2018年全国各地高考数学试题及解答分类大全(解三角形)
2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
2018年高考数学分类汇编之三角函数和解三角形、选择题B • 305)的图象向右平移10个单位长度,所得图象对应的函数3 5A 在区间[-,—]上单调递增4 4 3B 在区间[―,]上单调递减45 3C 在区间[予‘专]上单调递增3D 在区间[厅,2 ]上单调递减7.【2018浙江卷5]函数y= 2|x|sin2x 的图象可能是1.【2018全国二卷 6】在厶ABC 中,C cos— 2,BC 1,AC 5,则 AB52.【2018全国二卷 10]若 f(x) cosxsinx 在[a, a ]是减函数,贝U a 的最大值是3.【2018全国三卷 4] 若sin1 … 3,则cos24. 5. 0, C . 【2018全国三卷9] △ ABC 的内角 A, B, C 的对边分别为 2 2 2a ,b ,c ,若△ ABC 的面积为-— -,4【2018北京卷7]在平面直角坐标系中,记m 变化时,d 的最大值为d 为点P A. 1(COS 0 sin 0到直线x my 2 0的距离,当B. 2C. 3D.4C . . 296.【2018天津卷6]将函数y sin(2x1. 【2018全国一卷16】已知函数f x 2sinx sin2x ,则f x 的最小值是 _______________ .2.【2018 全国二卷 15】已知 sin a cos 3 1 , cos a sin 3 0,则 sin( a ® __________________ .3. 【2018全国三卷15】函数f x cos 3x n在0, n 的零点个数为6 ---------------------------------------------------4. 【2018北京卷11】设函数f (x ) =cos( x n ( 0),若f(x) f (n)对任意的实数x 都成立,则co的最小值为 _________ . 5.【2018江苏卷7】已知函数y sin(2x _______________________ )(--)的图象关于直线x -对称,则 的值是 ____________________ .2236. 【2018江苏卷13】在厶ABC 中,角A, B,C 所对的边分别为a,b,c , ABC 120 , ABC 的平分线 交AC 于点D ,且BD 1,则4a c 的最小值为 _________ .7. 【2018浙江卷13】在厶ABC 中,角A ,B ,C 所对的边分别为a ,b ,c •若a= 7,b=2, A=60°,贝U sin B= _________ , c= _________.、填空题B .三.解答题1. [2018 全国一卷17】在平面四边形ABCD 中,ADC 90°, A 45°, AB 2 , BD 5.12. 【2018 北京卷15】在厶ABC 中,a=7, b=8, cosB=—.(△)求/ A ;(△)求AC边上的高.3. 【2018天津卷15】在厶ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinAacos(B ). 6(I)求角B的大小;(II)设a=2, c=3,求b和sin(2A B)的值.4. 【2018江苏卷16】已知,为锐角‘tan 3 ,迹()舟.(1)求cos2的值;(2)求tan( )的值.5. 【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN (P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚U内的地块形状为△ CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和厶CDP的面积,并确定sin的取值范围;(2)若大棚I内种植甲种蔬菜,大棚U内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4 :3 .求当为何值时,能使甲、乙两种蔬菜的年总产值最大.6. 【2018浙江卷18】已知角a的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P345'(I)求sin (a + n 的值; (U)若角B满足sin (a+B=13,求cos B的值・7.【2018上海卷18】设常数a R,函数f(x) a sin 2x c 22cos x(1)若f(x)为偶函数,求a的值; (2) 若〔匸〕1,求方程f(x) 1 .2在区间[,的解.参考答案、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D、填空题 1. 3.3223. 34.235. 7.3 ;37三•解答题 1.解: (1)在厶ABD中,由正弦定理得一BLsin AABsin ADB由题设知,5sin 452 sinADB,所以sin ADB -5由题设知, ADB 90,所以cos ADB 1225 5(2)由题设及(1) 知, cos BDC sin ADB 辽在△ BCD 中,5 由余弦定理得2 2 2BC BD DC 2 BD DC cos BDC 25 8 25. 所以BC 5.32.解:(1)在厶ABC 中,1 n _________________________________ 2—T cosB= —7 ,二 B €( — , n ,二 sinB= 1 cos B<3 7由正弦定理得—sin A bsin B8 -二=<3,二 sinA= £ . T B €( f ,sin A227•- A €( 0,亍),(n )在厶ABC 中,■/ sinC=sin (A+B ) =sinAcosB+sinBcosA=—3 21 (-)71 4.3_ 3.3 2714女口图所示,在△ ABC 中sinC=g ,二 h=BC sinC = 7 3 弓BC14••• AC 边上的高为子.3.解:在厶ABC 中,由正弦定理— sin A—,可得 bsinA asinB sin B又由 bsinA acos(B n ),6得 as in B acos(B n ),6即sinB cos(B ,可得tanB 3 .又因为 B (0 ,可得(n)解:在△ ABC 中,由余弦定理及a =2, c=3, B =^,有 b 2 a 2 c 2 2accosB 7,故 b= J7 .由 bsin A acos(B —), 6可得sin A因为 a<c , 故cosA因此 sin 2 A 2sin AcosA2,cos2 A 2cos A所以,si n(2A B)sin 2Acos Bcos2 A sinB ^^3 73 3 3 2144.解:(1)因为tan4, tan 3汇,所以sin4c o s cos因为sin 22cos1,所以 2cos25,因此,cos222cos7 25(2)因为,为锐角,所以(0, n .又因为cos()寻,所以sin()厂曲( )害,因此tan( ) 2.因为tan -,所以tan232ta n 242 , 1 tan 7因此,tan( ) tan[2 ( )];+;爲;:;(—5 2115•解:(1)连结PO并延长交MN于H,贝U PH丄MN , 所以OH=10.过O作OE丄BC于E,贝U OE// MN,所以/ COE书故OE=4Ocos0, EC=40sin B,则矩形ABCD 的面积为2X40cos((40sin 0 +10=800(4sin 0 cos 0 +cOs B △ CDP的面积为 1 x 2X 40co(40 - 40sin) 0=1600 (cos 0 - sin 0)cos 0过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .令/GOK=0,则sin0=4 2(0, n)・当濮[0, n)时,才能作出满足条件的矩形所以sin(的取值范围是[〔,1).4答:矩形ABCD的面积为800 (4sin 0 cos 0 +cQs平方米,△ CDP的面积为1600 (cos 0 - sin 0)cos0n 的取值范围是[1 , 1).4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0).则年总产值为4k X 800(4sin 0 cos 0 +cbs+Bk x 1600( cos 0 - sin 0 cos 0=8000k (sin 0 cos 0 +)s [ 0, n)2设 f ( 0) =sin 0 cos 0 +cos 0€ [ 0, n),2则f'( ) cos2sin2 sin (2sin2 sin 1) (2sin 1)(sin 1).令 f'( )=0,得 B =,6当9€( (0, n 时,f '( )>0,所以f (0)为增函数;6当0€(J ,匸)时,f '( )<0 ,所以f (0)为减函数,6 2因此,当0=时,f ((取到最大值.6答:当吧时,能使甲、乙两种蔬菜的年总产值最大•[来源:学§科§网],]时,即2x(U)由角的终边过点 P( 3,得cos35 55由 sin() —得 cos( )121313由( )得coscos()cossin( )s in,5616所以cos或cos6565 .解:(1) f(x ; )asin 2x2 cos 2 x 1 1 =asi n2x cos2x 1 ,6. ( I)由角的终边过点P(4)得 sin 5所以sin( 冗)sin -5f ( x) a sin(当f (x)为偶函数时:f (x)f( x),则 a a,解得a 0 o2(2) f ( ) a sin 2 cos —,424由题意f (一)a 13 1 ,4、.3sin 2x 2cos 2 xa .3 , f (x) 3sin2x cos2x1 2sin(2x6)1,令 f (x) 1血,则2sin 2x1151319解得:x ,2424,24或x248. 解: (1) f(x)asin 2x c 22cos x 1 1 = asin2x cos2x 1 , f( x) a sin( 2x)cos(2x)1asin2x cos2x 1当f(x)为偶函数时:f(x)f( x),则a a,解得a 0。
