初一数学完全平方及平方差公式的应用

合集下载

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。

本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。

首先,我们来了解一下平方差公式。

平方差公式的表达形式为a² - b² = (a + b)(a - b)。

简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。

这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。

那么,我们来看一个应用平方差公式的例子。

假设我们需要将x² - 4x + 4进行因式分解。

我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。

根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。

通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。

接下来,我们将介绍完全平方公式。

完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。

它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。

与平方差公式类似,完全平方公式也可以在解题过程中提供方便。

我们来看一个应用完全平方公式的例子。

假设我们需要将x² + 6x + 9进行因式分解。

根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。

带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。

通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。

在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。

完全平方公式和平方差公式的应用

完全平方公式和平方差公式的应用

完全平方公式和平方差公式的应用公式:语言叙述:两数的。

公式结构特点:左边:右边:熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

(5+6x)(5-6x)中是公式中的a,是公式中的b(5+6x)(-5+6x)中是公式中的a,是公式中的b(x-2y)(x+2y)填空:1、(2x-1)( )=4x2-12、(-4x+ )( -4x)=16x2-49y2第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)第二种情况:运用公式使计算简便1、1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 . 。

公式结构特点:左边: 右边:熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

公式变形1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2= 一、计算下列各题: 1、2)(y x + 2、2)23(y x - 3、2)21(b a + 4、2)12(--t5、2)313(c ab +-6、2)2332(y x +7、2)121(-x 8、(0.02x+0.1y)2二、利用完全平方公式计算: (1)1022 (2)1972三、计算: (1)22)3(x x -+ (2)22)(y x y +-(3)()()2()x y x y x y --+-四、计算:(1))4)(1()3)(3(+---+a a a a (2)22)1()1(--+xy xy(3))4)(12(3)32(2+--+a a a五、计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x(3))3)(3(+---b a b a (4)()()2323x y z x y z +-++六、拓展延伸 巩固提高 1、若22)2(4+=++x k x x,求k 值。

平方差公式与完全平方公式应用中易犯错误分析

平方差公式与完全平方公式应用中易犯错误分析

平方差公式与完全平方公式应用中易犯错误分析在初中数学中,学生易犯的错误很多,下面我就平方差公式与完全平方公式的计算来分析一下学生出现错误的原因,并且进一步总结反思。

许多学生由于对两个公式结构特点理解不清楚,计算时往往出现这样那样的错误。

一、我们将这些常出现的错误总结出来,进行分析。

1、平方差与完全平方公式混淆1)( x – 3y)2 = x2 - 9y22)( 2x + 3y)2 = 4x2 + 9y2错因:这两个式子都是完全平方公式,应等于它们的平方和,加上(或减去)它们的积的2倍。

正确解法:1、22222(x-3y)23(3)69x x y y x xy y=-+=-+2、22222(23)(2)223(3)4129x y x x y y x xy y+=++=-+2、平方差公式结构特点模糊( m + 3n ) ( -m - 3n ) = m2 - 9n2错因:平方差公式左边必须是两式中一项相同,一项互为相反数。

m+ 3n 与-m - 3n两项都互为相反数,此题不能用平方差公式。

应用完全平方公式。

正确解法:2 2222( m + 3n ) ( -m - 3n ) =(m+3n)[-(m+3n)]=-(m+3n) [23(3)]69m m n n m mn n=-++=---3、公式计算中项的概念不够明确,漏掉系数( 2x + y ) ( 2x – y ) = 2x2 - y2错因:式子在计算中都没有明确“项”的概念,包括字母前面的系数,因此在平方时漏掉了系数。

应是2x与y这两项的平方差。

正确解法:2222x y x y-=-( 2x + y ) ( 2x - y ) =(2)44、公式中的符号错误1)( -a + b )2 = a2 + 2ab + b22)( -a – b )2 = a2 - 2ab - b2错因:公式中各项的符号特点及公式右边各项与公式左边两项的的关系理解模糊,出现了符号错误。

