)、(4)解得
tan θ = 1.631 , θ = 58.5°
FA= 303.29 kN
y
FBC
FD
C
45°
30°
x
W2
y
FA
θB
x
45°
W1 F'BC
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
投影法的符号法则: 当由平衡方程求得某一未知力的值
y
FBC
B 30°
x
FAB
FD 30° W
b
联立求解,得
FAB= -54.5kN , FBC= 74.5kN
反力FAB为负值,说明该力实际指向与图上假定指向相反。 即杆AB实际上受拉力。
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
例2–5 如图已知W1=100 kN, W2=250 kN。不计各
Fx F cos
Fy
Fy F cos
O 2、力在空间直角坐标轴上的投影:
F
Fx x
一次投影法:
Z
Fx F cos Fy F cos
F
O
y
FZ F cos
第二章 汇交力系与平面力偶系
x
★§2–2 空间汇交力系的合成与平衡 二次投影法:
已知力F 和某一平面(oxy)的夹
角为θ,又已知力F 在该平面
杆自重,A,B,C,D各点均为光滑铰链。试求平衡状
态下杆AB内力及与水平的夹角。
A
θB
D
W1
45° C
30°
W2 第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡

第二章:平面汇交力系与平面力偶系

第二章:平面汇交力系与平面力偶系

第二章平面汇交力系与平面力偶系一、要求1、掌握平面汇交力系合成(分解)的几何法。

能应用平衡的几何条件求解平面汇交力系的平衡问题。

2、能正确地将力沿坐标轴分解和求力在坐标轴上的投影。

对合力投影定理应有清晰的理解。

3、能熟练地运用平衡方程求解平面汇交力系的平衡问题。

4、对于力对点的矩应有清晰的理解,并能熟练地计算。

5、深入理解力偶和力偶矩的概念。

明确平面力偶的性质和平面力偶的等效条件。

6、掌握平面力偶系的合成方法,能应用平衡条件求解力偶系的平衡问题。

二、重点、难点1、 力在坐标轴上的投影,合力投影定理,平面汇交力系的平衡条件及求解平衡问题的解析法。

2、 力对点之矩的计算,力偶矩的概念,平面力偶性质和力偶等效条件。

三、学习指导平面汇交力系合成的结果是一个合力,合力作用线通过力系的汇交点,合力的大小和方向等于力系的矢量和,即∑==+⋅⋅⋅⋅⋅⋅++=ni i n F F F F R 121或简化为∑=F R上式是平面矢量方程,只可以求解两个未知数。

每一个力都有大小和方向两个要素(因为力的汇交点是已知的),因此,方程中只能有两个要素是未知的。

矢量方程的解法有:几何法和解析法。

只有力沿直角坐标轴分解的平行四边形才是矩形。

力在轴上投影的大小等于分力的大小,投影的正负表示分力沿坐标轴的方向。

平面汇交力系平衡的必要和充分条件是力系的合力为零。

即∑R=F这个平面的矢量方程可解两个未知数,解法有几何法和解析法。

(1)平衡的几何条件:平面汇交力系的力多边形封闭。

(2)平衡的解析条件:平面汇交力系的各分力在两个坐标轴上投影的代数和分别等于零即:∑=0YX;∑=0对于平衡方程,和平面汇交力系合成与分解的解析法一样,一般也选直角坐标系。

但在特殊情况下,有时选两个相交的相互不垂直的坐标轴,可使问题的求解简化。

这是因为平衡时合力恒等于零,合力在任一坐标轴的投影也恒等于零,所以,不一定局限在直角坐标系。

合力投影定理与合力矩定理是结构静力计算经常要用到的两个定理。

第2章平面汇交力系与平面力偶系

第2章平面汇交力系与平面力偶系
FBA
FBC
FAB
A
' F' FBA BC
B B
B
P
C
F2 F1
C
FCB
解:
y
FBA F2
600
300
(1) 取滑轮为研究对象,将其视为 一个几何点。受力如图所示。
其中 F1= F2 =P = 20 kN (2)选取图示坐标系。列方程
B
FBC
F1
x
X 0, Y 0,
FBA F1cos600 F2cos300 0 FBC F1cos300 F2cos600 0
解:(1)取碾子为研究对 象。 画受力图。
F
F
O B
O B
FB
P
P
A FA
A
(2)根据力系平衡的几何条件,作封闭的力多边形。
按比例,先画已知力,各力矢首位相接。
FB
a.从图中按比例量得
FA=11.4 kN , FB=10 kN 5 kN
FA
0