解三角形、数列2018年全国数学高考分类真题(含答案)
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
2018年高考数学卷(全国卷3)答案
据函数的解析式通过图象变换直接作图,另一个角度就是从
研究函数的性质入手去判断,常从函数的定义域、值域、特殊
点、函数的单调性、奇偶性等角度去研究识别 .
8.B 【解题思路】本题考查二项分布的概率、方差的计算 .由已
{ 知得
10p(1-p)=2.4 C410p4(1-p)6<C6 10p6(1-p)4
①,解 ②,
线的位置关系 .根据题意设直线 AB的方程为 y=k(x-1)
{ y=k(x-1),
(k≠0),联 立 抛 物 线 方 程 得 y2=4x, 消 元 并 整 理 得
( ) ( ) y2- 4ky-4=0,设 A y421,y1 ,B y422,y2 ,则 y1+y2=
( ) 4k,y1·y2 = -4 ①,由 于 →MA· M→B =
3.A 【解题思路】本题考查三视图 .由题知当咬合时,进入木构 件内部的部分看不见,需用虚线表示,且由直观图中凸出部分
的位置知 A是正确的,故选 A.
4.B 【解题思路】本题考查二倍角公式的应用 .因为 cos2α =1-
( ) 2sin2α=1-2×
1 3
2
=
7 9,故选
B.
5.C 【解题思路】本题考查二项展开式的通项公式的应用 .由于
12.B 【解题思路】本题考查对数的运算、不等式 .由于 a+b=
log0.20.3+log20.3=log0.130.2+log10.32=l lo og g00..330 0. .2 2+ ×l lo og g00..332 2=
log0.3lo0g.02.3×0.lo4g0.32,因为 log0.30.4>0,log0.30.2>0,log0.32<0,
①
得
2018年全国各地高考数学试题及解答分类汇编大全(09解三角形)
2018年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题1.(2018全国新课标Ⅰ理)以下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆组成,三个半圆的直径别离为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部份记为Ⅱ,其余部份记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率别离记为p 1,p 2,p 3,那么( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 31. 答案:A解答:取2AB AC ==,那么22BC = ∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231(2)222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.2.(2018全国新课标Ⅱ文、理)在ABC △中,5cos2C 1BC =,5AC =,那么AB =( ) A .42 B 30 C 29 D .252.【答案】A 【解析】因为2253cos 2cos 12125C C =-=⨯-=-⎝⎭, 因此22232cos 125215325c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,42c ∴=A .3.(2018全国新课标Ⅲ文、理)ABC △的内角A ,B ,C 的对边别离为a ,b ,c .若ABC △的面积为2224a b c +-,那么C =( ) A .π2B .π3C .π4D .π63.答案:C 解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.应选C.二、填空1.(2018北京文)若ABC △)222a c b +-,且C ∠为钝角,那么B ∠=_________;c a的取值范围是_________.1.【答案】60;()2+∞,.【解析】)2221sin 2ABC S a c b ac B =+-=,2222a c b ac +-∴=,即cos B =sin cos B B ∴=3B π∠=,则21sin cos sin sin 1132sin sin sin tan 2A A A c C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,3B π∠=,06A π∴<∠<,)1tan 0tan A A ⎛∴∈∈+∞ ⎝⎭,, 故()2,c a∈+∞.2.(2018江苏)在ABC △中,角,,A B C 所对的边别离为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,那么4a c +的最小值为 ▲ .2.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=,因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当23c a ==时取等号,那么4a c +的最小值为9.3.(2018浙江)在△ABC 中,角A ,B ,C 所对的边别离为a ,b ,c .若ab =2,A =60°,那么sin B =___________,c =___________.3..答案:73 解答:由正弦定理sin sin ab AB,得2sin B ,因此21sin B . 由余弦定理,222cos 2b c a A bc ,得214724c c ,因此3c .4.(2018全国新课标Ⅰ文)△ABC 的内角A B C ,,的对边别离为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,那么△ABC 的面积为________.4. 解答:依照正弦定理有:sin sin sin sin 4sin sin sin B C C B A B C +=,∴2sin sin4sin sin sinB C A B C=,∴1sin2A=.∵2228b c a+-=,∴22243cos22b c aAbc bc+-===,∴83bc=,∴123sin2S bc A==.三、解答题1.(2018北京理)在△ABC中,a=7,b=8,cos B=–17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.1.【答案】(1)π3A∠=;(2)AC边上的高为33.【解析】(1)在ABC△中,17cosB=-,π,2B⎛⎫∴∈π⎪⎝⎭,243sin1cosB B∴=-=.由正弦定理得7sin sin sin43a bA B A=⇒=,3sin A∴=.π,2B⎛⎫∈π⎪⎝⎭,π0,2A⎛⎫∴∈ ⎪⎝⎭,π3A∴∠=.(2)在ABC△中,()sin sin sin cos sin cosC A B A B B A=+=+311433372⎛⎫=⨯-+⨯=⎪⎝⎭.如下图,在ABC△中,sinhCBC=,3333sin7h BC C=⋅=⨯=,AC∴边上的高为33.2.(2018天津理)在ABC△中,内角A,B,C所对的边别离为a,b,c.已知sin cos()6b A a Bπ=-.(I)求角B的大小;(II)设a=2,c=3,求b和sin(2)A B-的值.2.【答案】(1)π3;(2)7b=,()33sin2A B-【解析】(1)在ABC△中,由正弦定理sin sina bA B=,可得sin sinb A a B=,又由sin cos6πb A a B⎛⎫=-⎪⎝⎭,得sin cos6πa B a B⎛⎫=-⎪⎝⎭,即sin coπs6B B⎛⎫=-⎪⎝⎭,可得tan3B.又因为()0,πB∈,可得π3B=.(2)在ABC △中,由余弦定理及2a =,3c =,π3B =, 有2222cos 7b a c ac B =+-=,故7b =. 由sin cos 6πb A a B ⎛⎫=- ⎪⎝⎭,可得3sin 7A =.因为a c <,故cos 7A =. 因此43sin 22sin cos A A A ==,21cos22cos 17A A =-=, 因此,()4311333sin 2sin 2cos cos2sin 27AB A B A B -=-=⨯-⨯=.3.(2018全国新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠; (2)假设22DC =,求BC .3.答案:(1)23;(2)5. 解答:(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴2sin 5ADB ∠=, ∵90ADB ∠<,∴223cos 1sin 5ADB ADB ∠=-∠=. (2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠, ∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅, ∴2252522=⋅⋅∴5BC =.。