完全平方公式和平方差公式有哪些

完全平方公式和平方差公式有哪些

完全平方公式和平方差公式有哪些完全平方公式和平方差公式是数学中常用的公式,它们在解决一些与平方数相关的问题时发挥着重要的作用。

下面将详细介绍完全平方公式和平方差公式的定义和应用。

一、完全平方公式完全平方公式是指将一个二次多项式转化为一个完全平方式表示的公式。

二次多项式可以写成\[a^2 + 2ab + b^2 = (a + b)^2\]其中,a和b可以是任意实数。

完全平方公式通过将二次多项式写成一个完全平方式的形式,可以方便地进行运算和化简。

完全平方公式的应用十分广泛,特别是在因式分解与整式运算、解二次方程、求函数的最值等方面,其作用不可忽视。

二、平方差公式平方差公式是指将两个数的平方差表示为一个因式的形式的公式。

平方差公式有两种常见形式:1. \(a^2 - b^2 = (a + b)(a - b)\)其中,a和b可以是任意实数。

平方差公式可以应用于因式分解、整式运算等问题的解答。

2. \(a^2 + b^2 = (a + bi)(a - bi)\)其中,a和b表示实数,i为虚数单位。

当b不为0时,该公式可以应用于复数运算,如复数的乘法和除法。

当b为0时,该公式可以用于判定一个实数是否为一个复数的平方。

平方差公式的广泛应用使得解决与平方数相关的问题变得更加简便。

总结:完全平方公式和平方差公式是数学中常用的公式,它们在解决与平方数相关的问题时发挥着重要作用。

完全平方公式将二次多项式转化为完全平方式,便于运算和化简;平方差公式通过将平方差表示为因式的形式,方便因式分解、整式运算和复数运算等问题的解答。

这些公式的应用广泛,对于学习和应用数学都至关重要。

在实际问题中,我们可以根据具体情况选择合适的公式来解决与平方数相关的问题。

熟练掌握完全平方公式和平方差公式的定义、应用和证明,将会极大地提高我们在数学领域的能力和解题技巧。

通过不断的练习和实践,我们可以更好地理解和运用这些公式,为解决更复杂的数学问题打下坚实的基础。

初一奥数专题讲义——完全平方公式与平方差公式

初一奥数专题讲义——完全平方公式与平方差公式

完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。

二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。

例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。

例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。

6.已知a+1a=5,则=4221a a a ++=_____。

7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式与完全平方公式(a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平方差公式的应用:例1、利用平方差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平方公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平方公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:试一试:计算:123456789×123456787-1234567882=_______________应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2)(2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解: 例7、(1)若4ax x 412++是完全平方式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平方式,则M=_______________ 例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222---- (2))12()12)(12)(12)(12(32842+++++解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。

平方差公式完全平方公式计算

平方差公式完全平方公式计算

平方差公式完全平方公式计算1.平方差公式(a+b)(a-b)=a^2-b^2这个公式的原理可以通过展开左边的式子来进行证明:(a + b)(a - b) = a(a - b) + b(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2通过平方差公式,可以简化计算平方数之差的过程。

下面通过一个例题进行说明。

例题1:求解:25^2-16^2解析:利用平方差公式,可以将这个表达式转化成乘法形式。

(25+16)(25-16)=41*9=369因此,25^2-16^2=3692.完全平方公式完全平方公式是一种用于计算一个多项式的平方的公式。

其表达形式为:(a + b)^2 = a^2 + 2ab + b^2这个公式的原理也可以通过展开左边的式子来进行证明:(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2完全平方公式的应用范围非常广泛,下面通过一个例题进行说明。

例题2:求解:(3+x)^2解析:利用完全平方公式,可以得到:(3+x)^2=3^2+2*3*x+x^2=9+6x+x^2因此,(3+x)^2=9+6x+x^23.平方差公式的应用例题3:求解:36a^2-25b^2解析:利用平方差公式,可以得到:36a^2-25b^2=(6a)^2-(5b)^2=(6a+5b)(6a-5b)因此,36a^2-25b^2=(6a+5b)(6a-5b)。

4.完全平方公式的应用完全平方公式可以用于计算多项式的平方,例如计算一个二次多项式的平方,或计算两个代数式的平方和。

下面通过一个例题进行说明。

例题4:求解:(2x+3)^2解析:利用完全平方公式,可以得到:(2x+3)^2=(2x)^2+2*2x*3+3^2=4x^2+12x+9因此,(2x+3)^2=4x^2+12x+9总结:平方差公式和完全平方公式是数学中常用的两个公式,用于计算平方的差和完全平方。

平方差和完全平方公式应用举例

平方差和完全平方公式应用举例

平方差和完全平方公式应用举例一、平方差公式平方差公式描述了两个数(或代数式)的乘积与它们的差之间的关系:(a+b)(a-b)=a²-b²这个公式的应用在代数运算中非常常见,下面我们通过几个具体的例子来说明它的应用。