P
b.也可由几何关系计算
Rh cos 0.866 R
即:若作用在刚体上 {F1 , F2 ,, Fn } {FR }
则:
M O ( FR ) MO (Fi )
i 1
n
在古代,人们没有大型的 起重工具,只能依靠人力和畜力 。在建造宏伟的建筑物时,为了 将巨大的石柱竖立起来,可能采 用了右图所示的方法。其中起关 键作用的是用木材作成的 A 字形 支架。试从力学角度说明采用此 项措施的必要性。
P
解: 取梁为研究对象。 画受力图。
注意:这里所设力 FA 的方向与 实际方向相反。
解:取横梁为研究对象。画受力图。 建立图示直角坐标系。 由平面汇交力系的平衡条件列方程

平面汇交及平面任意力系力系与平面力偶理论

平面汇交及平面任意力系力系与平面力偶理论
感谢您的观看
分析平面汇交力系时,通常采用合成法或解析法,通过力 的合成或分解,将复杂力系简化为单一的等效力或等效力 矩,以便于求解。
实例:一个固定在墙上的挂钩受到三个拉力作用,这三个 拉力作用线在同一平面上且相互汇交。通过力的合成法, 可以求出该挂钩受到的总拉力。
平面任意力系实例分析
平面任意力系是指各力作用线在同一平 面内的任意方向的力系。在实际生活中, 这种力系也比较常见,比如固定在地面 上的汽车所受到的重力和地面支持力的
通过三个矩心和三个矩,建立平面任意力系的平衡方程。
03 平面力偶理论
力偶的概念和性质
力偶
由两个大小相等、方向相反且不 在同一直线上的力组成的力系。
力偶的性质
力偶不能改变力的作用点,只能改 变力的方向,且力偶对刚体的转动 效应与力的大小和力臂的乘积成正 比。
力偶矩
描述力偶对刚体转动效应的物理量, 等于力的大小与力臂的乘积。
合成的步骤
首先确定各力的方向和大小,然后根据力的 平行四边形法则,通过作出的两个力和合力 的关系的平行四边形,求出合力的大小和方 向。
合成平面汇交力系时,应遵循力的平行四 边形法则,即以两个力为邻边作出的平行 四边形,其对角线代表这两个力的合力。
平面汇交力系的平衡条件
平衡状态的概念
在平面汇交力系中,物体处于平 衡状态是指物体保持静止或匀速
力偶的合成与平衡
力偶合成
两个或多个力偶可以合成 一个合力偶,合力偶的矩 等于各分力偶矩的代数和。
力偶平衡
当一个刚体受到的各力偶 矩的代数和为零时,该刚 体处于平衡状态。
平衡条件
对于平面任意力系,若存 在一个合力为零且合力矩 也为零的平衡状态,则该 平面任意力系平衡。

理论力学第二章平面汇交力系与平面力偶系

理论力学第二章平面汇交力系与平面力偶系
FR FRx 2 FRy 2
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0

Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg

m o (Q ) Q l
[例P28 2-4,习题P38 2-10]

[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4

Y

i
i

理论力学第二章 平面汇交力系与平面力偶系

理论力学第二章  平面汇交力系与平面力偶系

理论力学第二章 平面汇交力系与平面力偶系平面汇交力系与平面力偶系是两种简单力系,是研究复杂力系的基础。

本章将分别用几何法与解析法研究平面汇交力系的合成与平衡问题,同时介绍平面力偶的基本特性及平面力偶系合成与平衡问题。

§2-1 平面汇交力系合成与平衡的几何法平面汇交力系是指各力的作用线都在同一平面内且汇交于一 点的力系。

1.平面汇交力系合成的几何法、力多边形规则设一刚体受到平面汇交力系 1F , 2F , 3F , 4F 的作用,各力作用线汇交于点A ,根据刚体内部力的可传性,可将各力沿其作用线移至汇交点A ,如图2-la 所示。

为合成此力系,可根据力的平行四边形规则,逐步两两合成各力,最后求得一个通过汇交点A 的合力R F ;还可以用更简便的方法求此合力R F 的大小与方向。

任取一点a ,先作力三角形求出1F 与2F 的合力大小与方向R1F ,再作力三角形合成R1F 与3F 得R2F ,最后合成R2F 与4F 得R F ,如图2-lb 所示。