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题1.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C . 3D .41.【答案】C【解析】由三视图可得四棱锥P ABCD -, 在四棱锥P ABCD -中,2PD =,2AD =, 2CD =,1AB =,由勾股定理可知,22PA =,22PC =,3PB =,5BC =,则在四棱锥中,直角三角形有, PAD △,PCD △,PAB △共三个,故选C .2.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A .2 B .4 C .6 D .83.答案:C解答:该几何体的立体图形为四棱柱, (12)2262V +⨯=⨯=.3 (2018上海)《九章算术》中,称底侧视图俯视图正视图2211所以231θθθ≤≤.5.(2018全国新课标Ⅰ文)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .25. 答案:B解答:三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.6.(2018全国新课标Ⅰ文)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62 C .82 D .836. 答案:C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan 30,23ABBC BC ==,∴122CC =,∴222282V =⨯⨯=,∴选C.7.(2018全国新课标Ⅰ理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33 B .23 C .324 D .327. 答案:A解答:由于截面与每条棱所成的角都相等,所以平 面α中存在平面与平面11AB D 平行(如图),而在与 平面11AB D 平行的所有平面中,面积最大的为由各 棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积12233362S =⨯⨯⨯⨯=.8.(2018全国新课标Ⅰ文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π8. 答案:B解答:截面面积为8,所以高22h =,底面半径2r =,所以表面积为2(2)2222212S πππ=⋅⋅+⋅⋅=.9.(2018全国新课标Ⅰ理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开, 最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.10.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .2B .3C .5D .710.【答案】C【解析】在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C .11.(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15B .5C .5D .211.【答案】C【解析】以D 为坐标原点,DA ,DC ,1DD 为x ,y ,z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()11,1,3B ,()10,0,3D ,()11,0,3AD ∴=-,()11,1,3DB =,1111115cos<,>25AD DB AD DB AD DB ⋅===⨯,∴异面直线1AD 与1DB 所成角的余弦值为5,故选C .12.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )12.答案:A解答:根据题意,A 选项符号题意;13.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54313.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由93ABCS ∆=,得6AB =,取BC 的中点H ,∴sin 6033AH AB =⋅︒=,∴2233AG AH ==,∴球心O 到面ABC 的距离为224(23)2d =-=,∴三棱锥D ABC -体积最大值193(24)1833D ABCV -=⨯⨯+=.二、填空1.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .1.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为()21421233⨯⨯⨯=.2.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.2.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且2211111211222A O A C ==+=,111212BDD B S BD DD =⨯四边形,结合四棱锥体积公式可得其体积为11212333V Sh ===.3. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .3.【答案】112【解析】由题意可得,底面四边形EFGH 为边长为22的正方形, 其面积2212EFGHS ==⎝⎭,顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得111132212M EFGHV-=⨯⨯=.4.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.4.【答案】8π【解析】如下图所示,30SAO ∠=︒,90ASB ∠=︒,又211822SABS SA SB SA =⋅==△, 解得4SA =,所以122SO SA ==,2223AO SA SO =-=,所以该圆锥的体积为2183V OA SO =⋅π⋅⋅=π.5.(2018全国新课标Ⅱ理)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 5.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 15,因为SAB △的面积为515,设母线长为l ,所以21155152l⨯=,280l ∴=,因SA 与圆锥底面所成角为45︒,所以底面半径为2cos 4l π=,因此圆锥的侧面积为22402rl l π=π.三、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .1.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)PA PD =,且E 为AD 的中点, PE AD ∴⊥,底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)底面ABCD 为矩形,AB AD ∴⊥, 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接FG ,GD .F ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =, ED FG∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD . 2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.【答案】(1)证明见解析(2)1B CDC --的余弦值为21-;(3)证明过程见解析. 【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, AC EF ∴⊥,AB BC =,AC BE ∴⊥, AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥. 又1CC ⊥平面ABC ,EF ∴⊥平面ABC . BE ⊂平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G , ()=2,01CD ∴,,()=1,2,0CB ,设平面BCD 的法向量为(),a b c =,n , 0CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩n n ,20 20a c ab +=⎧∴⎨+=⎩, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量(),又平面1CDC 的法向量为()=0,2,0EB ,21cos =EB EB EB⋅∴<⋅>=-n n n .由图可得二面角1B CDC --为钝角,所以二面角1B CDC --的余弦值为21-.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G ,()0,0,2F , ()=02,1GF ∴-,,2GF ∴⋅=-n ,∴n 与GF 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交.3.(2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径, 且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.4.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.5.【答案】(1)310;(2)5.【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,()3,0,0B ,()0,1,0C ,()10,1,2A -,()13,0,2B ,()10,1,2C .(1)因为P 为11A B 的中点,所以31,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而31,,222BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =, 故11114310cos ,522BP AC BP AC BP AC ⋅-+<>===⨯⋅. 因此,异面直线BP 与1AC 所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31,,022Q ⎛⎫ ⎪⎪⎝⎭, 因此33,,02AQ ⎛⎫= ⎪ ⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n 即33022220x y y z ⎧+=+=⎪⎨⎪⎩,不妨取()3,1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则1115sin cos ,52CC CC CC θ⋅=<>===⨯⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为55.6.