例子1:计算(7+2)(7-2)根据平方差公式,我们有:(7+2)(7-2)=7²-2²=49-4=45所以,(7+2)(7-2)=45例子2:计算(x+1)(x-1)根据平方差公式,我们有:(x+1)(x-1)=x²-1²=x²-1所以,(x+1)(x-1)=x²-1二、完全平方公式完全平方公式描述了一个一次多项式的平方的表达式:(a + b)² = a² + 2ab + b²这个公式的应用也非常广泛,下面我们通过几个具体的例子来说明它的应用。

例子3:展开(x+2)²根据完全平方公式,我们有:(x+2)²=x²+2(x)(2)+2²=x²+4x+4所以,(x+2)²=x²+4x+4例子4:展开(3+2x)²根据完全平方公式,我们有:(3+2x)²=3²+2(3)(2x)+(2x)²=9+12x+4x²所以,(3+2x)²=4x²+12x+9这些例子展示了平方差和完全平方公式在解题中的应用。

它们可以用来简化计算过程,化简表达式和方程。

例如,当我们需要计算两个数的乘积或平方时,我们可以利用平方差公式,将计算过程转化为相加或相减的操作,从而简化计算。

另外,完全平方公式可用于展开一个一次多项式的平方,从而获取更多的信息。

这在求解方程和证明等问题中经常会遇到。

总结起来,平方差和完全平方公式是代数中常用的公式,它们的应用在代数运算、化简表达式、求解方程和证明等问题中都具有重要的作用。

七年级数学8.3平方差公式与完全平方公式讲解与例题

七年级数学8.3平方差公式与完全平方公式讲解与例题

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x+2y)2=x2+2·x·2y+(2y)2=x2+4xy+4y2;(2)(2a-5)2=(2a)2-2·2a·5+52=4a2-20a+25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,S Ⅰ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a -b )2=a 2-2ab +b 2几何意义的阐释.正方形Ⅰ的面积可以表示为(a -b )2,也可以表示为S Ⅰ=S 大-S Ⅱ-S Ⅳ+S Ⅲ,又S 大,S Ⅱ,S Ⅲ,S Ⅳ分别等于a 2,ab ,b 2,ab ,所以SⅠ=a 2-ab -ab +b 2=a 2-2ab +b 2.从而验证了完全平方公式(a -b )2=a 2-2ab +b 2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a +b )2-4ab ,空白正方形的面积也等于它的边长的平方,即(a-b )2,根据面积相等有(a +b )2-4ab =(a -b )2.答案:(a +b )2-4ab =(a -b )22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b 的正方形得到的,所以它的面积等于a 2-b 2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12(b+a )(a -b ),所以梯形的面积和是(a +b )(a -b ),根据阴影部分的面积不变,得(a +b )(a-b )=a 2-b 2.因此验证的一个乘法公式是(a +b )(a -b )=a 2-b 2.答案:(a +b )(a -b )=a 2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204. 4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15.解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65.5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b+a)(-b+a)=a2-b2.②符号变化:(-a+b)(-a-b)=(-a)2-b2=a2-b2.③系数变化:(0.5a+3b)(0.5a-3b)=(0.5a)2-(3b)2.④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用 在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm ,根据题意和正方形的面积公式可列出方程(x +3)2=x 2+39,求解即可.解:设原正方形的边长为x cm ,则(x +3)2=x 2+39,即x 2+6x +9=x 2+39,解得x =5(cm). 故这个正方形的边长是5 cm. 7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式: ①a 2+b 2=(a +b )2-2ab ; ②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +ba -b的值即可.答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a +b =2,所以(a +b )2=22,即a 2+2ab +b 2=4.把ab =1代入,得a 2+2×1+b 2=4,于是可得a 2+b 2=4-2=2.。

完全平方公式和平方差公式的应用讲课讲稿

完全平方公式和平方差公式的应用讲课讲稿

完全平方公式和平方差公式的应用完全平方公式和平方差公式的应用 公式:语言叙述:两数的 ______________________________________________________________ 。

公式结构特点:左边: __________________________________ 右边:熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