多边形abcde 称为此平面汇交力系的力多边形,矢量ae 称此力多边形的封闭边。

封闭边矢量ae 即表示此平面汇交力系合力R F 的大小与方向(即合力矢),而合力的作用线仍应通过原汇交点A ,如图2-la 所示的R F 。

必须注意,此力多边形的矢序规则为:各分力的矢量沿着环绕力多边形边界的同一方向首尾相接。

由此组成的力多边形abcde 有一缺口,故称为不封闭的力多边形,而合力矢则应沿相反方向连接此缺口,构成力多边形的封闭边。

多边形规则是一般矢量相加(几何和)的几何解释。

根据矢量相加的交换律,任意变换各分力矢的作图次序,可得形状不同的力多边形,但其合力矢仍然不变,如图2-lc 所示。

总之,平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和(几何和),合力的作用线通过汇交点。

设平面汇交力系包含n 个力,以R F 表示它们的合力矢,则有RF =1F +2F +…+nF =∑=n1i iF(2-1)合力R F 对刚体的作用与原力系对该刚体的作用等效。

第二三章 平面汇交及平面任意力系力系与平面力偶理论

第二三章    平面汇交及平面任意力系力系与平面力偶理论

=
=
=
33
结论:
M m1 m2 mn mi
i 1
n
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩 的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和 等于零。

mi 0
i 1
n
34
[例]
在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为
20
例3 求图3-6所示各分布荷载对A点的矩。
21
解:沿直线平行分布的线荷载可以合成为一个合力。合力的方 向与分布荷载的方向相同,合力作用线通过荷载图的重心,其合 力的大小等于荷载图的面积。 根据合力矩定理可知,分布荷载对某点之矩就等于其合力对该 点之矩 (1)计算图3-6(a)三角形分布荷载对A点的力矩
40N 0.4m 0.4m 60N 0.6m
推论
M=24N.m
60N
a)力偶可以在刚体内任意移转。即力偶矩矢M的作 用点可以在平面上任意移动,力偶矩矢是自由矢。 b)在保持力偶矩不变的情况下,可以任意改变力和 力臂的大小。 由此即可方便地进行力偶的合成。
28
c)平面力偶系的合成
h1 h2
h1
F1 F2
FR'
FR
力?
O
h=M0/FR
M0
A
42
y
FR h
O
FR'
x
讨论1 平面一般力系简化的最终结果
情况 向O点简化的结果 分类 主矢FR' 主矩MO
1 2 3 4 FR’=0 FR'=0 FR0 FR‘0 MO=0 MO0 MO=0 MO0
MO
力系简化的最终结果 (与简化中心无关)

第2章 平面汇交力系与平面力偶理论

第2章 平面汇交力系与平面力偶理论
且在同一平面内,由平面力偶系的合成理论.其合力偶矩为
式中,负号表示合力偶的转向为顺时针方向转动。
欲求作用在A、B处的水平力,应以工件为研究对象,受力分析如图 2—13所示,由于工件在水平面内受四个力偶和两个螺栓的水平反力 的作用下而平衡。因为力偶只能与力偶平衡,故两个螺栓的水平反 力N一和jv”必然组成一个力偶。由平面力偶系的平衡方程
二、平面汇交力系合成与平衡的解析法
根据合力投影定理,可计算出合力R的投影Rx和Ry
合力R与x轴正向间的夹角为
平面汇交力系平衡的充要条件是该力系的合力R等于0,则有
上式成立,必须同时满足
平面汇交力系解析法平衡的必要与充分条件是:力系中所有 各力在两个坐标轴上投影的代数和分别等于零。
例2-2 图2-5(a)所示圆柱体A重Q,在中心上系着两条绳AB和 AC,并分别经过滑轮B和C,两端分别挂重为P和2P的重物,试 求平衡时绳AC和水平线所构成的角α及D处的约束反力。 解 选圆柱为研究对象,取分离体画受
(2)作用在同一平面内的两个力偶,只要它的力偶矩的大 小相等、转向相同,则该两个力偶彼此等效。这就是平面力 偶的等效定理。
定理的推论
(1)力偶可以在其作用面内任意移动,而不影响它对 刚体的作用效应。 (2)只要保持力偶矩大小和转向不变,可以任意改变 力偶中力的大小和相应力偶臂的长短。而不改变它 对刚体的作用效应 上述推论表明,在研究同一平面内有关力偶问题时, 只需考虑力偶矩的代数值,而不必研究其中力的大 小和力偶臂的长短。
从而解得
所以
例 图a 所示结构中,各构件自重不计。在构件AB 上作用1力 偶矩为M 的力偶,求支座A 和C 的约束力。
解(1)BC为二力杆: F c= −F B(图c) (2)研究对象AB,受力如图b 所示, F AFB' 构成力偶, 则