(2018浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.6.答案:(1)略;(2)3913 解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴122AB =.同理,222211(23)113AC AC C C =+=+=.过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC == 且11B G =,∴115B C =.在11AB C ∆中,2221111AB B C AC +=, ∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴1122A B =. 在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C . (2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B ,1(1,3,1)C , 设平面1ABB 的一个法向量(,,)n a b c =, 则102020n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =, 又∵1(3,3,1)AC =,1339cos ,13113n AC <>==⨯.由图形可知,直线1AC 与平面1ABB 所成角为锐角, 设1AC 与平面1ABB 夹角为α.∴39sin 13α=.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.7.【答案】(1)证明见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD , 平面ABC 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥. (2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥.所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角. 在Rt DAM △中,1AM =,故2213DM AD AM =+=. 因为AD ⊥平面ABC ,故AD AC ⊥.在Rt DAN △中,1AN =,故2213DN AD AN =+=.在等腰三角形DMN中,1MN=,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为13.(3)连接CM,因为ABC△为等边三角形,M为边AB的中点,故CM AB⊥,3CM=.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,CDM∠为直线CD与平面ABD所成的角.在Rt CAD△中,224CD AC AD=+=.在Rt CMD△中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为3.8.(2018天津理)如图,AD BC∥且AD=2BC,AD CD⊥,EG AD∥且EG=AD,CD FG∥且CD=2FG,DG ABCD⊥平面,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MN CDE∥平面;(II)求二面角E BC F--的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.8.【答案】(1)证明见解析;(210;(33.【解析】依题意,可以建立以D为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N . (1)依题意()0,2,0DC =,()2,0,2DE =.设()0,,x y z =n 为平面CDE 的法向量,则000DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20220y x z =+=⎧⎨⎩, 不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫=⎪⎝⎭-,可得00MN ⋅=n , 又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC =,()1,2,2BE =-,()0,1,2CF =-.设(),,x y z =n 为平面BCE 的法向量,则0BC BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则0BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,2,1=m .因此有310cos ,⋅<>==m n m n m n ,于是10sin ,m n <>=. 所以,二面角––E BC F 10.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =--.易知,()0,2,0DC =为平面ADGE 的一个法向量,故2cos 5BP DC BP DC BP DCh ⋅<⋅>==+ 23sin 605h =︒=+,解得[]30,2h .所以线段DP 3.9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.9. 答案:(1)见解析(2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD . (2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵32,32BC BC AM AD ====,∴22BP =,又∵ABC ∆为等腰直角三角形,∴12322322ABP S ∆=⋅⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.10.答案:(1)略;(2)34. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥, 又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴2323PH ⋅==,而4PD =,∴3sin PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值3.11.(2018全国新课标Ⅱ文)P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.11.【答案】(1)见解析;(2)455.【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且23OP =.连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知,OP OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)作CH OM ⊥,垂足为H .又由(1)可得OP CH ⊥,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知122OC AC ==,2423BC CM ==,45ACB ∠=︒. 所以25OM =sin 45C OC MC A M H CB O ⋅⋅∠==.所以点C 到平面POM 的45. 12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -22AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.12.【答案】(1)见解析;(234. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且23OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰 直角三角形,且OB AC ⊥,122OB AC ==, 由222OPOB PB +=知PO OB ⊥, 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .PA OCBM(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C ,()0,0,23P ,()0,2,23AP =,取平面PAC 的法向量()2,0,0OB =,设()(),2,002M a a a -<≤,则(),4,0AM a a =-,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=n ,0AM ⋅=n , 得()223040y z ax a y ⎧+=⎪⎨+-=⎪⎩,可取()()34,3,a a a =--n , ()()222234cos ,2343a OB a a a -∴<>=-++n ,由已知得3cos ,OB <>=n ,()22223432343a a a a -∴=-++,解得4a =-(舍去),43a =, 83434,,3⎛⎫∴=-- ⎪ ⎪⎝⎭n ,又()0,2,23PC =-,所以3cos ,PC <>=n .所以PC 与平面PAM 所成角的正弦值为3.13.(2018全国新课标Ⅲ文)如图,矩形所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.13.答案:见解答 解答:(1)∵正方形ABCD ⊥半圆面CMD ,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D =,∴CM⊥平面ADM,∵CM在平面BCM内,∴平面BCM⊥平面ADM.(2)线段AM上存在点P且P为AM中点,证明如下:连接,BD AC交于点O,连接,,PD PB PO;在矩形ABCD中,O是AC中点,P是AM的中点;∴//OP MC,∵OP在平面PDB内,MC不在平面PDB内,∴//.MC平面PDB14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.14.答案:见解答解答:(1)∵正方形ABCD⊥半圆面CMD,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D=,∴CM⊥平面ADM,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABCS ∆面积恒定, ∴MO CD ⊥,M ABCV -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =,设面MCD 的法向量为222(,,)n x y z =,(2,1,1)MA =--,(2,1,1)MB =-, (0,1,1)MC =-,(0,1,1)MD =--, 11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,,∴5cos 5θ==,∴ 25sin θ=.。