(5+6x)(5-6x) 中 ______ 是公式中的a , ______是公式中的b (5+6x)(-5+6x) 中 _____ 是公式中的a , ______是公式中的b (x-2y)(x+2y) 填空: 1、 (2x-1)( )=4x 2-12、 (-4x+ )(-4x)=16x2-49y 2第一种情况:直接运用公式 1. ( a+3) (a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)第二种情况:运用公式使计算简便 1、1998X 2002 2 、 498X 502 3、 999X 1001 4、 1.01 X 0.995、 30.8 X 29.26、1(100-) X 2 (99- -33187(20-) X (19- -)99第三种情况:两次运用平方差公式 1、( a+b )(a-b)(a 2+b 2)第四种情况:需要先变形再用平方差公式5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五种情况:每个多项式含三项2、(a+2)(a-2)(a2+4) 3(x- - )(x 2+ - )(x+ -)2 4 21、( -2x-y ) (2x-y) 2 、(y-x)(-x-y) 3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)1. (a+2b+c) (a+2b-c)2.(a+b-3)(a-b+3)3. x-y+z)(x+y-z)4.(m_n+p)(m_n_p)完全平方公式公式:语言叙述:两数的___________ . __________________________________________________ 。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式和完全平方公式在数学中,平方差公式和完全平方公式是两个重要的公式,它们在代数中的运用频繁,能够帮助我们简化计算和解决问题。

本文将介绍这两个公式的定义、应用以及推导过程。

一、平方差公式平方差公式是指两个数的平方差等于它们的积与和的差。

具体表达如下:a^2 - b^2 = (a + b)(a - b)其中,a、b为任意实数。

平方差公式的应用可以帮助我们快速计算平方差,以及解决一些与平方差相关的问题。

例如,考虑以下例子:例1:计算 16^2 - 9^2 的值。

根据平方差公式,我们可以将该式转化为 (16 + 9)(16 - 9)。

进一步计算可得= 25 × 7= 175因此,16^2 - 9^2 的值为 175。

平方差公式也可以用于因式分解和方程求解等问题。

通过将平方差公式进行变形,可以将复杂的表达式进行简化。

二、完全平方公式完全平方公式是指一个二次多项式能够被写成两个平方项的和的形式。

具体表达如下:(a ± b)^2 = a^2 ± 2ab + b^2其中,a、b为任意实数。

完全平方公式的应用范围广泛,涉及到二次函数、方程、因式分解等等。

以下是一些例子:例2:将 x^2 - 6x + 9 表示为完全平方形式。

我们可以观察到该式可以写成 (x - 3)^2 的形式,其中 a = x,b = -3。

这样,我们就可以利用完全平方公式进行简化和计算。

例3:解方程 x^2 + 6x + 9 = 0同样地,我们可以将该方程改写为 (x + 3)^2 = 0 的形式。

根据完全平方公式,这意味着 x + 3 = 0 或 x = -3。

因此,方程的解为 x = -3。

总结:平方差公式和完全平方公式在代数中起到了重要的作用,能够帮助我们简化计算和解决问题。

我们可以通过灵活运用这两个公式来化简表达式、因式分解、解方程等。

熟练掌握平方差公式和完全平方公式,对理解和应用代数知识都有很大帮助。

平方差公式与完全平方公式的组合运算(一)

平方差公式与完全平方公式的组合运算(一)

平方差公式与完全平方公式的组合运算(一)平方差公式与完全平方公式是初中阶段学习中十分重要的数学知识,而它们的组合运算也是十分常见的。

本文将介绍平方差公式与完全平方公式,探讨它们的组合运算,以及为什么能够达到预期效果。

一、平方差公式平方差公式是指:$(a+b)\times(a-b)=a^2-b^2$。

它的形式可能比较简单,但是应用起来却十分广泛。

例如,当我们需要求出两个数的平方和与平方差时,便可以通过平方差公式来解决。

如果要求$(a+b)^2+(a-b)^2$,那么我们可以先算出$(a+b)\times(a-b)=a^2-b^2$,再把这个结果带入到$(a+b)^2+(a-b)^2$中,得到$(a+b)^2+(a-b)^2=2a^2+2b^2$。

同理,如果要求$(a+b)^2-(a-b)^2$,我们可以先算出$(a+b)\times(a-b)=a^2-b^2$,再把这个结果带入到$(a+b)^2-(a-b)^2$中,得到 $(a+b)^2-(a-b)^2=4ab$。