静力学第二章平面汇交力系与力偶系

静力学第二章平面汇交力系与力偶系

请思考:力矩和力偶矩的异同?
力偶矩:度量力偶对物体转动效应 的量。记作:M(F, F′)或M
A
F C d F′
M Fd
力偶矩正负号规定:
逆时针转动为正,反之为负
B
力偶矩正负号意义:表示力偶转向
请思考:平面(内)力偶等效的条件?
力偶矩大小相等、转动方向相同
平面力偶的性质
性质1 : 力偶无合力,即FR=0
第二章 平面汇交力系与平面力偶系
本章重点:
1、平面汇交力系(几何法、解析法)
2、力偶的概念
3、平面力偶系
§2-1 平面汇交力系
汇交力系:所有力的作用线
汇交于一点的力系。
共点力系:所有力的作用点为同一点的力系。
平面汇交力系合成—几何法
力多边形
平面汇交力系平衡—几何法
平衡几何条件:汇交力系的力多边形自行封闭。
平面力偶系的简化结果: Mo
平面力偶系的平衡条件:Mo = 0
平衡方程:
M
0
例5 图中M, r 均为已知, 且 l=2r, 各杆自重不计。
求:C 处的约束力。
解:取 BDC 为研究对象
作出受力图 由力偶理论,知 FB = FC M 0
2 2 FB r FB 2r M 0 2 2 注意:计算(FB,FC )的力偶矩
性质2 : 力偶作用效应只与力偶矩有关 性质3 : 力偶只能与力偶矩相等的另一力偶等效 性质4 : 力偶对其作用面上任一点的矩等于力偶矩
F

F

F
F´ F/2
(d)
F´/ 2
只要保持力偶矩不变,力偶必等效
F

M
M
M

《理论力学》平面汇交力系与平面力偶系

《理论力学》平面汇交力系与平面力偶系

n
MO (F R ) MO (F i )
i 1
y
(2) 力矩的解析表达式
MO (F ) xF sinq yF cosq
xFy yFx
y
Fy
A Ox
F
q
Fx x
例1 已知F=1400 N, r=60 mm, a=20°,求力Fn对O点的矩。
Ft
Fn
Fn
Fr
MO(F) F h Fr cos 78.93 N m MO (F) MO (F r ) MO (F t ) MO (F t ) F cos r
M Fd (F3 F4 )d F3d F4d M1 M 2
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
Fi 0
在平衡的情形下,力多边形中最后一力的 终点与第一力的起点重合,此时的力多边形称 为封闭的力多边形。于是,平面汇交力系平衡 的必要与充分条件是:该力系的力多边形自行 封闭,这是平衡的几何条件。
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
Fxi 0 Fyi 0
平面汇交力系平衡的必要和充分条件是:各力在 作用面内两个任选的坐标轴上投影的代数和等于零。 上式称为平面汇交力系的平衡方程。
[例2] 已知 P=2kN 求SCD , RA
解: 1. 取AB杆为研究对象
2. 画AB的受力图
3. 列平衡方程
X 0 RAcos SCDcos4500 Y 0 PRA sin SCD sin450 0
第2章
平面汇交力系 与平面力偶系
2.1 平面汇交力系合成与平衡的几何法
2.1.1 平面汇交力系合成的几何法、力多边形法则