解三角形、数列2018全国数学高考分类真题[含答案解析]
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
【课标通用】2018届高考数学(理)一轮课件:17-解三角形(含答案)
2
2
即 c2+2c-24=0.解得 c=-6(舍去),c=4. π (2)由题设可得∠CAD= , 所以∠BAD=∠BAC-∠CAD= . 故△ABD 面积与△ACD
1 2 π 6
2π -4ccos , 3
2π 3
1 π ������������ · ������������ · sin 6 面积的比值为2 1 =1. ������������ 2������������·
又△ABC 的面积为 × 4× 2sin∠BAC=2 3, 所以△ABD 的面积为 3.
考点37
考点38
考点39
试做真题
高手必备 萃取高招 对点精练
【答案】 1
1 2 π 6
1 2
π 6
.
5π 6 5π B= , 6 ������ π,解得 sin6
【解析】 由 sin B= 解得 B= 或 B= . 根据三角形内角和定理,舍去 所以 B= ,A= .
������ 根据正弦定理 sin������ π 6 2π 3
=
������ 3 ,得 2 π sin������ sin
sin������ sin������
2 2 1 1 (1)S△ABD= AB· ADsin∠BAD,S△ADC= AC· ADsin∠CAD. 2 2
=
������������ ������������
= .
1 2
考点37
考点38
考点39
试做真题
高手必备 萃取高招 对点精练
正弦、余弦定理
定理 正弦定理
2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)
2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。
2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
I 2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C 1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6II A . B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,III 则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值. 4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.IV 6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求c osβ的值. 7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =-()ππ-[,]上的解. 参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==. (2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴sinB==12-V 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7=,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A =.因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. 4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-VI (2)因为为锐角,所以. 又因为,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则si nθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2).,αβ(0,π)αβ+∈cos()αβ+=sin()αβ+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+VII 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a , 当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。
2018年全国各省市高考数学真题及解析(高清精美版)
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!
(完整版)2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C =1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A .B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 . 6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,(1)求cos ADB ∠; (2)若22DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (△)求∠A ; (△)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值.4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cosβ的值.7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解.参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin 5ADB ∠=. 由题设知,90ADB ∠<︒,所以cos ADB ∠== (2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=. 所以5BC =.12-2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴. 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B =,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B .又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A .因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2). 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a ,1)2cos()2sin()(+-+-=-x x a x f 12cos 2sin ++-=x x a当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。
2018年各地高考真题分类汇编(文)-三角函数---教师版(可编辑修改word版)