二、完全平方公式完全平方公式是指:$a^2+2ab+b^2=(a+b)^2$。

这个公式相信大家都非常熟悉,因为在代数式的展开中,非常经常会用到这个公式。

例如,如果要展开$(x+3)^2$,那么我们就可以利用完全平方公式,得到$(x+3)^2=x^2+6x+9$。

三、平方差公式和完全平方公式的组合运算平方差公式和完全平方公式在实际运用中往往也会相互组合,来求解一些更加复杂的数学问题。

例如,如果我们要求$(a+b+c)^2$,那么我们就可以先算出$(a+b)^2$和$c^2$,再通过平方差公式来得到$$(a+b+c)^2=(a+b)^2+c^2+2(a+b)\timesc$$$$=a^2+2ab+b^2+c^2+2ac+2bc$$同样地,如果我们要求$(a-b)^2-(c-d)^2$,那么我们可以先用完全平方公式算出$(a-b)^2$和$(c-d)^2$,再用平方差公式来得到$$(a-b)^2-(c-d)^2=(a-b+c-d)\times(a-b-c+d)$$$$=(a+c-b-d)\times(a-b-c+d)$$$$=(a^2-2ab+b^2-c^2+2cd-d^2)$$综上所述,平方差公式与完全平方公式的组合运算非常灵活,而且可以帮助我们解决许多数学问题。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式和完全平方公式平方差公式是数学中一条重要的公式,也是学习平方差的基础。

它可以帮助我们快速计算两个数的平方差,而不必一个一个去计算。

完全平方公式是数学中求解一元二次方程的方法之一,它可以帮助我们快速找到方程的解。

下面将详细介绍这两个公式。

一、平方差公式设两个数分别为a和b,它们的平方差可以表示为(a+b)(a-b)。

我们可以通过拆分(a+b)(a-b)来计算平方差。

拆分后得到的是一个差式,可以简化计算。

例如,计算25的平方差时,我们可以使用平方差公式:(25+5)(25-5)=30×20=600。

同样地,计算8的平方差时,使用平方差公式:(8+2)(8-2)=10×6=60。

通过平方差公式,我们可以快速准确地计算两个数的平方差。

二、完全平方公式完全平方公式是一种用来求解一元二次方程的方法。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知常数,而x为未知数。

完全平方公式是由求解一元二次方程的根的公式推导而来。

若一元二次方程ax^2 + bx + c = 0有实数根,那么根可以表示为一个平方数。

利用完全平方公式,可以直接找到方程的解。

完全平方公式的表达式为:x = (-b ± √(b^2-4ac)) / (2a)利用完全平方公式,我们可以求解一元二次方程的根。

例如,对于方程x^2-2x-3=0,我们可以直接套用完全平方公式:x=(-(-2)±√((-2)^2-4×1×(-3)))/(2×1)化简得:x=(2±√(4+12))/2即:x=(2±√16)/2化简得:x=(2±4)/2分别计算得到两个根:x1=(2+4)/2=6/2=3x2=(2-4)/2=-2/2=-1通过完全平方公式,我们可以直接得到方程的根。

总结:平方差公式和完全平方公式是数学中重要的计算工具,它们可以帮助我们快速计算平方差和求解一元二次方程。

平方差完全平方公式的应用

平方差完全平方公式的应用

平方差完全平方公式的应用平方差和完全平方公式是数学中常用的两个重要公式。

在解决代数问题和简化计算过程中,它们具有非常重要的应用。

首先,我们来谈谈平方差公式。

平方差公式是用来将两个数的平方差表示为两个数的乘积的公式。

具体来说,平方差公式可以表达为:\((a+b)(a-b)=a^2-b^2\)。

这个公式的应用非常广泛。

例如,如果我们需要计算数\(a\)和数\(b\)的平方差,我们可以使用平方差公式,将这个表达式转化为\((a+b)(a-b)\)的形式,然后再进行计算。

这样可以简化计算过程,使我们更容易得到结果。

接下来,让我们来谈谈完全平方公式。

完全平方公式是指一个二次多项式可以被写成一个平方的形式。

具体来说,完全平方公式可以表达为:\( a^2 + 2ab + b^2 = (a + b)^2 \)。

完全平方公式的应用非常广泛,特别是在因式分解方程和简化代数表达式时。

例如,如果我们需要因式分解一个二次方程,我们可以应用完全平方公式来简化等式。

一个具体的例子是\(x^2+6x+9\)。

我们可以使用完全平方公式将其转化为\((x+3)^2\)的形式。

在这个例子中,我们可以得到的结果是\((x+3)^2\)。

完全平方公式还可以用来简化代数表达式,使其更易于计算。

例如,如果我们需要计算\((a+3)^2\)和\((a-3)^2\)之间的差异,我们可以应用完全平方公式,将其转化为\(a^2+6a+9\)和\(a^2-6a+9\)的形式。