理论力学第二章平面汇交力系与平面力偶系思维导图

理论力学第二章平面汇交力系与平面力偶系思维导图

①掌握力偶、力偶矩的基本概念及其力偶的基本性质。

力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。

一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。

只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。

特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。

由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。

力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。

合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。

平面汇交力系和力偶系

平面汇交力系和力偶系
FRx = ∑Fxi = F1 cos 30o − F2 cos 60o − F3 cos 45o + F4 cos 45o = 200 × 0.866 − 300 × 0.5 −100 × 0.707 + 250 × 0.707 = 129. 3 N
y
FRy = ∑Fyi
= F1 cos 60o + F2 cos 30o − F3 cos 45o − F4 cos 45o
R = 0. 6 m
F B O
R P A h
h = 0. 08 m
F O α P
FB
α
解:以碾子为研究对象, 以碾子为研究对象,
FB
FA
FA
P F
碾子受平面汇交力系作用, 碾子受平面汇交力系作用,处于平衡状态
(1)由碾子的平衡条件,力的多边形应自行封闭 )由碾子的平衡条件,
R − h 0.6 − 0.08 cosα = = = 0.866 R 0.6
x
i
Fx
力矢的大小: 力矢的大小 F = Fx + Fy
2
2
F cos F, i = x 力矢的方向余弦: 力矢的方向余弦 F
( )
cos F, j =
( )
Fy F
3. 平面汇交力系合成的解析法 合力投影定理:合力在任一轴上的投影等于各分力 合力投影定理: 在同一轴上投影的代数和
FRx = Fx1 + Fx2 + ⋯+ Fx n = ∑Fxi
x y
=0 =0
注意: 此方程组包含两个独立的方程, 注意: 此方程组包含两个独立的方程, 只可以求解两个未知量。 只可以求解两个未知量。
例题 A D

山东大学《理论力学》教案第2章 平面汇交力系与平面力偶系

山东大学《理论力学》教案第2章  平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系一、目的要求1.平面汇交力系(多个力)合成与平衡的几何法,并能应用平衡的几何条件求解平面汇交力系的平衡问题。

2.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解,掌握汇交力系合成的解析法和平衡方程,并能熟练的应用平衡方程求解汇交力系的平衡问题。

3. 理解力对点之矩的概念,并能熟练地计算。

4.深入理解力偶和力偶矩的概念,明确平面力偶的性质和平面力偶的等效条件。

二、基本内容1.平面汇交力系合成的几何法·力多边形法则平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。

即∑==+++=n i i 11F F F F F n 2R 或 ∑=F F R合力R F 的大小和方向可用力三角形法则或力多边形法则得到。

作出图示首尾相接的开口的力多边形,封闭边矢量即所求的合力。

2.平面汇交力系平衡的几何条件平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

其矢量表达式为∑==0F F R (2-2) 力系平衡的几何条件是:力系的力多边形自行封闭。

如图2-4所示。

3.力在正交坐标轴系的投影与力的解析表达式力F 在y x ,轴上的投影分别为cos cos sin x y F F F F F αβα=⎫⎪⎬==⎪⎭力的投影是代数量。

4.平面汇交力系合成的解析法合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。

平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。

即00x y F F ⎫=⎪⎬=⎪⎭∑∑ 两个独立的平衡方程,可解两个未知量。

5.平面内的力对点O 之矩是代数量,记为M o (F )ABO Fh M o ∆±=±=2)(F其中F 为力的大小,h 为力臂,∆ABO 为力矢AB 与矩心O 组成三角形的面积。

一般以逆时针转向为正,反之为负。

力矩的解析表达式为: 合力矩定理: 6.力偶和力偶矩:·大小相等,方向相反,作用线平行的两个力称为力偶。

理论力学第二章

理论力学第二章

T
T1
T2
二、平面汇交力系合成的几何法
设有一个平面汇交力系 F1、F2、F3、F4作用于汇交点,如图2-1a
所示。我们可以依次地应用力三角形法则来求该平面汇交力系的
合力。即先将力 F1与 F2合成为一个力 FR1,再将力FR1与F3 合成 为一个力 FR2,最后将力FR2 与F4合成,即得该平面汇交力系的合 力 FR ,且合力的作用线通过汇交点,如图2-1b所示。
第二章 平面汇交力系和平面力偶系
2.1 平面汇交力系合成与平衡的几何法 2.2 平面汇交力系合成与平衡的解析法 2.3 平面力对点之矩的概念与计算 2.4 平面力偶
武汉大学出版社
1
§2-1 平面汇交力系合成与平衡的几何法
一.平面汇交力系的概念
平面汇交力系:各力在同一平面内,作用线交于一
点的力系。
例:起重机的挂钩。
例2-3
已知:图示平面共点力系; 求:此力系的合力.
解:用解析法
FRx
F ix

F1
cos 30

F2
cos 60

F3
cos 45

F4
cos 45
129.3N
FRy
F iy

F1
sin
30

F2
sin
60

F3
sin
45

F4
sin
45
112.3N
FR
FCA AC 1 P AB
FCB BC 1 P AB 2
图2-2
解得
FCA 10 kN, FCB 5 kN
也可给P一定比例,量出FCA和FCB的大小,如取比例尺为1cm=5kN,作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档