2 3 330 三角函数和解三角形1.(2018 年全国 1 文科·8)已知函数 f ( x ) = 2 cos 2 x - sin 2x + 2 ,则 BA. f ( x ) 的最小正周期为 π,最大值为 3B. f ( x ) 的最小正周期为 π,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为 3D. f (x ) 的最小正周期为2π ,最大值为 42.(2018 年全国 1 文科·11)已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) , B (2 ,b ) ,且cos 2= 2,则 a - b = B 3A.15 B. 5C. 25 5D .13.( 2018 年全国 1 文科· 16) △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c , 已知b s in C +c sin B = 4a sin B sin C , b 2 + c 2 - a 2 = 8 ,则△ABC 的面积为 .4. (2018 年全国 2 文科·7).在△ABC 中, cos C = 5 , BC = 1 , AC = 5 ,则 AB = AA. 4 2 5B. C . D .25.(2018 年全国 2 文科·10)若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是 CA.π4B.π 2C. 3π4D. π6.(2018 年全国 2 文科·15)已知 tan(α -5π) = 1,则tan α = 3.4 527.(2018 年全国 3 文科·4)若sin= 1,则cos 2= B3A.89B.79C. - 79 D. - 89229 58.(2018 年全国 3 文科·6)函数 f (x) =tan x1+ tan2x的最小正周期为CA.πB.πC.πD.2π 4 29.(2018 年全国3 文科·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a2 +b2 -c2△ABC 的面积为4,则C =CππA.B.2 3ππ C.D.4 610.(2018 年北京文科·7)在平面直角坐标系中, AB, C D, E F , G H 是圆x2+y2= 1上的四段弧(如图),点P 在其中一段上,角以O为始边,OP 为终边,若tan< cos< sin,则P 所在的圆弧是C(A) AB (B)C D(C)E F (D)G H11.(2018 年北京文科·14)若△ABC 的面积为cB=60°;的取值范围是(2,+∞).a3(a2 +c2 -b2 ) ,且∠C 为钝角,则412.(2018 年天津文科·6)将函数y = sin(2x +图象对应的函数A ππ) 的图象向右平移个单位长度,所得5 107 (A )在区间[- π π, ] 上单调递增(B )在区间[- 4 4 π , 0] 上单调递减4π ππ(C )在区间[ , ] 上单调递增(D )在区间[ , π] 上单调递减4 2213.(2018 年江苏·7).已知函数 y = sin(2x +)(- π << π) 的图象关于直线 x = π对称,则的值是.2 2 314. (2018 年江苏·13)在△ABC 中,角 A , B , C 所对的边分别为 a , b , c , ∠ABC = 120︒ ,∠ABC 的平分线交 AC 于点 D ,且 BD = 1,则4a + c 的最小值为 9 .15.(2018 年浙江·13)在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .若 a = ,b =2,A =60°,则 sin B =217 ,c = 3 .16.(2018 年北京文科·16)(本小题 13 分)已知函数 f (x ) = sin 2 x + 3 sin x cos x .(Ⅰ)求 f (x ) 的最小正周期;(Ⅱ)若 f (x ) 在区间[- π , m ] 上的最大值为 3,求m 的最小值.3216.(共 13 分)解:(Ⅰ)f (x ) = 1- cos 2x +3 sin 2x = 3 sin 2x - 1 cos 2x + 1 = sin(2x - π) + 1 ,2 2 2 2 2 6 2所以 f (x ) 的最小正周期为T =2π = π .2(Ⅱ)由(Ⅰ)知 f (x ) = sin(2x - π) + 1.6 2π π 5π π因为 x ∈[- , m ],所以2x - ∈[- , 2m - ] .3 6 6 67 π π 要使得 f (x ) 在[- π , m ] 上的最大值为 3 ,即sin(2x - π) 在[- π, m ] 上的最大值为 1.所以2m - ≥ 6 2 3 ,即 m ≥π 2 6 3π .学科&网 3所以m 的最小值为 .317.(2018 年天津文科·16)(本小题满分 13 分)在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c .已知 b sin A =a cos(B – π).6(Ⅰ)求角 B 的大小;(Ⅱ)设 a =2,c =3,求 b 和 sin(2A –B )的值.(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分 13 分.( Ⅰ ) 解: 在△ ABC 中, 由正弦定理 a = sin A bsin B, 可得 b sin A = a sin B , 又由 b sin A = a cos(B - π) ,得 a sin B = a cos(B - π) ,即sin B = cos(B - π) ,可得tan B = 6 6 6.又因为 B ∈(0 ,π) ,可得 B = π.3(Ⅱ)解:在△ABC 中,由余弦定理及 a =2,c =3,B = π,有b 2 = a 2 + c 2 - 2ac cos B = 7 ,3故 b = .由 b s in A = a cos(B - π) , 可 得 6sin A =. 因 为 a <c , 故cos A =. 因 此sin 2 A = 2sin A cos A =4 3 , cos 2 A = 2 cos 2 A - 1 = 177所以, sin(2 A - B ) = sin 2 A cos B - cos 2 A sin B =4 3 ⨯ 1 - 1⨯ 3 = 3 3 7 2 7 2 1418.(2018 年江苏·16)(本小题满分 14 分)33 727已知,为锐角,tan=4,cos(+) =-5.3 5(1)求cos 2的值;(2)求tan(-)的值.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14 分.解:(1)因为tan=4 ,tan=sin,所以sin=4 cos.3 cos 3因为sin2+c os2=1,所以cos2=9,25因此,cos 2= 2 cos2- 1 =-7 .25(2)因为,为锐角,所以+∈(0,π).又因为cos(+)=-5,所以sin(+)=5=2 5,5因此tan(+)=-2.因为tan=4,所以tan 2=32 tan1 -tan2=-24,7因此,tan(-) = tan[2- (+)] =tan 2- tan(+)=-2.1+ t an 2tan(+) 1119.(2018 年浙江·18)(本题满分14 分)已知角α 的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(-3,-4).5 5(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β 满足sin(α+β)= 5,求cosβ 的值.1318.本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。
2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。
2018届高考数学(理)热点题型:三角函数与解三角形(word版,有答案,全)AlAwPM
三角函数与解三角形热点一 三角函数的图象和性质注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解.【例1】已知函数f (x )=sin x -23sin 2x 2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. (1)解 因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎪⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)解 因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3. 【类题通法】求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期; 第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值;第五步:明确规范地表达结论.【对点训练】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3. 因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1. (2)由(1)知f (x )=-sin ⎝⎛⎭⎪⎫2x -π3. 设t =2x -π3,则函数f (x )可转化为y =-sin t . 当π≤x ≤3π2时,5π3≤t =2x -π3≤ 8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3 上的图象,由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1, 故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝⎛⎭⎪⎫2x -π3≤32.故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1. 热点二 解三角形高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=65bc ,求tan B . (1)证明 在△ABC 中,根据正弦定理,可设a sin A =b sin B =c sin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45. 由(1)知,sin A sinB =sin A cos B +cos A sin B ,所以45sin B=45cos B+35sin B,故tan B=sin Bcos B=4.【类题通法】(1)①在等式中既有边长又有角的正余弦时,往往先联想正弦定理;②出现含有边长的平方及两边之积的等式,往往想到应用余弦定理.(2)正余弦定理与两角和(差)角公式的活用是求解该类问题的关键.【对点训练】四边形ABCD的内角A与C互补,且AB=1,BC=3,CD=DA=2.(1)求角C的大小和线段BD的长度;(2)求四边形ABCD的面积.解(1)设BD=x,在△ABD中,由余弦定理,得cos A=1+4-x2 2×2×1,在△BCD中,由余弦定理,得cos C=9+4-x2 2×2×3,∵A+C=π,∴cos A+cos C=0.联立上式,解得x=7,cos C=1 2.由于C∈(0,π).∴C=π3,BD=7.(2)∵A+C=π,C=π3,∴sin A=sin C=32.