然后我们可以简化计算过程,更容易得到结果。

总结起来,平方差公式和完全平方公式是数学中常用的两个重要公式。

它们在解题过程中起着非常重要的作用,可以帮助我们简化计算过程,得到更准确的结果。

在实际应用中,我们应该熟练掌握这两个公式,以便在解决代数问题时能够灵活运用。

平方差公式和完全平方公式复习和拓展

平方差公式和完全平方公式复习和拓展

平方差公式和完全平方公式复习和拓展一、平方差公式在代数中,我们常常需要将一个数分解成两个数的平方差,或是将两个数的平方差合并成一个数。

平方差公式就提供了一个简单的方法。

例如,如果我们需要将16分解成两个数的平方差,我们可以设一个数为x,则另一个数为16/x。

根据平方差公式,我们有(x+16/x)(x-16/x)=x^2-(16/x)^2=x^2-256、这样我们就将16分解成了两个数的平方差x^2-256除了在分解数的平方差时使用平方差公式,它还可以用来简化代数表达式。

例如,我们有一个代数表达式(x+2)(x-2),我们可以根据平方差公式简化它为x^2-4二、完全平方公式完全平方公式用于求解一个二次多项式的平方。

设a和b为任意实数,则完全平方公式可以表示为:a^2+2ab+b^2=(a+b)^2完全平方公式可以用来求解一些常见的问题,如求一个数的平方、求解二次方程等。

例如,如果我们需要求解x^2+6x+9=0的根,我们可以利用完全平方公式写成(x+3)^2=0。

从中我们可以得到x=-3,即方程的根为-3完全平方公式也可以用来展开一个二次多项式。

例如,如果我们需要展开(x+1)^2,我们可以利用完全平方公式得到x^2+2x+1三、平方差公式和完全平方公式的拓展除了基本的平方差公式和完全平方公式之外,还有一些相关的公式和技巧可以帮助我们更好地理解和应用这两个公式。

1. 平方差公式的展开形式:有时候,我们需要展开一个平方差的其他形式,例如(a+b)^2 - 4ab。

根据平方差公式,我们可以得到:(a+b)^2 - 4ab = a^2 + 2ab + b^2 - 4ab = a^2 - 2ab + b^22.完全平方公式的逆运算:有时候,我们需要根据一个完全平方公式的结果反推出原始的二次多项式,例如(x+3)^2=x^2+6x+9、根据完全平方公式的逆运算,我们可以得到x^2+6x+9=(x+3)^23.平方差公式的应用:平方差公式不仅可以用于分解数的平方差,还可以用于简化代数表达式。

初一数学平方差和完全平方公式

初一数学平方差和完全平方公式
【同步演练】利用完全平方公式计算:(1)982(2)2032
例3:计算:(1) (2)
【同步演练】
例4:若 ,则k=
若 是完全平方式,则k=
*例:5:完全平方公式的推广
附加题:若实数
【课堂检测】
(一)平方差公式
一、填空题
1、 _______.2、 ______.
3、 ______.4、 _______.
(A) ;(B)
(C) ;(D) .
三、解答题
8、解不等式 .
9、解方程 .
10、先化简后求值 ,其中
11、一个梯形上底是 ㎝,下底是 ㎝,高为 ㎝,求梯形的面积,若 ,求这个梯形的面积.
测试卷(时间45分钟,满分100分)
一、填空题(每题2分,共28分)
1. ____ ____ ; 2. _________;
①位置变化:如
②符号变化:如

③系数变化:如
(二)完全平方公式
完全平方公式常见变形:
1符号变化:如
②移项变化:
二、例题讲解
(一)平方差公式
例1:计算:
例2:计算:
①(2x+y)(2x-y) ②( )( )
③(-x+3y)(-x-3y) ④(2a+b)(2a-b)(4 .
【同步演练】应用平方差公式计算
学科教师辅导讲义
年 级:初一 辅导科目:数学 辅导教师: 课时数:
课 题
平方差公式和完全平方公式
教学内容
一、概念梳理
(一)平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.
特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.

完全平方公式与平方差公式-----平方差公式课件数学沪科版七年级下册

完全平方公式与平方差公式-----平方差公式课件数学沪科版七年级下册

解:(1)(5+6x)(5-6x)
(2)(x-2y)(x+2y);
(3)(-m+n)(-m-n).
(2)(x-2y)(x+2y)
(3)(-m+n)(-m-n)
=25-30x+30x-36x²
=x²+2xy-2xy-4y²
=m²+mn-mn-n²
=25-36x².
=x²-4y².
=m²-n².
注意(3)中,在运用平方差公式时,要把(-m)要
(1)1 999×2 001;
解:(1)1 999×2 001
(2)(x+3)(x-3)(x²+9).
(2)(x+3)(x-3)(x²+9)
=(2 000-1)×(2 000+1)
=(x²-9)(x²+9)
=2 0002-12
=x4-81.
=3 999 999.
例2
计算:
(1)(a+b+c)²;
解:(a+b+c)²= [(a+b)+c]2
看作一个整体,不要漏掉“-”.
例2 计算:
1
2
1
解:(1)(
2
1
2
1
1)(
2
1
4
1
− 1)( x2+1)
4
(1)( + 1)( − 1)( x2+1);
+
1
1
=[( )²-1]( x2+1)
2
4
1 2
1 2
=( x -1)( x +1)
4
4

完全平方公式和平方差公式综合应用

完全平方公式和平方差公式综合应用

完全平方公式和平方差公式综合应用对于任意实数a和b,有(a+b)² = a² + 2ab + b²。

平方差公式如下:对于任意实数a和b,有(a-b)² = a² - 2ab + b²。

一、应用问题1:求解方程2x²+8x+8=0。

解析:我们可以将方程进行变形,以便使用完全平方公式。

首先,将方程两边同时减去8,得到:2x²+8x=-8再将方程两边同时除以2,得到:x²+4x=-4观察到该方程中,系数b等于4,我们可以看到b的两倍是4*2=8、因此,我们可以使用完全平方公式。

根据完全平方公式,我们知道这个方程可以写成:(x+2)²=-4+4=0由此可得x+2=±√0x=-2±√0由于根号0等于0,所以x=-2为方程的唯一实数解。

二、应用问题2:求证正整数(n+1)³-n³-1是一个完全平方数。

解析:我们需要证明的是(n+1)³-n³-1是一个完全平方数,即证明存在一个整数x,使得:(n+1)³-n³-1=x²通过平方差公式,我们可以简化上式为:(n+1)³-n³-1=(3n²+3n+1)=(n+1)²因此,我们可以看出,(3n²+3n+1)是一个完全平方数。

三、应用问题3:Rectangle1的长是Square1的边长的2倍,它们的面积相差180平方米。

如果将Square1的边长减少2米,而Rectangle1的长增加5米,则两个图形的面积相等。

求Rectangle1和Square1的边长。

解析:设Square1的边长为x,则Rectangle1的长为2x。

根据题意,可列方程:(2x)^2-x^2=180(相差180平方米)(2x-2)^2=(x+5)^2(面积相等)通过求解上述方程组,我们可以得到Square1的边长为10米,Rectangle1的长为20米。

初一数学:完全平方及平方差公式的应用

初一数学:完全平方及平方差公式的应用

安博教育温江总校春季班第1次课2017年02月25日整式的乘除第一讲姓名: 班级: 整式的乘法:单项式乘单项式单项式乘多项式多项式乘多项式考点1:单项式乘单项式、同类项例1:已知的值。

、是同类项,求的积与与n m 4243613y x y x m n m -----+例2:的值。

,求的积为与已知单项式n m y ma y a y a n +542234-2考点2:单项式乘多项式、积的乘方的你用例3:已知12-=ab ,求()()b ab b a ab ---352的值。

例4:如果()x x a x +-2的展开式中只含有3x 这一项,那么a 的值为多少例5:若0132=+++a a a ,则201632...aa a a ++++的值为 。

考点3:多项式乘多项式例6:解方程()()()()204321+-+=--x x x x例7:已知p 、q 满足代数式()()q x x px x --++3822的展开不含有2x 和3x 项,求p 、q 的值。