又四边形ABCD的面积S ABCD=S△ABD+S△BCD=12AB·AD sin A+12CB·CD sin C=32×(1+3)=23,∴四边形ABCD的面积为2 3.热点三三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cosC ),n =(2a +c ,b ),且m ⊥n .(1)求角B 的大小;(2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n ,∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0,∴2cos B sin A +cos B sin C +sin B cos C =0.即2cos B sin A =-sin(B +C )=-sin A .∵A ∈(0,π),∴sin A ≠0,∴cos B =-12.∵0<B <π,∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号.∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].即a +c 的取值范围是(3,2].【类题通法】向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【对点训练】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1. (2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y =g (x )得sin ⎝⎛⎭⎪⎫2φ+π6=1, 因为0<φ<π,所以φ=π6,因此g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .。
2018年全国各地高考数学试题及解答分类汇编大全(09 解三角形)
2018年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题1.(2018全国新课标Ⅰ理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 31. 答案:A解答:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-,区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.2.(2018全国新课标Ⅱ文、理)在ABC △中,cos2C 1BC =,5AC =,则AB =( )A .BCD .2.【答案】A【解析】因为223cos 2cos 12125C C =-=⨯-=-⎝⎭,所以22232cos 125215325c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,c ∴=A .3.(2018全国新课标Ⅲ文、理)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =( )A .π2B .π3C .π4D .π63.答案:C解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1s i n 2ABC S ab C ∆=,故t a n 1C =,∴4C π=.故选C.二、填空1.(2018北京文)若ABC △)222a c b +-,且C ∠为钝角,则B ∠=_________;c a的取值范围是_________.1.【答案】60o ;()2+∞,.【解析】)2221sin 2ABC S a c b ac B +-=V Q,2222a c b ac +-∴=,即cos B =,sin cos B B ∴3B π∠=,则21sin cos sin sin 1132sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,3B π∠=,06A π∴<∠<,)1tan 0tan A A ⎛∴∈∈+∞ ⎝⎭,, 故()2,ca ∈+∞.2.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .2.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=,因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当23c a ==时取等号,则4a c +的最小值为9.3.(2018浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若ab =2,A =60°,则sin B =___________,c =___________.3..答案:73 解答:由正弦定理sin sin a bA B =2sin B=,所以sin 7B =. 由余弦定理,222cos 2b c a A bc +-=,得214724c c+-=,所以3c =.4.(2018全国新课标Ⅰ文)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.4.解答:根据正弦定理有:sin sin sin sin 4sin sin sin B C C B A B C +=,∴2sin sin 4sin sin sin B C A B C =,∴1sin 2A =.∵2228b c a +-=,∴2224cos 2b c a A bc bc +-===,∴bc =,∴1sin 2S bc A ==.三、解答题1.(2018北京理)在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.1.【答案】(1)π3A ∠=;(2) AC. 【解析】(1)在ABC △中,17cosB =-Q ,π,2B ⎛⎫∴∈π ⎪⎝⎭,sin B ∴=由正弦定理得7sin sin sin a b A B A =⇒=,sin A ∴. π,2B ⎛⎫∈π ⎪⎝⎭Q ,π0,2A ⎛⎫∴∈ ⎪⎝⎭,π3A ∴∠=.(2)在ABC △中,()sin sin sin cos sin cos C A B A B B A =+=+Q 1172⎛⎫=-+ ⎪⎝⎭.如图所示,在ABC △中,sin hC BC=Q,sin 7h BC C =⋅=, AC ∴.2.(2018天津理)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小;(II )设a =2,c =3,求b 和sin(2)A B -的值.2.【答案】(1)π3;(2)b =,()sin 2A B -=【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由sin cos 6πb A a B ⎛⎫=- ⎪⎝⎭,得sin cos 6πa B a B ⎛⎫=- ⎪⎝⎭,即sin co πs 6B B ⎛⎫=- ⎪⎝⎭,可得tan B =.又因为()0,πB ∈,可得π3B =.(2)在ABC △中,由余弦定理及2a =,3c =,π3B =,有2222cos 7b a c ac B =+-=,故b .所以,()11sin 2sin 2cos cos2sin 27A B A B A B -=-=-=3.(2018全国新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .3.答案:(1;(2)5. 解答:(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴sin 5ADB ∠=,∵90ADB ∠<,∴cos 5ADB ∠==.(2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠, ∴cos cos()sin 2BDC ADB ADB π∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅,2=∴5BC =. 古今中外有学问的人,有成就的人,总是十分注意积累的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当且仅当 c 2a 3 时取等号,则 4a c 的最小值为 9.
3.(2018 浙江)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若 a= 7 ,b=2,A=60°,则 sin B=___________,c=___________.
21
3..答案:
3
7
解答:由正弦定理 a = b ,得 7 = 2 ,所以 sin B = 21 .
3
则csin C Nhomakorabeasin
2 3
A
3 2
cos
A
1 2
sin
A
3
1
1,
a sin A
sin A
sin A
2 tan A 2
C
为钝角,
B
3
,0
A
6
,
tan
A
0,
3 3
,tan1
A
3, ,
故 c 2, .
a
2.(2018 江苏)在 △ABC 中,角 A, B,C 所对的边分别为 a,b, c , ABC 120 , ABC 的平分线交 AC 于点 D,且 BD 1,则 4a c 的最小值为 ▲ .
面积为 a2 b2 c2 ,则 C ( ) 4
A. π 2
B. π 3
C. π 4
D. π 6
3.答案:C
解答:SABC
a2
b2 4
c2
2ab cos C 4
1 2
ab
cos
C
,又
SABC
1 absin C 2
,故 tan C
1,
∴ C .故选 C. 4
二、填空
1.(2018 北京文)若 △ABC 的面积为 3 a2 c2 b2 ,且 C 为钝角,则 B _________; c 的
A. 4 2 B. 30 C. 29
D. 2 5
2.【答案】A
【解析】因为
cos C
2 cos2
C 2
1
2
5 5
2
1
3 5
,
所以
c2
a2
b2
2ab cos C
1
25
2 1 5
3 5
32
, c
4
2 ,选 A.