例8:证明:对于任意的正整数n ,()()()237-+-+n n n n 的值是否能被6整除。

考点4:利用平方差公式进行化简计算例9:计算(1)2.608.59⨯ (2)22)3()5(--+x x (3)76197120⨯(4)97103⨯ (5)2012201620142⨯-例10:计算:()()33221221--+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-x x x x考点5:构造平方差公式简化计算例11:已知1324-可以被20-30之间的两个整数整除,则这两个数是多少例12:计算(1)()()()()()321684221212121212-+⋅+⋅+⋅+⋅+(2)()()()()131********+⋅+⋅+⋅+(3)22222222101100......654321+-+-+-+-(4)1584221211211211211+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+考点6:完全平方公式()=±2b a应用完全平方时,要注意:①公式中的a ,b 可以是单项式,也可以是多项式; ②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项作为一个整体而看做一项,也可以用完全平方公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安博教育温江总校
春季班第1次课2017年02月25日
整式的乘除第一讲
姓名: 班级: 整式的乘法:
单项式乘单项式
单项式乘多项式
多项式乘多项式
考点1:单项式乘单项式、同类项
例1:已知的值。

、是同类项,求的积与与n m 42
43613y x y x m n m -----+
例2:的值。

,求的积为与已知单项式n m y ma y a y a n +542234-2
考点2:单项式乘多项式、积的乘方的你用
例3:已知12-=ab ,求()()
b ab b a ab ---352的值。

例4:如果()
x x a x +-2的展开式中只含有3x 这一项,那么a 的值为多少
例5:若0132=+++a a a ,则201632...a
a a a ++++的值为 。

考点3:多项式乘多项式
例6:解方程()()()()204321+-+=--x x x x
例7:已知p 、q 满足代数式()()
q x x px x --++3822的展开不含有2x 和3x 项,求p 、q 的值。

例8:证明:对于任意的正整数n ,()()()237-+-+n n n n 的值是否能被6整除。

考点4:利用平方差公式进行化简计算
例9:计算
(1)2.608.59⨯ (2)22)3()5(--+x x (3)7
6197120⨯
(4)97103⨯ (5)2012201620142⨯-
例10:计算:()()33221221--+-+⎪⎭⎫ ⎝⎛+⎪⎭⎫
⎝⎛-x x x x
考点5:构造平方差公式简化计算
例11:已知1324-可以被20-30之间的两个整数整除,则这两个数是多少
例12:计算
(1)()()()()()
321684221212121212-+⋅+⋅+⋅+⋅+
(2)()()()()
131********+⋅+⋅+⋅+
(3)2
2222222101100......654321+-+-+-+-
(4)158422
1211211211211+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+
考点6:完全平方公式
()=±2b a
应用完全平方时,要注意:①公式中的a ,b 可以是单项式,也可以是多项式; ②对形如两数和(或差)的平方的计算,都可以用这个公式;
③对于三项的可以把其中的两项作为一个整体而看做一项,也可以用完全平方公式。

, 例13:计算
(1)()()[]()
2222y x y x y x -++- (2)()()()x x x x x 2552142-++-
例14:利用完全平方公式配方
(1)已知1412122
++=⎪⎭
⎫ ⎝⎛-x x k x ,则k 的值为 。

(2)如果252++kx x 是一个完全平方式,那么k 的值为 。

(3)若22254y axy x ++是一个完全平方式,则a= 。

(4)已知m x x +-3092
是一个完全平方式,则m 的值为 。

(5)若()322=-m ,则642+-m m 的值为 。

(6)已知()5)(12
-=---b a a a ,求代数式ab b a -+22
2的值。

考点7:完全平方公式、平方差公式的混合使用
完全平方公式的变形式
(1)=+22b a (2)=+2
2b a
(3)=ab 2 (4)=ab 2
(5)()=+2b a (6)()=-2b a (7)=+
221x x (8)=+221x
x
例15:(1)已知,2,3==+ab b a 则=+22b a ;
(2)已知,2,3==-ab b a 则=+22b a ;
(3)已知,2,3==+ab b a 522=+b a ,则ab = ;
(4)已知,4,3=+-=y x xy 则22y xy x +-= ;
(5)已知142-=+x x ,求①x x 1+;②221x x +;③441x
x +.
(6)已知,21=-
a a 则221a
a += ; (7)若,0132=+-a a 则=+221a a ;
例16:若,3=+y x 且()()1222=++y x 。

求:
(1)223y xy x ++;(2)44y x +;(3)4
4y x -。

例17:已知()()342017201522=-+-x x ,求()22016-x 的值。

家长签字: 完成日期:。

相关文档
最新文档