3.(2018 全国新课标Ⅲ文、理)△ABC 的内角 A , B ,C 的对边分别为 a ,b ,c .若△ABC 的
2.【答案】9
【解析】由题意可知, S△ABC S△ABD S△BCD ,由角平分线性质和三角形面积公式得
1 ac sin120 1 a 1sin 60 1 c 1sin 60 ,化简得 ac a c , 1 1 1 ,因此
2
2
2
ac
4a
c
4a
c
1 a
1 c
5
c a
4a c
5
2
c 4a 9 , ac
3 2
1 7
1 2
43 7
33 14
.
如图所示,在 △ABC 中, Q sin C h , h BC sin C 7 3 3 3 3 ,
BC
14 2
AC 边上的高为 3 3 . 2
2.(2018 天津理)在 △ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 b sin A a cos(B ) . 6
又由
b
sin
A
a
cos
B
π 6
,得
a
sin
B
a
cos
B
π 6
,
即
sin
B
cos
B
π 6
,可得
tan
B
3.
又因为 B 0, π ,可得 B π .
3 (2)在 △ABC 中,由余弦定理及 a 2 , c 3 , B π ,
3
有 b2 a2 c2 2ac cos B 7 ,故 b 7 .
2bc
bc 2
3
2
3
第 2页 (共 4页)
三、解答题
1.(2018 北京理)在△ABC 中,a=7,b=8,cosB=– 1 . 7
(Ⅰ)求∠A; (Ⅱ)求 AC 边上的高.
1.【答案】(1) A π ;(2) AC 边上的高为 3 3 .
3
2
【解析】(1)在 △ABC
中, Q
cosB
1 7
,
B
4
a
取值范围是_________.
第 1页 (共 4页)
1.【答案】 60o ; 2, .
【解析】 Q SV ABC
3 4
a2 c2 b2
1 ac sinB , a2 c2 b2 sin B ,
2
2ac
3
即 cos B sin B , sin B 3 , B ,
3
cos B
sin A sin B
3 sin B
7
2
由余弦定理, cos A = b2 + c2 - a2 ,得 1 = 4 + c2 - 7 ,所以 c = 3.
2bc
2
4c
4.(2018 全国新课标Ⅰ文)△ ABC 的内角 A,B ,C 的对边分别为 a ,b ,c ,已知
b sin C c sin B 4a sin B sin C , b2 c2 a2 8 ,则△ ABC 的面积为________.
2018 年全国各地高考数学试题及解答分类大全 (解三角形)
一、选择题
1.(2018 全国新课标Ⅰ理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆
构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC,直角边 AB,AC.△ABC 的三边所
围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自 Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1,p2,p3,则( )
π 2
,
,
sin
B
1 cos2 B 4 3 . 7
由正弦定理得 a b 7 8 ,sin A 3 .
sin A sin B sin A 4 3
2
7
Q
B
π 2
,
,
A
0,
π 2
,A
π 3
.
(2)在 △ABC 中, Q sin C sin A B sin Acos B sin B cos A
由
b
sin
A
a
cos
B
π 6
,可得
sin
A
3 .因为 a c ,故 cos A 2 .
7
7
第 3页 (共 4页)
因此 sin 2 A 2sin Acos A 4 3 , cos 2 A 2 cos2 A 1 1 ,
7
7
所以, sin 2A B sin 2Acos B cos 2Asin B 4 3 1 1 3 3 3 .
2 sin ADB
,∴ sin ADB
2, 5
∵ ADB 90 ,∴ cos ADB 1 sin 2 ADB 23 . 5
(2)
ADB
BDC
,∴
cos
BDC
cos(
ADB)
sin
ADB
,
2
2
∴ cos BDC
cos(
ADB)
sin ADB
,∴ cos BDC
DC 2
BD2
BC 2
,
2
2 BD DC
4.答案: 2 33 解答:根据正弦定理有: sin B sin C sin C sin B 4sin Asin B sin C ,∴
2sin B sin C 4sin Asin B sin C ,∴ sin A 1 .∵ b2 c2 a2 8 ,∴ 2
cos A b2 c2 a2 4 3 ,∴ bc 8 3 ,∴ S 1 bc sin A 2 3 .
7 2 7 2 14
3.(2018 全国新课标Ⅰ理)在平面四边形 ABCD 中,ADC 90 ,A 45 ,AB 2 ,BD 5 . (1)求 cos ADB ;
(2)若 DC 2 2 ,求 BC .
3.答案:(1) 23 ;(2)5. 5
解答:
(1)在 ABD
5 中,由正弦定理得: sin 45
∴ 2 8 25 BC2 .∴ BC 5 . 5 252 2
第 4页 (共 4页)
(I)求角 B 的大小;
(II)设 a=2,c=3,求 b 和 sin(2A B) 的值.
2.【答案】(1) π ;(2) b 7 , sin 2 A B 3 3 .
3
14
【解析】(1)在 △ABC 中,由正弦定理 a b ,可得 b sin A a sin B , sin A sin B
A.p1=p2 B.p1=p3 C.p2=p3
D.p1=p2+p3
1. 答案:A
解答:取 AB AC 2 ,则 BC 2 2 ,
∴区域Ⅰ的面积为
S1
1 2
2
2
2
,区域Ⅲ的面积为
S3
1 2
(
2)2 2 2 ,
区域Ⅱ的面积为 S2 12 S3 2 ,故 p1 p2 .
2.(2018 全国新课标Ⅱ文、理)在 △ABC 中, cos C 5 , BC 1 , AC 5 ,则 AB ( ) 25